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Abstract. Domain Generalization (DG) focuses on enhancing the gen-
eralization of deep learning models trained on multiple source domains to
adapt to unseen target domains. This paper explores DG through the lens
of bias-variance decomposition, uncovering that test errors in DG pre-
dominantly arise from cross-domain bias and variance. Inspired by this
insight, we introduce a Representation Enhancement-Stabilization (RES)
framework, comprising a Representation Enhancement (RE) module and
a Representation Stabilization (RS) module. In RE, a novel set of feature
frequency augmentation techniques is used to progressively reduce cross-
domain bias during feature extraction. Furthermore, in RS, a novel Mu-
tual Exponential Moving Average (MEMA) strategy is designed to sta-
bilize model optimization for diminishing cross-domain variance during
training. Collectively, the whole RES method can significantly enhance
model generalization. We evaluate RES on five benchmark datasets and
the results show that it outperforms multiple advanced DG methods.
Our code will be available at https://github.com/zhu-xlab/DG-RES.

Keywords: Domain generalization · Frequency Domain · Data Aug-
mentation · Bias-variance Decomposition

1 Introduction

In recent years, deep learning models have achieved remarkable advancements
in computer vision tasks, primarily under the assumption that training and
test data are independent and identically distributed. However, in real-world
scenarios, this assumption often breaks down due to domain shift/bias, where
the distribution of test data markedly differs from that of training data. Domain
shift can significantly degrade the performance of deep models on unfamiliar,
unseen target domains. For instance, self-driving models trained under daylight
conditions might fail to perform effectively in nighttime environments.

To address these challenges, Domain Generalization (DG) has been proposed
as a robust solution. DG focuses on training models on multiple diverse yet re-
lated source domains for robust performance on arbitrary unseen target domains.
Numerous DG approaches have been developed, including adversarial train-
ing [23, 48], disentangled representation learning [37], meta-learning [7], model
ensemble [2], flatness optimization [4], and domain data augmentation [8,41,47].
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In this study we hightlight the cross-domain generalization of deep models
from the perspective of bias-variance decomposition. Geman et al. [12] first used
bias-variance to decompose the mean square error (MSE) of neural networks.
Building on this, Yang et al. [43] developed the bias-variance decomposition for
the cross-entropy (CE) loss in classification tasks, which was extended by Arpit
et al. [2] to analyze the impact of variance in DG, as illustrated below:

Ex,y∼Ds [CE(y, f(x;Ds))] = Ex,y∼Ds [CE(y, f̄(x))]︸ ︷︷ ︸
Bias2

+Ex,Ds [KL(f̄(x), f(x;Ds))]︸ ︷︷ ︸
Variance

,

(1)
where Ds represents source domains used for training. The formula decomposes
the expected source CE loss into two components: bias and variance. Bias evalu-
ates the discrepancy between model’s average predictions and actual outcomes,
while variance measures sensitivity to fluctuations during training.

Motivated by them, we extend the bias-variance decomposition to DG to
comprehensively analysis the cross-domain prediction errors as the following:

Ex,y∼Dt [CE(y, f(xt;Dt))] = Ex,y∼Ds [CE(y, f(xs + δ;Ds))]

= Ex,y∼Ds [CE(y, f̄(xs + δ))]︸ ︷︷ ︸
Cross-Domain Bias2

+ Ex∼Ds [KL(f̄(xs + δ), f(xs + δ;Ds))]︸ ︷︷ ︸
Cross-Domain Variance

+∆domain(Bias2,Variance).

(2)

This formula analyzes the expected CE loss when a model trained in source
domains Ds, denoted as f(xs;Ds), is applied to new target domains Dt, with
respect to domain shift δ between source and target images, xs and xt. The
formula is decomposed into three components:

– (1) Cross-Domain Bias, as shown in the left of Fig. 1. It quantifies the
discrepancy between the model’s average prediction in the target domain
and the actual labels. High cross-domain bias dramatically enlarges the di-
vergence between the distribution learnt from source domains and the true
underlying distribution of target domains. By progressively reducing bias
in feature extraction during training, i.e., f(xs) ← f(xs + δ), there is an
approximate bias error Ex,y∼Ds

[CE(y, f̄(x))]← Ex,y∼Ds
[CE(y, f̄(xs + δ))].

– (2) Cross-Domain Variance, as shown in the right of Fig. 1. It measures
the variability and sensitivity in the model’s predictions from source to target
domains. The model trained on the source domain tends to generate unstable
predictions when confronted with the target domain data, with elevated
cross-domain variance. Based on cross-domain bias reduction in (1), further
decreasing cross-domain variance results in an approximate variance error
Ex∼Ds

[KL(f̄(xs), f(xs;Ds))]← Ex∼Ds
[KL(f̄(xs + δ), f(xs + δ;Ds))].

– (3) ∆domain(Bias2, Variance). This term denotes the extra test error of the
intertwined effects of the cross-domain bias and variance. The decrease of
both bias and variance can contribute to its reduction.
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Overall, diminishing cross-domain bias and variance can narrow the gap between
Eq. (1) and Eq. (2), enabling models trained on source domains to effectively
adapt to target domains. This analytical framework provides actionable insights
for training models capable of generalizing across diverse data distributions.

Cross-domain bias: 
style, texture, color ...

Cross-domain invariant 
representation: 

content, objects, 
components ...

(a) Challenge of cross-domain bias

high cross-domain variance

(b) Challenge of cross-domain variance

Fig. 1: Two challenges impeding DG from the view of bias-variance decomposition.

Based on this analytical framework, we proposed a joint Representation
Enhancement-Stabilization (RES) method, which consists of a Representation
Enhancement (RE) module and a Representation Stabilization (RS) module to
alleviate cross-domain bias ans cross-domain variance, respectively. In RE, we
propose a novel set of feature augmentation techniques within the frequency do-
main extracted through Fast Fourier Transform (FFT), including random noise,
random dropout, and mixup. RE effectively broadens cross-domain representa-
tion space and thereby enhances robust representation learning, leading to a
reduction in domain bias. Notably, the augmentations of RE target only the
amplitude spectrum of high-dimensional features, with their phase spectrum
remaining unchanged for maintaining domain-irrelevant semantics. In RS, we
persent a novel Mutual Exponential Meaning Average (MEMA) model param-
eter optimization strategy. This approach facilitates a dynamic exchange and
integration of parameters between teacher and student models, enhancing model
stability in out-of-domain performance throughout training process.

We evaluate the proposed RES method on five DG benchmark datasets, in-
cluding PACS [22], VLCS [10], OfficeHome [36], TerraIncognita [3], and DomainNet
[30], and comparison experiment results indicate our RES outperforms multiple
state-of-the-art DG methods.

Our contributions are summarized as follows: (1) We rethink the prediction
error of DG from an extended bias-variance decomposition analytical frame-
work. (2) Based on the bias-variance decomposition, we propose a RES method
for DG, consisting of a Representation Enhancement (RE) module and a Rep-
resentation Stabilization (RS) module, to respectively reduce cross-domain bias
and variance. (3) Comparison experiments demonstrate that our RES method
outperforms multiple state-of-the-art DG methods, verifying its effectiveness.
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2 Related Work

In this section, we first give a brief review of the mainstreams DG methods.
Then we delve into a detailed introduction to data augmentation methods and
flatness-aware methods, which are relevant to our RES.

2.1 Domain Generalization

Various DG methods have been developed. One type of DG methods focus on
distribution alignment among source domains to learn domain-invariant repre-
sentations via all kinds of strategies, including domain alignment [23, 28, 46],
adversarial training [23,48], causal learning [25,26], disentangled representation
learning [31, 37], low-rank decomposition [33], self-supervised learning [1, 19],
meta-learning [6, 7, 44], and data normalization [20,34,34].

2.2 Data Augmentation Methods

Our RE module aligns with another paradigm of data augmentation methods,
which enhance model generalization to unseen domains by diversifying source
domain data at two distinct levels.

(1) Image level [8,41,42,47]. Yang et al. [42] and Zhou et al. [47] have used
cross-domain image-to-image translation based on domain-adversarial learning,
further applying these augmented images in model training. Xu et al. [41] intro-
duced a novel Fourier-based image augmentation strategy for DG, based on the
assumption that phase information in the frequency domain contains high-level
semantics and is less affected by domain shift.

(2) Feature level [14, 24, 39]. Techniques such as the straightforward per-
turbation of high-dimensional feature embeddings with Gaussian noise by Li et
al. [24], the use of Adaptive Instance Normalization (AdaIN) [17] for feature-level
style randomization augmentation by Wang et al. [39], and the DomainDrop
framework by Guo et al. [14] which drops high domain-activated channels to
enhance feature channel robustness against domain shift, have been proposed.

2.3 Flatness-aware Methods

Flatness-aware methods aiming at avoiding unstable sharp optimization draws
rising interest under the situation where a validation set has a different distribu-
tion from the test data, leading to a non-i.i.d. scenario. Cha et al. [4] hypothe-
sized that in the non-i.i.d scenario the generalization gap between flat and sharp
minima is more pronounced, and then proposed a Stochastic Weight Averag-
ing Densely (SWAD) method aiming to locate flat minima and reduce domain
gap. Moreover, Arpit et al. [2] argued that models trained on specific training
domains often display erratic performance on test domains with distribution
shifts. To mitigate this, they suggested the use of ensembling moving average
(EoA) models, thereby decreasing uncertainty in test domains for enhanced do-
main generalization. Sharpness-Aware Minimization (SAM) [11] and an improved
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Sharpness-Aware Gradient Matching (SGAM) [38] were further proposed to en-
hance model generalization by simultaneously minimizing the loss value and its
sharpness, leading to more robust models.

3 RES-based Domain Generalization

3.1 Notations and Overview

Assuming there are K distinct yet semantic-related source domains represented
as Ds = {D1

s , D
2
s , . . . , D

K
s }, each originating from different distributions and

comprising Nk image-label pairs, denoted as Dk
s = {(xi, yi)}Nk

i=1. In this study,
the model training is independent of domain labels, so there is no domain sub-
script in (x, y). The primary objective of DG is to leverage these source domains
to train a model, parameterized by θ, that exhibits strong generalization capa-
bilities and can effectively adapt to unseen target domains. In RES, there are
two models sharing the same architecture, a student model MS parameterized
with θS and a teacher model MT parameterized with θT . MS is used for model
training and MT is utilized for model validation and test.

The proposed RES-based DG framework is shown in Fig. 2 with its train-
ing process summarized in Algorithm 1. RES consists of: (1) a RE module that
augments amplitude spectrum of feature maps while maintaining the phase spec-
trum, to expand cross-domain feature representation; and (2) a RS module that
mutually fuses the parameters of the teacher and student models to each other.

MEMA → RS

Feature
FFT

Feature
iFFT

phases →unchanged

amplitudes → RE

RE: Representation Enhancement

MEMA: Mutual Exponential Moving Average
RS: Representation Stabilization

FFT: Fast Fourier Transform
iFFT: inverse Fast Fourier Transform

Source Domains
(Training)

Target Domain
(Inference)

Lclass

Source Outputs

Target Output

Fig. 2: Workflow of the proposed RES-based domain generalization framework, which
consists of Representation Enhancement (RE) and Representation Stabilization (RS).
RE aims to enhance feature representation to reduce cross-domain bias via a set of
augmentations performing on the amplitude spectrum of frequency domain, while RS
aims to further stabilize cross-domain performance to reduce cross-domain variance
through a novel MEMA optimization strategy between student and teacher models.
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3.2 Feature Frequency Augmentation-Based RE

Our RE modules augments source data at the feature level. During training,
the student model MS is split into two parts: MS− which includes all layers up
to a middle layer l for feature map extraction, and MS+ which consists of the
remaining layers for the remaining feature extraction and classification.

Decomposing Phase and Amplitude From Features. Given an image
x ∈ R3×H̄×W̄ where H̄×W̄ represents image spatial size, a corresponding multi-
layer feature map f ∈ RC×H×W can be extracted by MS−, where C signifies
the number of channels, and H,W denote the height and width of the feature
maps respectively. It is formulated as

f = MS−(x). (3)

To delve into the frequency properties of these feature maps, we employ
a 2D FFT across the spatial dimensions of each channel, ensuring that every
layer of f undergoes this transformative process. This approach allows us to
comprehensively analyze the frequency content within each individual feature
channel. For channel c, its FFT formulation is as follows:

F c(u, v) =

H−1∑
h=0

W−1∑
w=0

f c(h,w) · e−j2π(uh
H + vw

W ), (4)

where f c(h,w) represents the pixel value at the spatial location (h,w) within the
range of [H−1,W −1] in channel c, and F c(u, v) denotes the complex frequency
spectrum at the frequency coordinates (u, v) of channel c. The term j is the
imaginary unit.

Then we compute a multi-layer phase spectrum denoted as P and a multi-
layer amplitude spectrum represented as A, from the complex frequency spec-
trum F , as

P(F c(u, v)) = arctan 2(Imag(F c(u, v)),Real(F c(u, v))), (5)

A(F c(u, v)) =
√

Real(F c(u, v))2 + Imag(F c(u, v))2. (6)

Here, Real(F c(u, v)) and Imag(F c(u, v)) indicate the real and imaginary parts of
the channel-c frequency spectrum F c, respectively. P and A have the same size
of C ×H ×W as f . Drawing inspiration from [15,29,32,41], there is a common
assumption that the phase component of frequency spectrum maintains the high-
level semantics of the original data while the amplitude component contains its
low-level statistics. In this study, we extend it from the image level to feature
level, where we regard feature maps as high-dimension signals with the same
characteristic of phase-amplitude decomposition as images.
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Frequency Augmentations on Features. To avoid damaging the semantics
of features, augmentations are only implemented on the amplitude A to obtain
an augmented A′ while the phase P keeps unchanged, as

A′ = Aug(A). (7)

Given a batch of images {x1, x2, . . . , xB} where B is batch size, a corresponding
batch of amplitudes {A1,A2, . . . ,AB} can be obtained by Eqs. (3), (4), and (6).
During each training iteration, we randomly select and apply one augmentation
strategy from a pre-defined augmentation list, including none, random noise,
random dropout, and mixup. Here none represents no augmentation, and the
details of the rest three strategies are as follows:

– Random noise, denoted as REns. Given a multi-layer amplitude Ai ∈
RC×H×W , we add Gaussian noise G ∈ R1×H×W to it. The elements of G
adhere to a Gaussian distribution characterized by mean µ and standard
deviation σ, i.e., G ∼ N (µ, σ2). Leveraging the broadcasting mechanism,
this noise addition is equally conducted to each layer of Ai, as:

A′
i = Ai ∗ (I +G) = Ai ∗ (I +N (µ, σ2)), (8)

where I represents the Identity Matrix. This approach guarantees that the
same frequency components throughout all channels of the feature map are
enhanced with the same noise intensity.

– Random dropout, denoted as REdp. We randomly generate a binary
dropout mask, M ∈ R1×H×W , where each element is set either to 0 with
probability p or to 1 with a reversal probability 1 − p. The dimension of
M is also expand to C ×H ×W by broadcasting. The dropout-augmented
amplitude A′ is calculated by:

A′
i = A ·M. (9)

This operation introduces sparsity of amplitudes, aiming at reducing their
overfitting for better robustness. It is worth mentioning that the element of
M at the location [0, 0] always equals 1, which represents the mean value of
the feature map, to avoid over-masking on features.

– Mixup, denoted as REmix. Unlike random noise and random dropout which
operate on single amplitudes extracted from individual samples, mixup en-
gages in a cross-sample amplitude interaction by linear interpolation on dif-
ferent amplitudes extracted from different samples. Specifically, for a given
amplitude spectrum Ai, mixup randomly selects another amplitude Aj from
the set {A1,A2, . . . ,AB}, and then blends Ai with Aj , resulting in a new,
hybrid amplitude spectrum A′

i as follows:

A′
i = αAi + (1− α)Aj , (10)

where α is a uniform random coefficient between [0,1]. This procedure en-
riches the amplitude characteristics by promoting a more diverse fusion of
feature styles across domains. It boosts the model’s generalization by aug-
menting intricate cross-domain amplitude patterns effectively.
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Reconstructing Features. For each pair of phase and augmented amplitude
components, P and A′, an augmented multi-layer feature map, f ′, can be recon-
structed via inverse Fast Fourier Transform (iFFT) as

f ′c(h,w) =
1

HW

H−1∑
u=0

W−1∑
v=0

A′(F c(u, v)) · ej2π(
uh
H + vw

W ) · ejP(F c(u,v)) (11)

Here, ej2π(
uh
H + vw

W ) is a complex exponential term representing the frequency
component in the inverse Fourier transform, and ejP(F c(u,v)) reintroduces the
phase information into the transform.

Finally, f ′ is used for further feature extraction and class classification by
the remaining layers of the student model, MS+, as

p = MS+(f ′). (12)

3.3 MEMA-based RS

As shown in Fig. 2, there are two models, one student model MS with pa-
rameters θS and one teacher model MT with parameters θT . Their parameters
undergo mutual updates to provide stabilization to each other, referred to as
RET and RES for the teacher and student models, respectively. Their processes
are formulated as

θT ← τT θT + (1− τT )θS , τT ∈ [0, 1),

θS ← (1− τS)θS + τSθT , τS ∈ [0, 1).
(13)

Here, only the student model MS is actively trained, while the teacher model
MT is responsible solely for parameter updates. The student model MS is the
primary learner, actively absorbing new knowledge and adapting to training
data. In contrast, the teacher model MT acts as a robust and stable reference
using moving average updating strategy, providing more robust and consistent
parameters by reducing the variance of training batches [2].

Both the values of τT and τS are small and they play a mutual role in this pro-
cess: (1) Stability from the teacher model. With a small τT , the teacher model’s
parameters change slowly, ensuring that they remains stable and consistent.(2)
Gradual integration for the student model. A small τS implies that the student
model integrates the teacher’s parameters slowly and steadily. This allows the
student model to gradually assimilate the stable characteristics of the teacher
model. To simplify the hyperparameter tuning process in experiments, τT is set
to a small constant value of 1e-3, while τS is variable for different datasets.

In summary, the student model acts as an active learner, continually evolving
and assimilating new information, whereas the teacher model functions as a
reliable guide, providing a stable parameter reference to shield the student model
from the effects of cross-domain variance in training batches.
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Algorithm 1 Training Process of our RES-based DG

1: Student model MS with initialized parameters θS , teacher model MT with initial-
ized parameters θT , all training sample pairs {(xi, yi)}Ni , and batch size B

2: for iter = 1 to Niters do
3: Sample Batch Data: {(xi, yi)}Bi
4: Extract Feature: f ←MS−(x)
5: Decompose Phase and Amplitude: P,A ← FFT (f)
6: Augmentation Selection: Aug← [random noise, random dropout, mixup, none]
7: Augment Amplitude: A′ ← Aug(A)
8: Reconstruct feature: f ′ = iFFT (P,A′)
9: Compute prediction: p←MS+(f ′)

10: Compute Loss: E(θS)← ℓ(p, y)
11: Update Student Model with Loss: θS ← θS − η∇θL(θ

S)
12: Integrate Student Model to Teacher Model: θT = τT θT + (1− τT )θS
13: Stabilize Student Model with Teacher Model: θS = (1− τS)θS + τSθT

14: end for

3.4 Supervision Loss

During each training iteration with a batch size of B, the empirical risk mini-
mization (ERM) loss function is used to optimize the student model MS across
all the training domains as

E(θS) = 1

B

B∑
i=1

ℓ(pi, yi) =
1

B

B∑
i=1

ℓ(MS(xi; θ
S), yi), (14)

where the detailed progress of MS(xi; θ
S) come from Eqs. (3)-(7) and (12) and

ℓ represents the CE loss. Here E(θS) represents the basic ERM loss.

4 Experiments

This section outlines benchmark datasets and experimental settings, conducts an
ablation study on RES, compares it with advanced DG methods, examines the
impact of τS , and quantitatively assesses RES’s effects in reducing cross-domain
bias and variance and improving accuracy across domains. In Supplementary
Material, we compare the effects of data augmentation from two perspectives:
image-level vs. feature-level frequency augmentation, and normal feature aug-
mentation vs. feature frequency augmentation. This comparison demonstrates
the superiority of our feature frequency augmentation.

4.1 Benchmark Datasets

We evaluate the proposed RES method on five DG datasets: (1) PACS [22],
which contains 9,991 images in 7 object categories across 4 diverse domains; (2)
VLCS [10], which comprises 10,729 examples from 5 categories, collected from 4
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domains; (3) OfficeHome [36], which encompasses around 15,500 samples in 65
categories from four domains. (4) TerraIncognita [3], which contains 24,788
images within 10 categories from four domains; and (5) DomainNet [30], a vast
dataset with 586,575 images across 345 categories, spanning 6 domains.

4.2 Experimental Settings

Basic settings. We utilize ResNet-50 [16], pretrained on ImageNet-1K [9], as
the backbone. Our codes are constructed on Domainbed’s framework [13], allo-
cating 80% of in-domain data for training and the remaining 20% for validation,
with test performed on an unseen domain. PACS, VLCS, and OfficeHome are
trained for 10K iterations and validated every 300 iterations, TerraIncognita
is trained for 3K iterations and validated every 300 iterations, and DomainNet

undergoes 400K iterations of training and 1K iterations of validation. Adam is
used as the optimizer, with a batch size of 128 and a learning rate of 5e-5.

Settings of RES. In every training iteration, we apply the frequency augmen-
tation of RE randomly to one of the four potential middle-layer positions within
ResNet-50. These positions are strategically located at the ends of the 1st, 2nd,
3rd, and 4th residual blocks, ensuring diverse augmentation effects across differ-
ent layers of the model. There are some hyperparameters in RES summarized
in Table 1, where τS is variable and tuned based on the validation performance
as discussed in Section 4.4. All the experiments of RES are conducted for three
times and the mean values and standard deviations are reported.

Table 1: Hyperparamters of RES.

REns REdp REmix RSS→T RST→S

G ∼ N (0.75, 0.752) p = 0.5 α ∼ U(0, 1) τT = 0.001 τS is variable

4.3 Ablation Study

The ablation study of RES’s modules, including sub-strategies of RE and RS,
on PACS are provided in Table 2 and Fig. 3. RE employs random noise (REns),
random dropout (REdp), and mixup (REmix) techniques for feature augmenta-
tion, and RS employs MEMA containing representation stabilization for both
student models (RSs) and teacher models (RSt).

After applying all three RE strategies, there is significant performance im-
provement from ERM’s 85.5 to (ERM+RE)’s 88.8 as shown in Table 2. with their
training trajectory shown in Fig. 3. The results verify the effect of RE in reducing
cross-domain bias. Additionally, the application of RS strategies reduces their
standard deviations from ERM’s 1.1 to (ERM+RS)’s 0.5, demonstrating their
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effectiveness in reducing cross-domain variance. When RE and RS strategies are
applied in conjunction, as shown in the last highlighted row of the table, the
model achieves optimal test performance, with an average accuracy increase to
90.0 with the smallest standard deviation of 0.3, significantly surpassing ERM.

Through this ablation study, the complementary effects of RE and RS strate-
gies in enhancing model generalization across unseen domains are clearly demon-
strated, underscoring the significance of reducing cross-domain bias-variance.

Table 2: Ablation study of the proposed RES on PACS.

ERM REns REdp REmix RSt RSs PACS Avg
Art Clipart Painting Sketch

✓ 84.4±0.6 81.1±0.7 96.3±0.5 80.2±2.5 85.5±1.1

✓ ✓ 88.8±1.2 82.2±0.5 97.0±0.6 81.2±0.6 87.3±0.7
✓ ✓ 87.6±0.3 82.7±1.0 96.8±0.8 82.1±1.6 87.3±0.9
✓ ✓ 89.4±0.2 81.4±1.1 96.6±0.4 85.1±0.9 88.5±0.7
✓ ✓ ✓ ✓ 89.0±0.9 83.0±0.4 97.0±0.4 85.1±0.7 88.8±0.6

✓ ✔ 87.9±0.1 83.1±0.2 96.0±0.4 82.2±1.2 87.3±0.5
✓ ✔ ✔ 90.9±0.4 82.0±0.5 97.9±0.3 82.2±0.8 88.2±0.5

✓ ✓ ✓ ✓ ✔ ✔ 91.6±0.4 84.2±0.3 98.1±0.1 86.1±0.4 90.0±0.3

Fig. 3: Training convergence of RES’s modules on PACS.

4.4 Values of τS in MEMA

In RES, the MEMA’s τS is the sole hyperparameter requiring adjustment across
various benchmarks. We explored five distinct values: [0, 1e-3, 5e-3, 1e-2, 5e-2]
for each benchmark, with results shown in Fig. 4. The results indicate that the
optimal τS value varies by dataset, attributed to differences in their convergence
speed. Subsequent comparison experiments will report out-of-domain accuracies
for τS corresponding to the highest in-domain accuracies observed.
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Fig. 4: In-domain (validation) and out-of-domain (test) accuracies vary with τS .

4.5 In Comparison With Advanced DG Methods

To objectively assess the effectiveness of the proposed RES, we conducted com-
parative analyses against several state-of-the-art DG methods. This comparison
spans the baseline ERM, various data augmentation strategies (e.g., Mixup [40],
CCFP [21], DomainDrop [14]), flatness-aware methods (such as SWAD [4], SMA
[2], SAGM [38], FAD [45]), and some other DG approaches (including FISH [35],
RSC [18], DAC-SC [20], GVRT [27], MIRO [5]). These evaluations were per-
formed across five benchmarks utilizing the ResNet-50 backbone, with results
detailed in Table 3. The domain-wise performance of the datasets of our RES
are provided in Supplementary Material. Notably, RES incorporates both data
augmentation and flatness-aware strategies, positioning it uniquely to tackle the
dual challenges of cross-domain bias and variance simultaneously.

Table 3: Performance comparisons between some SOTA methods and our RES.

Method PACS VLCS OfficeHome TerraInc DomainNet Avg
ERM [ICLR’20] [13] 85.7±0.5 77.4±0.3 67.5±0.5 47.2±0.4 41.2±0.2 63.8
RSC [ECCV’20] [18] 85.2±0.9 77.1±0.5 65.5±0.9 46.6±1.0 38.9±0.5 62.7
Mixup [AAAI’20] [40] 84.3±0.5 77.7±0.4 69.0±0.1 48.9±0.8 39.6±0.1 63.9
FISH [ICLR’21] [35] 85.5±0.3 77.8±0.3 68.6±0.4 45.1±1.3 42.7±0.2 63.9
GVRT [ECCV’22] [27] 85.1±0.3 79.0±0.2 70.1±0.1 48.0±0.2 44.1±0.1 65.2
MIRO [ECCV’22] [5] 85.4±0.4 79.0±0.0 70.5±0.4 50.4±1.1 44.3±0.2 65.9
SMA [NeurIPS’22] [2] 87.5±0.2 78.2±0.2 70.6±0.1 50.3±0.5 46.0±0.1 66.5
SWAD [NeurIPS’21] [4] 88.1±0.1 79.1±0.1 70.6±0.2 50.0±0.3 46.5±0.1 66.9
CCFP [ICCV’23] [21] 86.6±0.2 78.9±0.3 68.9±0.1 48.6±0.4 41.2±0.1 64.8
DAC-SC [CVPR’23] [20] 87.5±0.1 78.7±0.3 70.3±0.2 46.5±0.3 44.9±0.1 65.6
FAD [ICCV’23] [45] 88.2±0.2 78.9±0.8 69.2±0.5 45.7±1.0 44.4±0.1 65.3
SAGM [CVPR’23] [38] 86.6±0.2 80.0±0.3 70.1±0.2 48.8±0.9 45.0±0.2 66.1
DomainDrop [ICCV’23] [14] 87.9±0.3 79.8±0.3 68.7±0.1 51.5±0.4 44.4±0.5 66.5
Our RES 90.0±0.3 79.8±0.2 71.8±0.3 51.4±0.6 46.7±0.2 67.9

The table showcases the RES algorithm’s performance across five bench-
marks, with “Avg” representing the average performance across them. This pro-
vides a comprehensive view of each method’s generalizability and effectiveness in
DG. The proposed RES demonstrates superior performance, particularly high-
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lighted by its leading average score, indicating its robustness and adaptability
across a diverse set of domains. The comparative analysis confirms the superi-
ority and effectiveness of the RES in mitigating cross-domain bias and variance.

4.6 Effects of RES on Domain Generalization

This subsection quantitatively describes the advantages of RES on DG from
three perspectives, including reducing cross-domain bias, reducing cross-domain
variance, and improving both in-domain and out-of-domain performance.
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0.9755

0.8866

0.9195

0.994 0.9896 0.9865 0.9874

Art Clipart Painting Sketch

PACS

0.9723

0.9766

0.9901
0.9916

0.9752

0.9857

0.9928

0.9959

Art Clipart Painting Real World

OfficeHome

Fig. 5: Cosine similarity between mean fea-
tures of source domains and target domain.
The higher the similarity is, the lower the
cross-domain bias is.

Reducing Cross-domain Bias.
First, we measure the cosine simi-
larity between the mean feature em-
beddings obtained from the global
average pooling layer of ResNet-50
across both source and target datasets
within PACS and OfficeHome. This
assessment encompasses comparisons
between the baseline ERM and our
RES, as illustrated in Fig. 5. Our
findings indicate that RES signifi-
cantly enhances the cosine similarity
between source and target data com-
pared to ERM, demonstrating its ca-
pability in diminishing cross-domain bias.

Reducing Cross-domain Variance. Secondly, we present the training con-
vergence trajectories alongside the corresponding cumulative instability for four
DG scenarios within the PACS dataset, as illustrated in Fig. 6. It is observ-
able that, in comparison to the baseline method ERM represented by the blue
color, the proposed RES depicted in red markedly reduces the fluctuations in
both in-domain and out-of-domain accuracies with almost no instability increase
after the initial increase stage during training, which spans approximately the
first 2000 iterations. Benefiting form the stable and narrower performance gap
between in-domain (validation) and out-of-domain (test) sets, the best models
chosen based on validation sets demonstrate consistent performance on test sets.

Improving Both In-domain and Out-of-domain Performance. As shown
in Table 4, the comparison between ERM and RES on PACS illustrates signif-
icant enhancements in both in-domain and out-of-domain accuracies achieved
by RES. While ERM delivers reliable in-domain performance, it falls short in
adapting to unseen domains. In contrast, RES not only boosts in-domain ac-
curacy from ERM’s 96.5 to its 98.0 but also lifts the out-of-domain accuracy
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RES Ou-of-domainRES In-domain ERM Out-of-domainERM In-domain 

Fig. 6: Training stability of ERM and RES on PACS, evaluated by the absolute first
derivative of accuracy every 300 iterations (|f ′(Acc)| = |Acct − Acct−1|), capturing
accuracy change rate. Accumulative instability aggregates |f ′(Acc)| up to iteration t,
with lower values indicating more stable performance and less variance.

from 85.5±1.1 to 90.0±0.3. This robust improvement underscores RES’s robust
capability to refine model performance across various distributions.

Table 4: In-domain and out-of-domain accuracies of PACS between ERM and RES.

Split Method PACS Avg
Art Clipart Painting Sketch

In-domain ERM 97.2±0.0 97.0±0.4 95.4±0.2 96.3±0.4 96.5±0.3
(Validation Set) Our RES 98.4±0.2 98.0±0.0 97.4±0.3 98.2±0.3 98.0±0.2
Out-of-domain ERM 84.4±0.6 81.1±0.7 96.3±0.5 80.2±2.5 85.5±1.1

(Test Set) Our RES 91.6±0.4 84.2±0.3 98.1±0.1 86.1±0.4 90.0±0.3

5 Conclusion

In this study, we explored DG through bias-variance decomposition, an ana-
lytical framework that offers deeper insights into the challenges and solutions
for cross-domain generalization in deep learning models. Our approach quanti-
fied the detrimental effects of cross-domain bias and variance on model perfor-
mance and therefore introduced the Representation Enhancement-Stabilization
(RES) method as a potent solution. The RES method effectively minimizes the
cross-domain bias and variance, enhancing model adaptability and generaliza-
tion across unseen target domains. Empirical evaluations on five DG benchmarks
reveals that the proposed RES markedly outperforms multiple advanced DG
methods in improving model generalization.
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