Efficient NeRF Optimization - Not All Samples
Remain Equally Hard

Supplementary Materials

Juuso Korhonen!, Goutham Rangu', Hamed R. Tavakoli!, and Juho
Kannala?3

! Nokia Technologies, Finland
{juuso.korhonen, goutham.rangu, hamed.rezazadegan_tavakolil}@nokia.com
2 Aalto University, Finland
juho.kannala®@aalto.fi
3 University of Oulu

A Additional baseline method details

We use the open-sourced PyTorch reimplementation of the Instant-NGP at
https://github.com/ashawkey /nerf template and adapt the default training script
for the Mip-NeRF-360 scenes by increasing the batch size to B = 229, disabling
the iteration based learning rate (since we test against the wall-clock training
time) and downscaling the outdoor images with a factor of 8 (instead of 4 for
indoor), to bring both the indoor and the outdoor images to a more even stan-
dard definition resolution. We follow the guideline of the [1] by using 7/8 images
for training and 1/8 images, evenly distributed, for validation.

We note that the PyTorch version does not reimplement every feature of the
official implementation [3]. Most notably the ray termination and the full-CUDA-
coding are left out. This leads to the PyTorch implementation not reaching the
same performance as the official implementation, which can be seen from the
NeRF synthetic dataset results reported in Tab. B. We plan on a NeRFStudio
implementation for more comprehensive testing.

B Additional results

B.1 Converged modeling results

We report the converged training results for the Instant-NGP on the Mip-NeRF-
360 dataset scenes in Tab. A, letting the training continue for 20 minutes. In
Fig. A, we visualize free-viewpoint renderings using the repository’s GUI ren-
derer; We observe no test time artifacts caused by using our hard sample mining
method during the training.

B.2 NeRF synthetic dataset results

We report the Instant-NGP results for the NeRF synthetic dataset [2] in Tab. B.
We use the train split for training and evaluate the PSNR on the test split. As
batch size we use B = 2'® as mentioned in [3].

https://github.com/ashawkey/nerf_template

2 J. Korhonen, et al.

Table A: Validation dataset Peak Signal-to-Noise-Ratio when training Instant-NGP
for 20 min on the Mip-NeRF-360 dataset. Results reported in format hard sample
mining | baseline.

bonsai kitchen room counter garden bicycle stump

20 min 30.35 | 30.03 28.27 | 27.65 29.42 | 29.05 26.09 | 26.00 27.25 | 26.84 22.66 | 22.36 23.28 | 23.46

(a) Bonsai (b) Garden

Fig. A: Free-viewpoint test time renderings for the Instant-NGP trained with the hard
sample mining.

B.3 Nerfacto results

We also did testing of our method with the Nerfacto [4] reimplementation in the
repository [5], which uses the proposal sampling method for its ray sampling.
We use a lower batch size (B = 2'® instead of B = 22°) since with the Nerfacto
architecture we need to process on average 5.3 proposal samples per main NeRF
network sample. Also, to make the results comparable to the ones reported in [4],
we did not apply any separate downscaling for the outdoor scenes.

The results seem promising for the generalizability of our method: The dy-
namic memory footprint is reduced from 300 MB to 160 MB for normal iter-
ations when using our hard sample mining (570 MB to 430 MB for iterations
when sampler networks are updated). However, the measured PSNR gains per
training time are not as large as with the Instant-NGP. We contribute this to two
factors: The proposal sample processing, which is out-of-the-scope of our hard
sample mining, (1) forms a larger part of the computation, and (2) prunes away
the low-weight samples more effectively when compared to the grid sampling of
Instant-NGP.

Efficient NeRF Optimization - Not All Samples Remain Equally Hard 3

Table B: Test dataset Peak Signal-to-Noise-Ratio when training Instant-NGP on the
NeRF synthetic dataset. Results reported in format hard sample mining | baseline. *
denotes the official paper [3] results for 5 minutes of training.

mic ficus chair hotdog materials drums ship lego

1 min 35.18 | 31.77 32.64 | 31.32 34.48 | 32.11 36.43 | 34.29 28.42 | 26.51 25.49 | 24.72 29.12 | 26.86 34.98 | 32.00
5 min 35.76 | 34.12 32.21 | 32.21 34.87 | 33.22 36.66 | 35.15 28.69 | 27.18 25.58 | 25.17 29.53 | 27.55 35.19 | 32.74
5 min* 36.22 33.51 35.00 37.40 29.78 26.02 31.10 36.39

Table C: Validation dataset Peak Signal-to-Noise-Ratio when training Nerfacto on
the Mip-NeRF-360 dataset. Results reported in format hard sample mining | baseline.
We also report the results from the official paper [4] in the second section.

bonsai kitchen room counter garden bicycle stump
2 min 27.88 | 27.57 27.11 | 26.42 29.15 | 28.56 24.96 | 24.60 23.37 | 23.26 22.06 | 21.98 23.92 | 23.69
4 min 29.75 | 29.46 29.44 | 29.01 30.58 | 30.18 25.95 | 25.86 24.44 | 24.30 22.96 | 22.96 24.83 | 24.69
8 min 30.82 | 30.68 30.53 | 30.24 31.46 | 31.38 26.64 | 26.63 25.22 | 25.20 23.56 | 23.67 25.49 | 25.33
12 min 31.31 | 31.18 30.96 | 30.74 31.79 | 31.83 26.94 | 26.97 25.58 | 25.61 23.84 | 23.98 25.76 | 25.63
NeRF 26.81 26.31 28.56 25.67 23.11 21.76 21.73
MipNeRF 27.13 26.47 28.73 25.59 23.16 21.69 23.10
NeRF 4+ 29.15 27.80 28.87 26.38 24.32 22.64 24.34
MipNeRF-360 33.46 32.23 31.63 29.55 26.98 24.37 26.4

Nerfacto(5min) [4] 28.98 28.17 29.36 25.92 24.05 22.36 18.94

4

J. Korhonen, et al.

References

. Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Mip-nerf

360: Unbounded anti-aliased neural radiance fields (2022) 1

Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng,
R.: Nerf: Representing scenes as neural radiance fields for view synthesis (2020) 1

Miiller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives
with a multiresolution hash encoding. ACM Trans. Graph. 41(4), 102:1-102:15
(2022). https://doi.org/10.1145/3528223.3530127, https://doi.org/10.1145/
3528223.3530127 1, 3

Tancik, M., Weber, E., Ng, E., Li, R., Yi, B., Kerr, J., Wang, T., Kristoffersen,
A., Austin, J., Salahi, K., Ahuja, A., McAllister, D., Kanazawa, A.: Nerfstudio: A
modular framework for neural radiance field development. In: ACM SIGGRAPH
2023 Conference Proceedings. SSIGGRAPH 23 (2023) 2, 3

Tang, J.: Torch-ngp: a pytorch implementation of instant-ngp (2022),
https://github.com/ashawkey /torch-ngp 2

https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1145/3528223.3530127

	Efficient NeRF Optimization - Not All Samples Remain Equally Hard

