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This supplementary material includes the following sections:

– Section A: Further Implementation Details
• Section A.1: Tracking Process
• Section A.2: Mapping Process

– Section B: Experimental Details
– Section C: Additional Experimental Results

• Section C.1: Map Quality and Tracking Accuracy According to System Speed
• Section C.2: Geometric Quality of the Map
• Section C.3: Further Analysis of Advantages of the Connection Between G-

ICP and 3DGS
• Section C.4: Qualitative Results

A. Further Implementation Details

Our G-ICP [9] module is implemented based on the VGICP [6], which is implemented
in C++ and parallel computation for faster processing. The C++ implementation of G-
ICP is wrapped using pybind11 to make it accessible from Python. The SLAM system
is structured in parallel to operate with two processes, tracking and mapping, using
PyTorch multiprocessing.

A.1. Tracking Process

G-ICP Before generating the source point cloud from the current depth image, we
downsample it by 1/10 in the Replica [10] dataset and by 1/5 in the TUM-RGBD [11]
dataset. These values are chosen based on the resolution of the images. The covari-
ances of the source point cloud are computed within the G-ICP module by finding the
10 nearest points to each point to make source Gaussians from the source point cloud.
Source Gaussians are aligned with the target Gaussians existing in the 3D GS map
to estimate the current camera pose, while omitting those target Gaussians with low
opacity (below 0.05 in Replica and 0.09 in TUM). During the aligning procedure, cor-
respondences between source and target Gaussians are determined based on Euclidean
distances, excluding those with distances greater than 2cm in Replica and 3cm in TUM.

Keyframe Selection and Adding Target Gaussians We select the current frame as a
keyframe when the proportion of source Gaussians corresponding with target Gaussians
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falls below specific thresholds set to 70% in Replica, and 81% in TUM. Correspon-
dences between the source and target Gaussians are inherited from G-ICP, and those
with distances exceeding 0.05cm in Replica, and 0.1cm in TUM are filtered out. We
incorporate Gaussians from the keyframe into the map as new target Gaussians, exclud-
ing those that overlap with corresponding target Gaussians already present in the map.
To achieve this, we use a threshold of 0.005 cm in Replica and 0.1 cm in TUM.

A.2. Mapping Process

As a result of the tracking procedure using G-ICP, new primitives are added to the 3D
GS map with the appropriate initial state to represent the scene accurately. The newly
added primitives inherit their initial values from the scale-aligned source Gaussians,
along with the color values from the original image and an opacity of 0.1. In the map-
ping process, we further optimize the Gaussians G and their color set C and opacity set
O to characterize the scene more precisely, as outlined below:

X ∗,C∗,H∗,O∗ = argmin
X ,C,H,O

λI1L1 (I, Igt) + λI2LD−SSIM (I, Igt) + λDL1 (D,Dgt)

Each pixel of RGB (Ip) and depth images (Dp) is synthesized by blending N Gaussians
overlapping it as the followings:

Ip =
∑
i∈N

ciαi

i−1∏
j=1

(1− αj) , Dp =
∑
i∈N

ziαi

i−1∏
j=1

(1− αj)

We consider Gaussians as view-independent primitives, thus excluding spherical har-
monics that enable Gaussians to represent view-dependent color. This omission en-
hances the speed of both rendering and optimizing Gaussians. We optimize the 3D GS
map on the selected keyframes and mapping-only keyframes from the tracking pro-
cess. Upon adding a new keyframe or mapping-only keyframe, we utilize it once, then
for subsequent optimizing iterations, we randomly select from a set of keyframes and
mapping-only keyframes. The 3D GS map is optimized using RGBD images with their
original resolution. Every 200 iterations, we prune Gaussians with a maximum scale
larger than 0.25m in Replica and 1.0m in TUM, or with opacity less than 0.005. We uti-
lize the Adam optimizer for optimizing Gaussians, setting the following learning rates:
0.000004 for position, 0.001 for rotation, 0.0025 for color, 0.05 for opacity, and 0.005
for scale.

B. Experimental Details

Baseline Methods We compare the proposed method with SLAM approaches utiliz-
ing NeRF [7] and those utilizing 3DGS [5]. Among NeRF-based methods, we compare
our method with Point-SLAM [8], as it is the state-of-the-art (SOTA) method for NeRF-
based approaches. Additionally, we evaluate our method against older NeRF-based
methods, NICE-SLAM [13] and Orbeez-SLAM [2]. We compare our approach with



Abbreviated paper title 3

GS-SLAM [12], Photo-SLAM [3], SplaTAM [4], as 3DGS-based methods. For track-
ing accuracy, we also evaluated ORB-SLAM3 [1], the base method of Photo-SLAM.

Evaluation Settings To evaluate tracking accuracy, we first align the estimated tra-
jectory with the ground truth trajectory, and then calculate the translation error between
them. We evaluated the rendering quality of every image in the datasets. Because the
proposed method conducts mapping solely on keyframes and mapping-only keyframes,
rather than on every frame, we demonstrate the novel and trained view rendering per-
formance of our method by evaluating it in this manner.

Fig. 1: Map Quality According to System Speed. Results represent the average performance
across 8 scenes in Replica.

C. Additional Experimental Results

C.1. Map Quality According to System Speed

Tab. 1 presents the map quality and tracking accuracy of our method with respect to
system FPS. We compare the map quality across scenarios where the system FPS is
limited to 5, 10, 15, 20, 30, 40, 50, 60, 70, 80, and where no limitations are imposed. We
found that the best performance is achieved at around 15FPS with robust tracking across
all FPS settings. And even in situations of fast system speed, there is no significant
degradation in map quality. This result underscores the ability to rapidly reconstruct the
map, facilitated by providing the covariance computed in G-ICP and the color values
from the original image as initial values for the 3D GS map primitives.

Methods that perform tracking based on rendering loss rely on differences between
the rendered images in the reconstructed map and the images observed at the current
time to estimate the camera pose. Therefore, most portion of the rendered image must be
synthesized from sufficiently optimized regions of the map. This implies that the major-
ity of the currently observed area is presumed to be adequately optimized. This assump-
tion places constraints on system speed, and degrades tracking performance when the
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camera moves rapidly and encounters new areas. In contrast, the proposed method in-
corporates target Gaussians into the map with information about the surrounding space,
enabling their use for tracking even before they are fully optimized through the mapping
process. As a result, our method demonstrates stable tracking accuracy even in scenar-
ios where the system speed is fast, indicating that the map representing the observed
area may not be fully optimized yet. This highlights the robust tracking performance of
our method, even when the camera moves rapidly or when the observed images contain
numerous new areas.

C.2. Geometric Quality of the Map

Our method exhibits an average depth L1 error/maximum depth of 0.030m/5.5m and
0.118m/8.5m across all scenes in Replica and TUM. The ATE RMSEs are 0.002m
and 0.024m for Replica and TUM, indicating the impact of the geometric quality on
the tracking accuracy. A 3DGS+SLAM work, GS-SLAM [12] reported their depth L1
error as 0.012m/5.5m in Replica. Since our system does not involve bundle adjustment
for system speed, resulting in relatively lower depth quality.

C.3. Further Analysis of Advantages of the Connection between G-ICP and 3DGS

Our method achieves efficiency in both parts, G-ICP and 3DGS. Since we use scan-
to-map matching for robust tracking, the number of target points continues to increase.
Calculating the covariances of these points is computationally expensive, so we utilize
the parameters existing in the 3DGS map. Using this method, we found that the system
FPS increases from 97.97 to 103.61, and shows the same tracking accuracy. In the as-
pect of 3DGS, the covariances computed in G-ICP are utilized as the initial values for
new Gaussians in the 3DGS map to minimize optimization iterations. While we vali-
dated this approach in the paper, we further assessed the efficiency aspect by comparing
scenarios where the covariances from G-ICP are not used (case 1), and they are used
but scale aligning is not applied (case 2). On Replica office4, at 30FPS, the proposed
method achieved 38.75 PSNR, but in case 1, even after an additional 1000s of training,
the maximum PSNR was 27.52. In case 2, after an additional 75s of training, it showed
similar PSNR to the proposed system.

C.4. Qualitative Results

In this section, we showcase the qualitative results to visually demonstrate our method’s
capability of reconstructing maps in high-fidelity quality. The results of our methods are
obtained under the condition of limiting the system speed to 30 FPS. We compare the
results of our method with those of SplaTAM and Point-SLAM on Replica and TUM
datasets. Despite the system speed of the proposed method being over 90 times faster
than Point-SLAM and SplaTAM, it still shows the highest map quality.
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Fig. 2: Novel View Rendering Results on Replica room1.

Fig. 3: Rendering Comparison on Replica room1.
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Table 1: Map Quality According to System Speed on Replica.

Condition Metrics R0 R1 R2 Of0 Of1 Of2 Of3 Of4 Avg.

Not limited

PSNR [dB] ↑ 32.20 35.36 34.42 40.31 40.75 33.85 34.08 36.47 35.93
SSIM ↑ 0.940 0.960 0.957 0.978 0.977 0.962 0.953 0.963 0.962
LPIPS ↓ 0.081 0.067 0.083 0.045 0.051 0.069 0.067 0.065 0.066

ATE RMSE ↓ 0.15 0.16 0.10 0.17 0.12 0.16 0.16 0.22 0.16

Limited to 80 FPS

PSNR [dB] ↑ 33.27 35.67 35.79 40.92 41.75 35.07 34.75 37.23 36.81
SSIM ↑ 0.949 0.961 0.964 0.979 0.980 0.966 0.957 0.966 0.965
LPIPS ↓ 0.068 0.064 0.069 0.040 0.042 0.060 0.060 0.059 0.058

ATE RMSE ↓ 0.15 0.16 0.10 0.28 0.12 0.16 0.16 0.20 0.16

Limited to 70 FPS

PSNR [dB] ↑ 33.64 36.11 36.45 41.57 42.30 35.26 35.42 37.44 37.28
SSIM ↑ 0.951 0.964 0.966 0.982 0.982 0.967 0.961 0.967 0.968
LPIPS ↓ 0.065 0.060 0.065 0.036 0.038 0.056 0.054 0.056 0.054

ATE RMSE ↓ 0.15 0.16 0.10 0.26 0.12 0.16 0.16 0.20 0.16

Limited to 60 FPS

PSNR [dB] ↑ 34.10 36.63 36.90 42.06 42.59 35.75 35.84 37.89 37.72
SSIM ↑ 0.953 0.966 0.968 0.983 0.983 0.969 0.963 0.968 0.969
LPIPS ↓ 0.061 0.056 0.060 0.033 0.035 0.052 0.051 0.053 0.050

ATE RMSE ↓ 0.15 0.16 0.10 0.18 0.12 0.17 0.20 0.20 0.16

Limited to 50 FPS

PSNR [dB] ↑ 34.56 36.88 37.50 42.24 42.57 36.04 36.21 38.15 38.02
SSIM ↑ 0.957 0.968 0.971 0.984 0.983 0.970 0.965 0.970 0.971
LPIPS ↓ 0.056 0.052 0.055 0.031 0.034 0.049 0.048 0.051 0.047

ATE RMSE ↓ 0.16 0.16 0.10 0.17 0.12 0.16 0.19 0.20 0.16

Limited to 40 FPS

PSNR [dB] ↑ 35.00 37.34 38.04 42.67 43.08 36.26 36.41 38.49 38.41
SSIM ↑ 0.960 0.969 0.973 0.985 0.984 0.972 0.967 0.971 0.973
LPIPS ↓ 0.052 0.049 0.052 0.028 0.031 0.047 0.045 0.049 0.044

ATE RMSE ↓ 0.15 0.16 0.11 0.18 0.12 0.16 0.19 0.21 0.16

Limited to 30 FPS

PSNR [dB] ↑ 35.37 37.80 38.50 43.13 43.26 36.93 36.90 38.75 38.83
SSIM ↑ 0.963 0.971 0.975 0.986 0.985 0.974 0.969 0.973 0.975
LPIPS ↓ 0.048 0.045 0.048 0.026 0.029 0.043 0.042 0.045 0.041

ATE RMSE ↓ 0.15 0.16 0.11 0.18 0.12 0.17 0.16 0.21 0.16

Limited to 20 FPS

PSNR [dB] ↑ 35.92 38.34 39.03 43.36 43.68 37.24 37.21 39.17 39.24
SSIM ↑ 0.966 0.973 0.976 0.986 0.985 0.975 0.970 0.974 0.976
LPIPS ↓ 0.045 0.042 0.044 0.024 0.028 0.040 0.038 0.041 0.038

ATE RMSE ↓ 0.15 0.16 0.10 0.19 0.12 0.17 0.18 0.21 0.16

Limited to 15 FPS

PSNR [dB] ↑ 36.11 38.41 39.18 43.43 43.73 37.52 37.37 39.41 39.40
SSIM ↑ 0.967 0.974 0.977 0.986 0.985 0.976 0.971 0.974 0.976
LPIPS ↓ 0.043 0.040 0.042 0.024 0.028 0.037 0.037 0.040 0.036

ATE RMSE ↓ 0.15 0.16 0.11 0.19 0.13 0.17 0.18 0.21 0.16

Limited to 10 FPS

PSNR [dB] ↑ 36.47 38.29 39.13 43.52 43.81 37.30 37.31 39.31 39.39
SSIM ↑ 0.969 0.974 0.977 0.986 0.985 0.974 0.971 0.975 0.976
LPIPS ↓ 0.040 0.041 0.042 0.023 0.027 0.043 0.038 0.041 0.037

ATE RMSE ↓ 0.16 0.16 0.11 0.20 0.13 0.17 0.18 0.21 0.17

Limited to 5 FPS

PSNR [dB] ↑ 36.39 38.16 38.71 43.20 43.64 35.43 34.94 39.16 38.70
SSIM ↑ 0.969 0.974 0.976 0.985 0.985 0.973 0.973 0.974 0.976
LPIPS ↓ 0.043 0.040 0.045 0.030 0.028 0.047 0.051 0.046 0.041

ATE RMSE ↓ 0.16 0.18 0.11 0.18 0.16 0.18 0.19 0.21 0.17
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Fig. 4: Novel View Rendering Results on Replica room2.

Fig. 5: Rendering Comparison on Replica room2.
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Fig. 6: Rendering Comparison on Replica.
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Fig. 7: Rendering Comparison on TUM-RGBD.
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