Supplementary Material

8 Details in Stage I

8.1 Multi-View Consistent Initialization

We utilize the multi-view depth-conditioned albedo diffusion model from Rich-Dreamer [33] for the initialization. The rendered depth maps are concatenated with the latent features to serve as input for the UNet denoiser [34]. We only sample 8 images around the underlying 3D model instead of an overcomplete set, and we unproject all images to get an averaged RGB UV map as initialization. The invisible regions on the UV map are extracted by pixel detection and inpainted [47] by the region neighborhood. The inpainted UV map is then decoded to latent space and noised to the specified diffusion step. Although the sampled images have fewer details and are averaged in UV space, this is sufficient for initialization [28].

8.2 Defects in Latent UV Mapping

Figure 10 illustrates why details are dropped during the aggregation step when using latent UV map. Each pixel of the latent image represents a patch (e.g., 8×8) of the original image. Latent pixels warping means patches warping on RGB space, which inevitably leads to blurring or jagged lines after decoding.

Fig. 10: The left image is the original RGB image. The second column is the warping image caused by latent UV. The third column is the warping image by RGB UV. Using RGB UV warping, everything is in good order. Using latent UV warping, the straight horizontal line becomes a set of horizontal line segments, and the details are blurred.

9 Texture Stitching details

In this section, we provide details on the formulations of $\phi_f(z_f)$ and $\phi_{ff'}(z_f, z_{f'})$. **Formulation of** $\phi_f(z_f)$. With $\mathcal{C}_{f,i} = \{c\}$ we denote all colors of pixels of image I_i associated with face f. Let $\mathcal{C}_f = \bigcup_{1 \le i \le k}$ collect all the colors of the pixels associated with the face f. We perform mean sift clustering among \mathcal{C}_f .

2 Zhengyi Zhao et al.

With c_f and σ_f we denote the center of the cluster and the associated variance, respectively. We then define

$$\phi_f(z_f) = \begin{cases} +\infty & \mathcal{C}_{f,z_f} = \emptyset\\ \frac{1}{\mathcal{C}_{f,z_f}} \sum_{\boldsymbol{c} \in \mathcal{C}_{f,z_f}} \frac{\|\boldsymbol{c} - \boldsymbol{c}_f\|^2}{2\sigma_f^2} & \text{otherwise} \end{cases}$$
(8)

Formulation of $\phi_{ff'}(z_f, z_{f'})$. Denote $\mathcal{P}_{f,i}$ as the set of pixels in I_i that belong to face f. If $\mathcal{P}_{f,i} \neq \emptyset$, we compute $\mathbf{f}_{f,i} = (\overline{\mathbf{c}}_{f,i}, \mu \overline{\mathbf{d}}_{f,i}^{\text{SIFT}})$, where $\overline{\mathbf{c}}_{f,i}$ is the average pixel color among $\mathcal{P}_{f,i}$ and $\overline{\mathbf{d}}_{f,i}^{\text{SIFT}}$) is the average SIFT pixel descriptor among $\mathcal{P}_{f,i}$. We set $\mu = 1$ in this paper. Note that instead of merely using color differences, we observe that incorporating SIFT helps place cuts among textureless regions.

Our definition of $\phi_{ff'}(z_f, z_{f'})$ differs from that of [49] in the sense that we take advantage of the consistency of the images, in contrast to simply using color differences. Specifically,

- When $\mathcal{P}_{f,z_f} = \emptyset$ or $\mathcal{P}_{f',z_{f'}} = \emptyset$,

$$\phi_{ff'}(z_f, z_{f'}) = +\infty. \tag{9}$$

- When $\mathcal{P}_{f,z_{f'}} = \emptyset$ and $\mathcal{P}_{f',z_f} = \emptyset$,

$$\phi_{ff'}(z_f, z_{f'}) = \|\boldsymbol{f}_{f, z_f} - \boldsymbol{f}_{f', z_{f'}}\|^2.$$
(10)

- When $\mathcal{P}_{f,z_{f'}} \neq \emptyset$ and $\mathcal{P}_{f',z_f} = \emptyset$,

$$\phi_{ff'}(z_f, z_{f'}) = \|\boldsymbol{f}_{f, z_f} - \boldsymbol{f}_{f, z_{f'}}\|^2.$$
(11)

- When $\mathcal{P}_{f,z_{f'}} = \emptyset$ and $\mathcal{P}_{f',z_f} \neq \emptyset$,

$$\phi_{ff'}(z_f, z_{f'}) = \| \boldsymbol{f}_{f, z_f} - \boldsymbol{f}_{f', z_f} \|^2.$$
(12)

- When $\mathcal{P}_{f,z_{f'}} \neq \emptyset$ and $\mathcal{P}_{f',z_f} \neq \emptyset$,

$$\phi_{ff'}(z_f, z_{f'}) = \frac{1}{2} \Big(\|\boldsymbol{f}_{f, z_f} - \boldsymbol{f}_{f', z_f}\|^2 + \|\boldsymbol{f}_{f, z_f} - \boldsymbol{f}_{f, z_{f'}}\|^2 \Big).$$
(13)

Note that we only compute the color difference in Eq. (10) when z_f and $z_{f'}$ are not available in either f or f'. Otherwise, we employ the color consistency in Eqs. (11) to (13) which better reveals the appearance continuity after stitching.

10 Visualization of Ablation Study

Figure 11 is a visualization of ablation study. The green box in "No alternating optimization" indicates that the inconsistency issues were partly resolved during view selection and alignment stages.

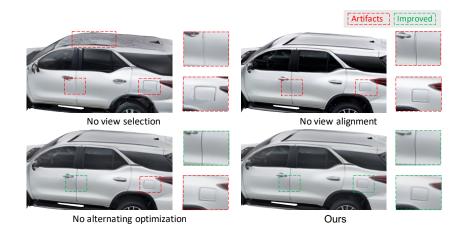


Fig. 11: Visualization of Ablation Study

11 Additional Results

11.1 Additional Baselines

The latest non-open source methods TexFusion [1] and Decorate3D [12] are compared with our method in Fig. 12 and Fig. 13, from where we see that our results are more natural in color and have clearer details.

Fig. 12: Qualitative comparison with TexFusion: clearer details.

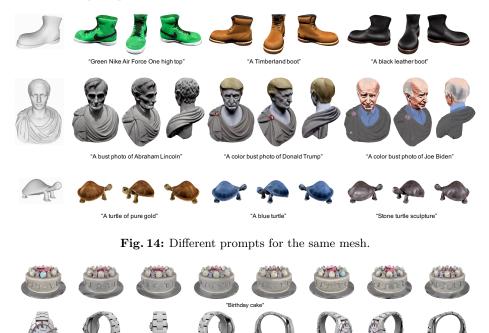

3

Fig. 13: Qualitative comparison with Decorate3D: more natural in color.

11.2 More Visual Results

Figure 14 shows the results of different prompts on the same mesh. We present more visual results on 25 objects from different categories in GObjaverse dataset [33] in Figs. 15 to 17. Each textured mesh is rendered to 8 views. A full list of object indexes and prompts can be found in Tab. 2.

"Watch Model With Stand" Fig. 15: Gallery of textured meshes.

Fig. 16: Gallery of textured meshes.

Fig. 17: Gallery of textured meshes.

7

Object Index	Prompt
0002c6 eafa 154 e8 bb 08 eba fb 715 a8 d46	Birthday cake
000f88bb21164319ae797d315be6bc0e	Watch Model With Stand
$0023717 {\rm f}4{\rm f}564 {\rm cc}99 {\rm f}4 {\rm ded}70 {\rm db}04 {\rm f}590$	Rusty kerosene lamp
0023 b3 edbc 114 be 188 ca 9 d8 f729 dfa af	a vintage car
0025 c5 e 2333949 feb1 db 259 d4 ff 08 db e	A wooden bird house
00286954 e 2 d 54 d b 8 b c 7832 c c 8682 b 6 f f	Furniture Bed
002e02c30121465c8a01bcb83b584ea5	A pair of blue jeans
003199cc6ff2410cb2d8e6f8a9cbb163	a Portugal Fire Hydrant
0032696f5871429fbd0549d9628f812c	A Christmas present
0033322379a24798a6875a5cb2de54f5	A raspberry
0046f208ef8d4988ba7bb9d297f29ec7	An old Dutch windmill building
004 fb 4 d72 f6 c4 e55 a 15 b 9025 a 868 d1 a 3	a roast chicken
0056880681 c044 cb9 fe815 a9 eed 0425 d	A rhino
00602ef508784e5384665aacaaf1f3a0	A handle saw
0064add4992b426cb2f862e5875ebf6d	A pink donut
0083 fa 5f10 a 44240 8 e 0 f 3f 88 d f 19 c 8 a d	An ancient shield
0087 dc 01648 d4 cc 792 a7 d1 e49848 b825	Stone horse head sculpture
00978a128283411582590096643ec101	A pale yellow seahorse
00b267b43669422cbb4ec3a4e9b1c16e	A pair of sunglasses
00d56831f9bc49f9a668f418c1af7558	A dancing brown dog in a white shirt, wearing dark sunglasses
010b9ece8a3a49e3b73be0b3cd02c720	A brown vase with red roses
011f2cd821e94596863378daa134cf0e	An Apple computer monitor
013c3a1d945a4336a87f889c3d4c25b1	Precision Sniper Rifle, CSGO AWP DRAGON LORE
$015777939 {\rm fc} 3429 {\rm ba} 4{\rm b} 5343 {\rm b} {\rm e} 9{\rm d} 51 {\rm ffa}$	A kid's bike
017fe235577b4083ab32c2b7949ba022	A platinum ring studded with precious stones

 Table 2: The object indexes and the corresponding text prompts.