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Abstract. 3D anomaly detection plays a crucial role in monitoring parts
for localized inherent defects in precision manufacturing. Embedding-
based and reconstruction-based approaches are among the most popular
and successful methods. However, there are two major challenges to the
practical application of the current approaches: 1) the embedded mod-
els suffer the prohibitive computational and storage due to the memory
bank structure; 2) the reconstructive models based on the MAE mech-
anism fail to detect anomalies in the unmasked regions. In this paper,
we propose R3D-AD, reconstructing anomalous point clouds by diffusion
model for precise 3D anomaly detection. Our approach capitalizes on the
data distribution conversion of the diffusion process to entirely obscure
the input’s anomalous geometry. It step-wisely learns a strict point-level
displacement behavior, which methodically corrects the aberrant points.
To increase the generalization of the model, we further present a novel
3D anomaly simulation strategy named Patch-Gen to generate realis-
tic and diverse defect shapes, which narrows the domain gap between
training and testing. Our R3D-AD ensures a uniform spatial transfor-
mation, which allows straightforwardly generating anomaly results by
distance comparison. Extensive experiments show that our R3D-AD out-
performs previous state-of-the-art methods, achieving 73.4% Image-level
AUROC on the Real3D-AD dataset and 74.9% Image-level AUROC on
the Anomaly-ShapeNet dataset with an exceptional efficiency.

Keywords: 3D anomaly detection, industrial applications, 3D recon-
struction, self-supervised learning

1 Introduction

Anomaly detection aims to identify instances containing anomalies and to pre-
cisely locate the specific positions of defects. This task is extensively applied
across multiple fields and plays a crucial role in quality control within indus-
trial production [28]. 3D anomaly detection [19] has emerged due to its intrinsic
∗ Equal contribution.
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Fig. 1: Comparison of architectures. (a) Embedded model encodes the input X into
features and stores them in the memory bank during training. The anomaly map M is
obtained by comparing the test features with all the features in the memory bank. (b)
Reconstructive model is trained by minimizing the loss between its input X and the
output X̂ . The anomaly map M is obtained by comparing the test phase input with
its corresponding reconstruction target.

modality superior for avoiding blind spots in advanced processing and precision
manufacturing. However, the discrete and disordered data form of point clouds
makes it more difficult to acquire features compared to images. With the scarcity
of anomalies, 3D anomaly detection also faces the problem of domain shift while
only normal data are presented during training. The presence of these issues
underscores the necessity and urgency of devising an efficient framework for the
3D anomaly detection task.

Similar to traditional 2D anomaly detection [28,42], current 3D anomaly de-
tection can be primarily categorized into embedding-based and reconstruction-
based, as illustrated in Fig. 1. The embedding-based methods involve mapping
features extracted with a pre-trained encoder onto a normal distribution for
learning. Distributions that do not fall within the interval are classified as anoma-
lies. Most existing 3D anomaly detection methods are based on a memory bank
mechanism [3, 11, 19, 36], which stores some representative features during the
training phase to implicitly construct a feature distribution. In the testing phase,
the presence of anomalies is determined by calculating the Euclidean distance be-
tween the input test object and all template point clouds stored in memory. The
reconstruction-based methods train a network capable of accurately reconstruct-
ing normal point clouds, under the presumption that anomalous point clouds will
not be effectively reconstructed since they are not included during training. The
anomaly map is produced through the comparison of discrepancies between the
input point cloud and its reconstruction. IMRNet [18] employs PointMAE [25]
to reconstruct the input in several iterations, getting the final anomaly map by
calculating the explicit spatial coordinate differences and implicit deep feature
differences of the point cloud, respectively.

However, existing methods face two key issues, high resource cost and ir-
reparable reconstruction. Firstly, methods based on the memory bank [3,11,19,
36] store all features from the training phase, each test point cloud needs to be
compared with all samples in the memory bank, significantly increasing memory
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overhead and inference time costs. This makes such methods almost inapplica-
ble in real industrial production lines due to their inefficiency. Secondly, masked
autoencoder (MAE) mechanism [9,25,38] only reconstructs the masked portions
of the input, defects within unmasked portions may be preserved. This con-
tradicts the fundamental assumption of detecting anomalies by comparing the
original defect-containing point cloud with a reconstructed anomaly-free version.
These methods inevitably lead to incorrect reconstructions, undermining their
effectiveness in accurately localizing defects.

We propose R3D-AD, a novel 3D anomaly detection method that does not
suffer from the space burden and time endurance in memory-based embedded
models nor the anomaly unmasking probability in the MAE-based reconstructive
models. In contrast to PointMAE, one of our key insights is to perform undif-
ferentiated masking for 3D objects via the noise diffusion mechanism, which
maximizes the preservation of anomaly-free shapes and reconstructs abnormal
regions. In the reparameterized diffusion process, one-step full mask and recon-
struction are achieved by converting the point cloud distribution, instead of the
multiple iterative method [18]. We hypothesize that anomaly detection verifies
the gap between the reconstructed shapes and the positive samples by learn-
ing point movement. Specifically, for input models with arbitrary anomalies, we
encode them as latent shape embeddings as decoding conditions and explicitly
control the point cloud reconstruction process by step-wise displacements (SWD)
decoding. The shape embedding harbors abundant global features and makes it
easier to train the network without dwelling on the introduction of local anomaly
details. Another key to our approach is to implement a controllable method of
point-wise displacement during the diffusion process to refine the point cloud
deformation iteratively. We propose to inject latent shape embedding into each
step of the inverse denoising process, which drives the anomalous regions to con-
verge to a smooth surface. We further adopted a 3D anomaly simulation strategy
Patch-Gen to address the limitations of the dataset, which generates abundant
defectives by producing spatial irregularity that is faithful to the real scene, in-
cluding bulges, sinks, etc. This point cloud data augmentation encourages the
self-supervised model to reconstruct more realistic anomaly-free shapes when
facing the actual anomaly.

To the best of our knowledge, this is the very first attempt at exploring diffu-
sion in reconstruction-based 3D anomaly detection. Our main contributions are
summarized as follows: (i) We introduce a novel framework, termed R3D-AD,
which performs a one-step full mask and anomaly-free reconstruction for fast and
accurate 3D anomaly detection. (ii) We propose to learn the step-wise displace-
ment in the reverse diffusion process to explicitly control the reconstruction of
anomalous shapes. (iii) We introduce a 3D anomaly simulation strategy named
Patch-Gen to address the limitation of the data anomaly patterns and improve
the reconstruction performance in a supervised setting. (iv) Extensive experi-
ments demonstrate that our R3D-AD has achieved state-of-the-art performance
on both Real3D-AD and Anomaly-ShapeNet datasets.
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2 Related work

2.1 2D Anomaly Detection

Anomaly detection has received increasing attention from researchers in recent
years, and many new methods have been proposed to address the problem.
Flow-based methods [8, 29, 35, 39] use learned distributions and flow’s bijec-
tive properties to spot defects, while Memory-based approaches [1,14,28] gauge
anomaly scores by contrasting test sample features with memory bank-stored
norms. Reconstruction-based models [2, 41, 42] flag anomalies by comparing in-
puts to their online reconstructions. Recent works [12, 16, 32, 43] augment the
anomaly detection datasets with generated synthetic anomalies to compensate
for the negative example scarcity problem.

2.2 3D Anomaly Detection

This field lags behind the development of 2D anomaly detection since 3D data
are harder to obtain, while point cloud data are sparser and contain more noise
than image data. BTF [11] integration of handcrafted 3D descriptors with clas-
sic 2D method PatchCore [28], constructing a basic framework for 3D anomaly
detection. M3DM [36] advances the field by separately analyzing features from
point clouds and RGB images, then merging these for improved decision-making.
CPMF [3] converts point clouds into two-dimensional images from multiple an-
gles, extracting additional features from these images with a pre-trained network,
and enhancing detection capabilities through information fusion. Reg3D-AD [19]
develops a registration-based method, the RANSAC algorithm was used to align
each sample before comparing it to the stored template during the test phase.
IMRNet [18] trains a PointMAE [25] to reconstruct anomaly-free samples and
identifies anomalies by juxtaposing the reconstructed point cloud against the ini-
tial input. Many of these use memory banks to store the features of the training
samples or require multiple iterations to restore points. Unlike previous meth-
ods, our approach requires only one step of reconstruction and has significant
advantages in both time and space efficiency.

2.3 Diffusion Models

Diffusion models have proven their effectiveness in several generative tasks, such
as image generation [31], speech generation [15], and video generation [10]. De-
noising Diffusion Probabilistic Models (DDPMs) [13, 33, 34] employ a forward
noising mechanism, incrementally integrating Gaussian noise into images, along-
side a reverse process meticulously trained to counteract the forward mecha-
nism. Denoise AD [22] conducts DDPM for reconstructing within the features
space, generating images that contain less noise. In recent years, many stud-
ies [6, 17, 20, 24] have attempted to use the diffusion model to explore the 3D
reconstruction task. DPM [23] incorporates a shape latent variable to encapsu-
late the geometric intricacies of 3D shapes, it distinctively models this variable’s
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distribution utilizing Normalizing Flows [7, 27]. PVD [44] utilizes PVCNNs [21]
for the point-voxel representation of 3D shapes and integrates structured locality
into point clouds. This innovative approach leverages the strengths of both point
and voxel representations, optimizing the model’s ability to capture the intricate
spatial hierarchies and local geometries within 3D objects. Since diffusion-based
reconstruction recovers the target shape from complete noise, the dilemma of re-
constructing only the masked region in the MAE [9] mechanism does not exist.

3 Method

3.1 Overview

We model the anomaly detection problem as mapping an anomalous point cloud
Pa ∈ RN×3 to a positive shape with which it is aligned. The framework of R3D-
AD is shown in Fig. 2, where the simulated anomalous shapes are reconstructed
in a self-supervised setting in the training phase and then compared with the
original input to detect anomalies. The reconstructed anomaly-free model is
aligned with the input, thus allowing direct computation of anomaly scores and
segmentation of anomalous regions by conditioned distance functions. Simul-
taneously, the anomaly simulation strategy faithfully generates realistic defects
and randomly synthesizes diverse anomaly shapes on normal samples, improving
the generalization ability of the network in the case of limited anomaly samples.

3.2 Preliminary of denoising diffusion probabilistic models

A DDPM is inspired by the thermal diffusion process in an evolving thermody-
namic system, which consists of a diffusion process and a reverse process.

The forward Markovian process gradually adds Gaussian noise to a clean
sample x(0) from a data distribution q(x(0)) and turns it into a Gaussian noise
x(T ), which is defined as

q(x(0), ...,x(T )) =

T∏
t=1

q(x(t)|x(t−1)), (1)

where q(x(t)|x(t−1)) = N (x(t);
√
1− βtx

(t−1), βtI) is the Markov diffusion ker-
nel, t = 1, ..., T , T is the number of diffusion steps, and βt is a variance schedule.
We have q(x(t)|x(0)) = N (x(t);

√
αtx

(0), (1 − αt)I) by reparameterization with
αt = 1− βt , αt =

∏t
s=0 αs. x(t) can be sampled by

x(t) =
√
αtx

(0) + ϵ
√
(1− αt), (2)

where ϵ is a standard Gaussian noise and ϵ ∼ N (0, I). When T is large enough,
x(T ) will eventually become a Gaussian noise.

The reverse process is also a Markovian process that denoises over a series
of steps to generate meaningful data from the target distribution q(x(0)). The
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Fig. 2: Overall architecture of R3D-AD for shape reconstruction and anomaly detection
of point cloud objects. Reconstruction training phase: The simulated anomalous
P(0)

a is generated resort to Patch-Gen from the input point cloud. It further fully
masked as P(T )

a while also encoded to latent shape embedding. The SWD decoder then
explicitly reconstructs the anomaly-free object P(0)

r with consistent spatial transform
by conditionally generating point-level displacements ∆(t) at each step of the inverse
process. Detection testing phase: The test point cloud P(0)

a is reconstructed to P(0)
r

with normal shape, and compared at a distance level to detect the anomalous region.

inverse process denoises the noise x(T ) from a distribution p(x(T )), which is
defined as

pθ(x
(0), ...,x(T−1)|x(T ), c) =

T∏
t=1

pθ(x
(t−1)|x(t), c), (3)

where pθ(x
(t−1)|x(t)), c = N (x(t−1);µθ(x

(t), t, c), σ2
t I), the mean µθ(x

(t), t, c)
is estimated by a neural network parameterized by θ, c is the latent condition
encoding, and σ2

t is a step-dependent variance. µθ can be reparameterized as

µθ(x
(t), t, c) =

1
√
αt

(x(t) − βt√
1− αt

ϵθ(x
(t), t, c)), (4)

where ϵθ(x
(t), t, c) is a neural network utilized to denoise the Gaussian noise

from x(T ).
The training objective is minimized by training ϵθ(x

(t), t, c) to approximate
ϵ. The training objective is defined as

L = Et∼[1:T ],x(0)∼q(x(0)),ϵ∼N (0,I) ∥ ϵ− ϵθ(
√
αtx

(0) +
√
1− αtϵ, t, c) ∥, (5)

where t is sampled from the uniform distribution over 1,2, ..., T , q(x(0)) is the
distribution of x(0), and ϵ is the Gaussian noise.
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3.3 Diffusion-based 3D anomaly reconstruction

We formulate the point cloud reconstruction task of the anomaly-free model as
the conditional generation, which decodes the explicit displacement with the tar-
get distribution q(Pr|P(T )

a , c), where c is the decoding condition. The essential
question of anomaly detection in this paper is how to conditional reconstruct
anomaly-free shapes on the reference of input point clouds with different spa-
tial transformations. Since there is a high similarity of global features between
abnormal and normal samples during self-supervised reconstruction, the most
immediate approach is to extract an efficient global feature from input to serve
as an auxiliary conditional embedding for the denoising function ϵθ. We imple-
ment the encoding of latent shape embedding c as a conditional input to guide
reconstruction in the reverse diffusion process.

Latent shape embedding The feature encoder aims to encode the point cloud
to the latent shape embedding c with high-level features for the conditional
generation process. Different from other global-local extracting methods [37,40],
we focus more on extracting global features, which characterize the semantic
information of shape and pose of most anomaly-free regions in the point cloud.
The feature encoder mainly consists of cascaded multi-layer perceptions (MLP)
based on PointNet [5]. It implements max-pooling after mapping P(0)

a to different
dimensions and then compresses them to extract the global shape embedding.

Step-wise displacement decoding To achieve point cloud reconstruction
with transformation consistency while preserving the structure of non-anomalous
regions, our method injects latent shape embedding c to the decoder at each step
of the reverse diffusion process, as shown in Fig. 2. In principle, in the training
phase, ϵθ learns the added Gaussian noise in the forward diffusion process by the
decoder to model the conditional probability distribution. Conditionally gener-
ating target shapes from N×3 Gaussian noise is a straightforward approach, but
it is afflicted by the issues of reconstructing the point cloud details and transform
consistency. Learning the relative deformation of points for anomalous objects is
more efficient. Considering the mapping degradation of the vanilla autoencoder
in the reconstruction training phase [22], we utilize the Gaussian noise of the for-
ward process Eq. 2 to fully mask the point cloud object directly without blind
spots, preventing the decoding process from receiving negative state shapes. The
masked points P(T )

a and latent shape embedding c ∈ R256 are as the inputs of
the SWD decoder. The point-wise displacement vector ∆(t) is generated at each
step of the iterative process thus disentangling the prediction noise and the de-
sired anomaly-free shape. The reverse process can be defined according to Eq. 3
and the displacement vector ∆(t) can be represented by

∆(t−1) =
1

√
αt

(∆(t) − βt√
1− αt

ϵθ(∆
(t), βt, c)) + σϵ, (6)
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Fig. 3: Illustration of Patch-Gen, the 3D anomaly simulation strategy. The input nor-
mal point cloud is first randomly rotated. On the surface of the normalized cube, we
randomly select viewpoints to find the nearest patch of points. The selected points are
then transformed into irregular defects according to the specific deformation solution.

where σ is the variance. A PointwiseNet is adopted for ϵθ to decode the ∆(t−1)

from the previous step and c. βt is used to generate trigonometric position em-
bedding ep = (βt, sin(βt), cos(βt)). ep is concatenated with c and then fed into
the concatenate-squash linear module of PointwiseNet with a residual function.
The output reconstructed point cloud at the t step is P(t)

r = P(t+1)
r +∆(t). The

registered original and reconstructed objects are distinguished from the anoma-
lous shape by the anomaly scores based on the conditioned distance function.

3.4 3D anomaly simulation strategy

Given that a small number of normal samples is not conducive for the model
to learn diverse and essential features, we propose the Patch-Gen strategy to
simulate the defects from anomaly-free shapes for training data augmentation.
Patch-Gen encourages the reconstruction model to learn to detect irregularity,
where the anomaly-free point clouds and their diverse anomaly patterns are
integrated into training pairs and are utilized to learn the discrimination fea-
ture between normal and anomalous surfaces. The intuition is that the diversity
of simulated negative samples forces our network to learn how to reconstruct
anomaly-free shapes instead of memorizing their complete outfits.

As shown in Fig. 3, the input normal sample is first randomly rotated. The
random spatial rotation is designed to improve the generalization capability for
test samples with very different spatial transformations, as defined by:

Pa = P · R, (7)

where P is input normal sample point cloud and R ∈ R3×3 is obtained by ran-
domly selecting rotation angles for all three axes. In addition to global shape
awareness of the model by the random rotation, we further perform a fine gran-
ularity of the anomaly simulation. We randomly take a viewpoint Pv from the
surface of the cube. Therefore, the patch of nearest N points Pn from Pa can be
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determined according to the Pv. The shape augmentation scheme Patch-Gen is
defined as follows:

Pn = Pn + S · normalize(Pn − Pv)⊙ T , (8)

where nomalize represents a normalization operation on a vector, S is a prede-
fined hyper-parameter that controls the scaling of the patch points, and T is the
translation matrix originating from a Gaussian distribution. The Pa is finally
obtained by only updating the patch region Pn.

With the proposed Patch-Gen, we can simulate the generation of multiple
anomalies, which is mainly done by controlling T . Bulge or sink can be generated
by sorting T after sampling from the distribution, while damage can be generated
by direct overlaying without manipulation.

3.5 Training objective

In the reconstruction task of the object with N points, the network learns a
diffusion model with an RN×3 → RN×3 mapping relation. Iterative denoising
under the semantic condition of point embedding realizes the prediction of point
offsets. Concretely, the network is trained to learn the noise that needs to be
eliminated to recover the anomaly-free shape with the L2 distance between the
ground truth and the denoised reconstructed points. We make use of the mean
squared error (MSE) loss as the primary reconstruction loss which evaluates the
mean squared error of the element-wise distances between P(0)

a and P(0)
r . The

MSE training loss is formulated as:

LPa,Pr =
1

N

N∑
i=1

pa∈Pa,pr∈Pr∥ pa − pr ∥2. (9)

4 Experiments

4.1 Datasets

Real3D-AD [19] is a 3D anomaly detection dataset based on real samples,
exhibiting a higher point precision and spatial distance per point cloud. Each
category contains 4 training samples and 100 test samples. The training set
contains 360° complete surface point clouds of the objects, which are obtained
by manually calibrating and stitching the scans of multiple sides of the objects.
The test samples are scans only one side with a huge difference from the training
set. The distribution of the point clouds also varies among the total 12 categories,
further deepening the detection difficulty compared to 2D scenes.

Anomaly-ShapeNet [18] is a 3D anomaly detection, crafted through mod-
ifications to the synthetic samples found in ShapeNetCorev2 [4]. It contains
40 diverse categories, featuring over 1600 samples of its complete surface point
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Method BTF [11] M3DM [36] PatchCore [28] CPMF [3] Reg3D-AD [19] IMRNet [18] Ours

Feat. Raw FPFH PointMAE FPFH PointMAE ResNet PointMAE PointMAE Raw

Airplane 0.730 0.520 0.434 0.882 0.726 0.701 0.716 0.762 0.772
Candybar 0.539 0.630 0.552 0.541 0.663 0.552 0.685 0.755 0.696
Car 0.647 0.560 0.541 0.590 0.498 0.551 0.697 0.711 0.713
Chicken 0.789 0.432 0.683 0.837 0.827 0.504 0.852 0.780 0.714
Diamond 0.707 0.545 0.602 0.574 0.783 0.523 0.900 0.905 0.685
Duck 0.691 0.784 0.433 0.546 0.489 0.582 0.584 0.517 0.909
Fish 0.602 0.549 0.540 0.675 0.630 0.558 0.915 0.880 0.692
Gemstone 0.686 0.648 0.644 0.370 0.374 0.589 0.417 0.674 0.665
Seahorse 0.596 0.779 0.495 0.505 0.539 0.729 0.762 0.604 0.720
Shell 0.396 0.754 0.694 0.589 0.501 0.653 0.583 0.665 0.840
Starfish 0.530 0.575 0.551 0.441 0.519 0.700 0.506 0.674 0.701
Toffees 0.703 0.462 0.450 0.565 0.585 0.390 0.827 0.774 0.703

Average 0.635 0.603 0.552 0.593 0.595 0.586 0.704 0.725 0.734

Table 1: Image-level anomaly detection AUROC on Real3D-AD dataset. We highlight
the best result in bold and the second best result with an underline.

clouds. Each category’s training set contains merely 4 samples, while the test
sets are designed to assess the model’s performance across both normal and a
spectrum of abnormal samples. It widely increases the anomaly types while keep-
ing the number of points the same as the previous studies, which places higher
demands on the robustness and generality of the proposed algorithms.

4.2 Evaluation metrics

For image-level anomaly detection, the Area Under the Receiver Operating
Curve (AUROC) is utilized in line with established practices. For the evaluation
of pixel-level anomalies, the AUROC metric is similarly applied in the context
of point segmentation accuracy. A value of 0.5 of the AUROC score denotes no
discriminative capability (equivalent to random guessing), whereas a score of 1.0
indicates perfect discrimination between positive and negative classes.

4.3 Implementation details

Our methodology is implemented using PyTorch [26] with end-to-end training
across the network. The optimization is performed using the Adam optimizer,
starting at an initial learning of 0.001. The training process involves a total batch
size of 128 across 40,000 iterations for comprehensive learning. All input point
clouds undergo a preprocessing step where they are randomly downsampled to
a fixed size of 4096 and 2048 points on Real3D-AD and Anomaly-ShapeNet, re-
spectively. Additionally, we normalized these point clouds by setting their center
of gravity as the origin of coordinates and scaling their dimensions to fall within
the range of -1 to 1, optimizing for the diffusion process.
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Method BTF [11] M3DM [36] PatchCore [28] CPMF [3] Reg3D-AD [19] IMRNet [18] Ours

Feat. Raw FPFH PointMAE FPFH PointMAE ResNet PointMAE PointMAE Raw

Ashtray 0.578 0.420 0.577 0.587 0.591 0.353 0.597 0.671 0.833
Bag 0.410 0.546 0.537 0.571 0.601 0.643 0.706 0.660 0.719
Bottle 0.558 0.404 0.584 0.614 0.588 0.469 0.569 0.631 0.750
Bowl 0.470 0.581 0.579 0.558 0.547 0.679 0.548 0.676 0.751
Bucket 0.469 0.517 0.405 0.510 0.577 0.542 0.681 0.676 0.719
Cap 0.509 0.562 0.599 0.645 0.583 0.601 0.632 0.704 0.726
Cup 0.462 0.598 0.548 0.593 0.583 0.498 0.524 0.700 0.767
Eraser 0.525 0.719 0.627 0.657 0.677 0.689 0.343 0.548 0.890
Headset 0.447 0.505 0.597 0.610 0.609 0.551 0.574 0.698 0.767
Helmet 0.508 0.569 0.488 0.465 0.495 0.532 0.491 0.603 0.704
Jar 0.420 0.424 0.441 0.472 0.483 0.610 0.592 0.780 0.838
Microphone 0.563 0.671 0.357 0.388 0.488 0.509 0.414 0.755 0.762
Shelf 0.164 0.609 0.564 0.494 0.523 0.685 0.688 0.603 0.696
Tap 0.549 0.553 0.747 0.760 0.498 0.528 0.659 0.686 0.818
Vase 0.517 0.464 0.534 0.554 0.582 0.514 0.576 0.629 0.734

Average 0.493 0.528 0.552 0.568 0.562 0.559 0.572 0.659 0.749

Table 2: Image-level anomaly detection AUROC on Anomaly-ShapeNet dataset. We
highlight the best result in bold and the second best result with an underline.

4.4 Main results

We conduct experiments on Real3D-AD [19] based on real sampling and Anomaly-
ShapeNet [18] based on simulation.

As shown in Table 1, we first compare the image-level AUROC metric with
current cutting-edge 3D anomaly detection models on Real3D-AD. It shows that
our method achieves the best performance using only raw point cloud data, while
most of the existing methods use Fast Point Feature Histograms (FPFH) oper-
ator [30] or ShapeNet [4] pre-trained PointMAE [25] as feature extractor. Due
to significant disparities in quantity, size, and distribution among different cat-
egories of point clouds in Real3D-AD, scoring variations across categories are
more pronounced with other methods. For instance, numerous methods perform
under 0.5 in certain categories, indicating their inadequacy in extracting mean-
ingful features while facing challenging samples. In contrast, our method not
only exhibits superior performance in 3D anomaly detection across the majority
of categories but also achieves the best overall average across all categories. This
demonstrates the strong generalizability and robustness of our approach.

We further evaluate our method on Anomaly-ShapeNet in Table 2, which en-
compasses a broader array of categories and a greater diversity of defect types.
Compared to Real3D-AD, Anomaly-ShapeNet significantly enhances the diver-
sity of defects, wherein the increased variety of defect types further escalates
the complexity of detection tasks. The results highlight the exceptional perfor-
mance of our method across all evaluated categories, demonstrating an average
improvement of 9% on AUROC relative to the approaches previously utilized.
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Model Diffusion Condition Relative Patch-Gen I-AUROC P-AUROC

A ! % % % 0.586 0.524
B ! ! % % 0.667 0.513
C ! ! ! % 0.712 0.573
D ! ! ! ! 0.734 0.592

Table 3: Ablation studies for 3D adaptation components on Real3D-AD dataset.

4.5 Ablation study

To delve into the effect of individual components, we conduct ablation experi-
ments on the Real3D-AD dataset. To fully demonstrate and compare the per-
formance of the models, we report both image-level and pixel-level results with
I-AUROC and P-AUROC, respectively.

Main component Table 3 compares the performance of different variants from
R3D-AD, which includes the influence of the denoising condition embedding,
displacement-based reconstruction way, and the data augmentation strategy of
Patch-Gen. Model A is denoted as our baseline, which is a vanilla DDPM model
for point cloud reconstruction. Introducing a condition into the DDPM (Model
B) significantly boosts performance, particularly in terms of I-AUROC, which
sees a 13.8% increase to 0.667. Model C, which predicts point displacements
based on conditional DDPM, preserving detailed structural information while
accommodating the relative displacement of points contributes to a notable 6.0%
gain in P-AUROC over Model B. Model D is trained under the conditions of
shape embedding with the Patch-Gen strategy. Considering that the defective
portion contains only a small portion of the original point cloud, we try to
reconstruct the relative displacement in a way that preserves as much detail as
possible, which is effective for both 3D anomaly detection and segmentation.

Patch-Gen Table. 4 analyzes the influence of two key parameters in Patch-Gen:
the selection points ratio and the scaling points factor.

The selection points ratio from Table. 4a determines the proportion of
points in the point cloud that are selected for transformation. Our findings sug-
gest that a selection ratio of 1/32 achieves the best performance. It appears that
this ratio provides a balanced trade-off between maintaining sufficient structure
for anomaly detection and introducing enough variation to simulate anomalies
effectively. Notably, as the ratio increases beyond 1/16, both I-AUROC and P-
AUROC scores decrease in severity, since real defects only account for a small
portion of the overall point cloud, a wide selection of points not only destroys
the structure of the original point cloud, but also makes the distribution of the
training and test sets inconsistent.

The scaling points factor is the intensity of the random transformation ap-
plied to the selected points, as detailed in Table 4b. The optimal performance is
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ratio I-AUROC P-AUROC

1/64 0.716 0.584
1/32 0.734 0.592
1/16 0.727 0.579
1/8 0.683 0.528

(a) Selection points ratio.

factor I-AUROC P-AUROC

0.1 0.734 0.592
0.2 0.727 0.572
0.4 0.715 0.554
0.8 0.661 0.517

(b) Scaling points factor.

Table 4: Ablation studies for Patch-Gen implementation on Real3D-AD dataset. De-
fault settings are marked in gray .

0
1
2
3
4
5
6
7
8

               FPFH        PointMAE        Raw

M
em

or
y 

(G
)

BTF(Raw)

BTF(FPFH)

M3DM(PointMAE)PatchCore(FPFH)

PatchCore(PointMAE)

Reg3D-AD Ours

0.52
0.55
0.58
0.61
0.64
0.67
0.70
0.73
0.76

0.01 0.10 1.00 10.00

Ar
ea

 U
nd

er
 th

e 
R

O
C

 c
ur

ve
 

(A
U

R
O

C
)

Frames per Second (FPS)
(a) (b)

Fig. 4: Memory and time cost during inference on Real3D-AD dataset. (a) Memory
usage comparison between different models. (b) 3D anomaly detection performance
vs. frames per second on an NVIDIA RTX 3090 GPU. Our R3D-AD outperforms all
previous methods on both accuracy and efficiency by a significant margin.

observed at a scaling factor of 0.1, which implies that minor transformations are
more effective for simulating anomalies without significantly altering the original
data distribution. Larger scaling factors lead to a consistent decline in perfor-
mance, underscoring the importance of subtle transformations for preserving the
utility of the simulated anomalies for detection tasks.

Memory and time cost As depicted in Figure 4, we evaluate the disparity in
both storage consumption and inference time of our model under identical exper-
imental conditions, compared to existing methods. Regarding memory usage, our
approach demonstrates a marked superiority by employing raw coordinate fea-
tures instead of FPFH or PointMAE features, significantly reducing the memory
footprint. Since no memory bank exists, our method is also more space-efficient
compared to BTF which also uses raw features. Moreover, our method elimi-
nates the necessity to compare all the features in memory, substantially increas-
ing operational efficiency. The implementation of Patch-Gen inherently bestows
our model with exceptional robustness, enabling precise reconstruction of point
clouds from various angles without the need for the time-intensive RANSAC
alignment process required by Reg3D-AD.
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Fig. 5: Qualitative analysis on Real3D-AD dataset and Anomaly-ShapeNet dataset.
The anomaly map is obtained directly by calculating the differences between the input
and reconstructed point clouds, where deeper colors represent more confidence.

4.6 Qualitative results

Figure 5 presents some qualitative outcomes, with varying shades of color in-
dicating different levels of anomaly scores. We select several representative de-
fective samples to demonstrate the robustness of our algorithm. The left four
columns display samples from Real3D-AD, while the right four columns sam-
ples are from Anomaly-ShapeNet. The illustration reveals that our R3D-AD
algorithm has precisely reconstructed the defective portions of the point cloud
across various samples: the deep sink in the Seahorse sample, the concavity in
the Bag sample, and the bulge in the Jar sample. Leveraging the accurately re-
constructed point clouds, final point cloud segmentation maps are also produced,
further evidencing the efficacy of our approach.

5 Conclusion

In this work, we presented R3D-AD, a novel reconstructive 3D anomaly detec-
tion model based on conditional diffusion. Our goal is to overcome the limitations
faced by current 3D anomaly detection methods, such as the inefficiencies due
to the memory bank module and low performance caused by incorrect rebuilds
with MAE. To address these challenges, we leverage the diffusion process for
full reconstruction, followed by a direct comparison between the input and the
reconstructed point cloud to obtain the final anomaly score. The embedded la-
tent variable that spans the decoding process, step-wisely generating point-level
displacements from the noise to the target anomaly-free sample. We also propose
Patch-Gen, a data augmentation tailored for point cloud anomaly simulation.
Extensive experiments conducted on 3D anomaly benchmarks validate the su-
periority of our R3D-AD in comparison to state-of-the-art alternatives in terms
of both accuracy and versatility.
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