
Efficient NeRF Optimization - Not All Samples
Remain Equally Hard
Supplementary Materials

Juuso Korhonen1, Goutham Rangu1, Hamed R. Tavakoli1, and Juho
Kannala2,3

1 Nokia Technologies, Finland
{juuso.korhonen, goutham.rangu, hamed.rezazadegan_tavakoli}@nokia.com

2 Aalto University, Finland
juho.kannala@aalto.fi

3 University of Oulu

A Additional baseline method details

We use the open-sourced PyTorch reimplementation of the Instant-NGP at
https://github.com/ashawkey/nerf_template and adapt the default training script
for the Mip-NeRF-360 scenes by increasing the batch size to B = 220, disabling
the iteration based learning rate (since we test against the wall-clock training
time) and downscaling the outdoor images with a factor of 8 (instead of 4 for
indoor), to bring both the indoor and the outdoor images to a more even stan-
dard definition resolution. We follow the guideline of the [1] by using 7/8 images
for training and 1/8 images, evenly distributed, for validation.

We note that the PyTorch version does not reimplement every feature of the
official implementation [3]. Most notably the ray termination and the full-CUDA-
coding are left out. This leads to the PyTorch implementation not reaching the
same performance as the official implementation, which can be seen from the
NeRF synthetic dataset results reported in Tab. B. We plan on a NeRFStudio
implementation for more comprehensive testing.

B Additional results

B.1 Converged modeling results

We report the converged training results for the Instant-NGP on the Mip-NeRF-
360 dataset scenes in Tab. A, letting the training continue for 20 minutes. In
Fig. A, we visualize free-viewpoint renderings using the repository’s GUI ren-
derer; We observe no test time artifacts caused by using our hard sample mining
method during the training.

B.2 NeRF synthetic dataset results

We report the Instant-NGP results for the NeRF synthetic dataset [2] in Tab. B.
We use the train split for training and evaluate the PSNR on the test split. As
batch size we use B = 218 as mentioned in [3].

https://github.com/ashawkey/nerf_template



	Efficient NeRF Optimization - Not All Samples Remain Equally Hard

