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Abstract. We propose an application of online hard sample mining for
efficient training of Neural Radiance Fields (NeRF). NeRF models pro-
duce state-of-the-art quality for many 3D reconstruction and rendering
tasks but require substantial computational resources. The encoding of
the scene information within the NeRF network parameters necessitates
stochastic sampling. We observe that during the training, a major part
of the compute time and memory usage is spent on processing already
learnt samples, which no longer affect the model update significantly.
We identify the backward pass on the stochastic samples as the compu-
tational bottleneck during the optimization. We thus perform the first
forward pass in inference mode as a relatively low-cost search for hard
samples. This is followed by building the computational graph and up-
dating the NeRF network parameters using only the hard samples. To
demonstrate the effectiveness of the proposed approach, we apply our
method to Instant-NGP, resulting in significant improvements of the
view-synthesis quality over the baseline (1 dB improvement on average
per training time, or 2x speedup to reach the same PSNR level) along
with ∼40% memory savings coming from using only the hard samples to
build the computational graph. As our method only interfaces with the
network module, we expect it to be widely applicable.

Keywords: Neural radiance fields · Importance sampling · Efficient op-
timization

1 Introduction

Neural radiance field (NeRF) modeling, first introduced in [18], has attracted
significant attention from the research community leading to extensive efforts
in its further development and application. NeRF models represent state-of-the-
art solutions for photorealistic novel view-synthesis with view-dependent effects.
Given the impressive results, the volumetric rendering pipeline at the core of
NeRFs has been applied to many tasks in 3D reconstruction and rendering [2,
12,17,29,35].
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However, the state-of-the-art NeRF models for different 3D reconstruction
metrics like view-synthesis quality [2], dynamic scene- [4, 22, 27], and surface
reconstruction [15], require long training times and substantial memory usage,
largely due to the stochastic sampling required by the implicit nature of the
NeRF models. The recent explicit derivatives of NeRF [11, 34] combat this,
achieving excellent quality and training/rendering speed, but at a cost of mas-
sively increased memory usage. The Instant-NGP [19], which uses occupancy
grids and multi-resolution hash-encoding paired with small and efficient neural
networks, still has one of the best trade-offs for training speed, memory usage
and achieved quality.

One aspect that has received limited attention is hard sample mining dur-
ing the NeRF optimization process. The standard random selection of pixels for
the NeRF volume rendering process floods the training with easy samples, ne-
glecting whether specific 3D locations (coming from specific rays) have already
been sufficiently modeled, and leads to unnecessary and costly neural network
processing. The relevant guided ray sampling methods [2, 19] focus the samples
near the scene surfaces, but are still agnostic to the question if these samples are
already modeled well enough.

To improve the learning that we achieve per sample processing, we propose a
hard sample mining method for the NeRF optimization. Leveraging the compu-
tational characteristics of a neural network optimization, we perform a forward
pass in an inference mode to conduct a low-cost search for hard point samples.
The hardness of a point sample is determined based on the pixel loss that gets
backpropagated over the volume rendering to the network outputs for the point
sample. The proposed algorithm automatically adjusts the hard sample batch
size to achieve on average the same convergence per iteration as the original
batch. Only the hard sample batch undergoes the construction of a compu-
tational graph, and model parameters are updated accordingly with reduced
training iteration time and memory requirements. We show that computational
resources are more effectively utilized by focusing on the hard samples of the
scene during NeRF optimization. We apply the proposed hard sample mining
method to the optimization of the Instant-NGP model [19] to demonstrate the
benefits of the proposed method. In summary, our contributions are:

– Introduction of a hyperparameter-free method to mine for hard point sam-
ples in an online manner during each training iteration.

– Reduction in the training iteration time and memory requirements by creat-
ing and backpropagating the network computational graph only for the hard
point sample minibatch.

– Significant improvement to view-synthesis quality with reduced training time
and memory budget.

We attribute the effectiveness of our method to excluding the expensive net-
work backpropagation for the samples that do not significantly contribute to
the model updates. These samples originate not only from well-modeled loca-
tions but, as our investigation reveals, also include occluded and empty space
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samples that persist in the batch following the pruning of the ray sampling.
As our method only interfaces with the NeRF network module, we expect its
applicability being widespread.

2 Related Work

Neural radiance fields Despite the wide variety of NeRF methods and appli-
cations, most of them share a common volumetric rendering pipeline: (1) casting
a ray through an image pixel, (2) ray sample for points along the ray, (3) eval-
uate the point samples with a neural network producing density σ and color c
estimates per point, (4) accumulate the point attributes onto a pixel color using
volume rendering:

C(r) =

N∑
i=1

wici, where wi = Tiαi, Ti =

i−1∏
j=1

(1− αj), αi = 1− exp(−σiδi) (1)

where w is the point sample weight for the pixel color of the ray C(r), T is
the transmittance at the point sample, and δ is the step size until next point
sample on the ray. Comprehensive survey of how this pipeline has been tuned
and applied to different 3D reconstruction tasks is given in [7], but by and large
it has remained to share the same structure.

The implicit and continuous way the scene information is encoded within the
NeRF network parameters necessitates stochastic sampling. The computational
bottleneck of both the NeRF reconstruction and the rendering comes from the
massive amount of network sample processing required by the stochastic sam-
pling to render an image.

Guided ray sampling As sampling densely along the ray would be compu-
tationally too expensive, guided ray sampling strategies have been pivotal in
speeding up the volumetric rendering process. The main objective for the guided
ray sampling methods has been pruning the low weight (w) samples, since they
have a negligible effect on the resulting pixel color.

Two most prominent ray sampling methods, grid sampling [19] and proposal
sampling [2] aim to distill the density knowledge of the main NeRF network onto
a faster-to-query data structure. Grid sampling utilizes a separate occupancy
grid, where cell values get updated in a stochastic way with density estimates
from the further optimized main network. Proposal sampling utilizes a sequence
of lightweight proposal networks, which learn to bound the main network pre-
dicted weights.

Both approaches have improved the speed of the rendering process drastically
by reducing the number of evaluations required of the main NeRF network. How-
ever, these methods achieve the increase in the rendering speed with an increase
in the model size and with the extra storage requirement for the occupancy grid
or the proposal networks.
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There are some limitations to the low-weight sample pruning of these meth-
ods. The proposal samplers do concentrate more samples on the first surface site,
but some samples might still end up in empty space due to the iterative PDF
resampling starting from uniform sampling. Also, by default, grid sampling does
not prune occluded samples, since that requires rendering the transmittance. We
however point the reader to a subsequent approach by Li et al. [13] where the
transmittance is first rendered in inference mode, and only the high-weight sam-
ples are resampled for the training iteration. This approach shares similarities
to our two-forward-one-backward approach, but does not take into account the
loss, i.e. if we already handle these samples well according to the pixel loss they
contribute to.

It is important to note that neither of the ray sampling methods in [2, 19]
belong to the same computational graph as the main network. The offline distil-
lation of the grid sampling does not build a computational graph, and the online
distillation of the proposal sampling uses a detached versions of the main net-
work predicted weights. As our method acts on the main network computational
graph, these ray sampling methods are complementary and are left unaffected.

Guided pixel sampling Less prominent guided pixel sampling approaches aim
to be selective for which pixels do we cast rays and apply the optimization in the
first place. [6] and [14] use pre-trained networks to acquire initial pixel sampling
images. [28] increases sampling probability for pixels with high neighboring view
color variance and neighboring pixel depth variance. Relevant to our method,
previous implementations of hard sample mining are found in [21] and [32], where
historical pixel losses are used to derive the pixel sampling weights. A common
problem to these approaches is that the historical loss might not accurately re-
flect the current performance due to carried out model updates. The guided pixel
sampling approaches use hyper-parameterized schemes to ensure sufficient cov-
erage and to modulate the historical losses. Most of the existing NeRF methods,
even those representing state-of-the-art with respect to the optimization speed
like [11, 19, 34], have remained using random sampling as their pixel sampling
strategy.

Other approaches increasing reconstruction & rendering speed Other
major approach to increase the speed of the volumetric rendering pipeline are
the parametrized input-encoding strategies [3–5,19] that allow to use smaller and
faster neural networks or even forgo the neural network processing completely.
These approaches however come with a significant increase in the model size due
to the storage of the input-encoding parameters such as hash-tables or feature
grids.

There exist also a category of models which aim to speed up specifically the
inference by baking the NeRF model into some faster-to-query data structure
[8,9,24,25,35]. The real-time rendering however comes at a cost of training time,
achieved quality and massive increase in the model size.
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Fig. 1: Overview of our hard sample mining process: (1) Cast rays and ray sample
producing B ray samples. (2) Run the network in inference mode. (3) Volume render
and calculate the loss. (4) Backpropagate the loss until pre-activation outputs of the
network Z = (c′, σ′) for B samples. (5) Use the norm of the gradient to subsample
B for b hard samples. Rerun the network pass now building the computational graph.
(6) Continue the backpropagation through the extended computational graph for the
b hard samples.

3 Hard Sample Mining for NeRF Optimization

Fig. 1 provides an overview of the proposed hard sample mining method. Here,
we discuss the fundamentals of our method and summarize it in Algorithm 1.

Backpropagation as the computational bottleneck Our hard sample min-
ing further identifies the network backward pass as the computational bottle-
neck when optimizing a NeRF: For a standard deep learning module, such as
the multilayer perceptrons used with NeRF, a backward pass has nearly twice
the number of operations compared to a forward pass. Additionally, in order to
perform the backward pass, it is essential to store the intermediate output ten-
sors of consecutive modules during the forward pass, which consequently results
in increased memory use.

Two-forward-one-backward-pass approach Backpropagating a masked loss
for a subset of b samples instead of the entire batch of B samples does not
yield computational benefits on standard deep learning platforms like PyTorch
and Tensorflow. These platforms end up backpropagating zero gradients for the
masked-out samples, resulting in no updates while retaining roughly the same
compute. We would also still have to save the intermediate tensors for all the
samples, since it is impossible to know exactly before-hand which of them prove
to be hard samples. Taking inspiration from [26], we propose a two-forward-one-
backward pass approach for NeRF network processing:
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1. Perform the first forward pass for the B samples in inference mode (e.g.,
using no_grad() in PyTorch). This substantially reduces memory require-
ments by avoiding the storage of intermediate tensors needed for backward
calculations.

2. Derive the importance sampling distribution and draw the b samples.
3. Re-run the forward pass for the b samples, building the computational graph.
4. Perform the backward pass for the b samples.

This approach takes advantage of our assumption that the ratio of b
B is ex-

pected to be small, i.e. we expect only a fraction of the samples to be informative
for the update of the NeRF model.

Propagated pixel loss as the importance sampling distribution When
sampling for the hard sample minibatch, we want to pick the samples that ac-
tually induce a change in the model parameters. This formally translates into
a reduced variance of the gradient (VoG) estimates calculated from different
instances of the minibatch according to [10]. Optimal sampling distribution to
reduce the VoG has been shown to be the full per-sample gradient norm [1,20,36],
but calculating it would be computationally too expensive requiring a backward
pass per sample. We use the derivations of [10] that the variation of the gra-
dient norm is mostly captured by the gradient of the loss with respect to the
pre-activation outputs of the last layer of the neural network.

In the NeRF optimization, the loss is not defined per point sample, but
rather per pixel. So to adapt, we backpropagate the pixel loss L over the volume
rendering until the pre-activation outputs of density and color MLPs (c′, σ′) and
derive the importance sampling distribution as:

G = ∥ ∂L

∂(c′, σ′)
∥2. (2)

Dynamic size of the hard sample minibatch We propose to dynamically
set the hard sample minibatch size during the training. As the space becomes
progressively, adequately modeled during the training, it is reasonable to think
that fewer of the stochastically sampled points benefit the model update.

Let D represents the whole data, b ∼ GD represents a minibatch (of size b)
sampled from the data importance sampling distribution, b0 ∼ UD represents
a minibatch (similarly of size b) sampled uniformly from the data. However,
sampling b ∼ GD is computationally prohibitive as it would require a forward
pass for the whole data at every iteration since GD evolves due to model updates.
Instead lets define B ∼ UD as a large minibatch sampled uniformly from the
data to be a sufficient representative of the whole data. Then we redefine b ∼
GB and b0 ∼ UB . Using the derivations of [10], we approximate variance of
the gradient reduction when using the minibatch b instead of b0, i.e. using
importance sampling over uniform sampling, as:
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R =
1∑B

i=1 G
2
i

∥G− U∥22 (3)

where Gi = ∥ ∂Li

∂(c′i,σ
′
i)
∥2 and U = 1

B (uniform distribution).
Another commonly accepted proposition in the field of deep learning is that

the variance of the gradient is a decreasing polynomial of the minibatch size [23].
We assume that if we increase minibatch size by a factor of τ , the variance of
the gradient reduces to 1 − 1

τ2 . Then equating with Eq. (3), we can solve for τ
as:

τ = (1−R)−
1
2 (4)

This essentially tells us how much larger should a uniformly sampled mini-
batch be to achieve the same variance of gradient as the importance sampled
minibatch. Let us then define that τb = B. We then solve for the hard mini-
batch size b to achieve on average the same variance of the gradient as the large
uniform batch of size B as:

b =
B

τ
(5)

To mitigate the issue that we estimate τ based on the large minibatch B
instead of the whole data, we keep track of a running average τ̂ = (1−ατ )τ̂+αττ ,
updated at every iteration, and use τ̂ instead of τ in Eq. (5). In the experiments
we set ατ = 1

num. of training images . We also assume the batch size increase of τ

to reduce the variance by 1 − 1
τ2 ; A reduction of 1 − 1

τ is assumed in [23] for a
shallow neural network, which would lead to even smaller b. We choose to remain
conservative for the batch size reduction for two reasons: (1) our estimation of
τ comes from minibatch B rather than the whole data, (2) GPU utilization
starts to drop if b shrinks excessively small, and we gain no computational time
benefit over the pruned samples. Also, as we discover in the experiments, the first
forward pass starts to dictate the max memory requirements after b

B reaches a
certain point, so we do not gain additional memory benefits either for additional
b shrinkage.

Algorithmic implementation Implementation of our method that carries out
the hard sample mining for NeRF optimization at a point sample level is given
in Algorithm 1: Rays and corresponding ground truth colors are picked from the
dataset in a standard random way (we note that the existing advanced pixel
sampling methods could also be used here). Ray sampling is then carried out
to produce a set of B sample points along the rays. First network forward pass
of these point samples is carried out in inference mode, i.e. not building the
computational graph yet. The computational graph building is switched on for
the volume rendering phase and the gradient of the pixel loss is calculated with
respect to the pre-activation network outputs (i.e. attributes’ ). The L2 norm of
this gradient then forms the importance sampling distribution G.
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We determine the hard minibatch size b according to Sec. 3. Continuing we
draw the b hard points from G, and repeat the network forward pass, now build-
ing the computational graph for the whole network. We can then continue the
backpropagation of the cached gradients through the extended computational
graph for the hard point samples.

Algorithm 1 Hard Sample Mining for NeRF Optimization
1: τ̂ ← 1.0
2: ατ ← 1

len(training_images)

3: for each iteration in training_iterations do
4: rays, gt_color ← pixelsampling(training_images)
5: points← raysampling(rays)
6: B ← len(points)
7: with no_grad():
8: attributes′ ← nerf(points,preactivation=True)
9: attributes′.require_grad()

10: attributes← activation(attributes′)
11: pred_color ← volumerendering(attributes)
12: pixel_loss← loss(rendered_color, gt_color)
13: grad_attributes← autograd(pixel_loss, (c′, σ′))
14: G← grad_attributes.norm()
15: U ← 1/B

16: τ ← (1− 1∑B
i=1 G2

i
||G− U ||22)−

1
2

17: τ̂ ← (1− ατ )τ̂ + αττ
18: b← B

τ̂

19: hard_indices← multinomial(G, b)
20: hard_points← points[hard_indices]
21: attributes′ ← nerf(hard_points, preactivation=True)
22: grad_output← cat(grad_attributes[hard_indices])
23: attributes′.backward(grad_output)
24: end for

4 Experiments and Results

We do all the experiments with the PyTorch reimplementation [31] of the Instant-
NGP [19] for ease of code modification. Our purpose is to showcase the hard
sample mining in action, rather than to reproduce the official paper [19] results.
There are many details, like the ray termination and the full-CUDA implemen-
tation, that are missing from the PyTorch version which deteriorate the per-
formance in comparison to the official implementation; These improvements are
however tangential to the proposed hard sample mining method.

The following analysis of importance sampling distribution is done with the
original synthetic NeRF dataset [18]. For the actual evaluation, we use the stan-
dard Mip-NeRF-360 dataset [2] to offer real-life data performance. We use the
evaluation pipeline from [2], except we downscale the outdoor scene images with
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a factor of 8 (instead of 4 for indoor scenes), bringing all the scene images to a
more even standard definition resolution.

From the repository settings, we set the batch size as B = 220, and disable
iteration based learning rate scheduling since we test against a wall-clock training
time. Other options are left as default. The experiments were carried out on a
NVIDIA A4500 mobile GPU.

4.1 Importance sampling distribution analysis

We start off with a analysis of the importance sampling distribution G. We train
the baseline Instant-NGP [31] for the NeRF synthetic dataset [18], and calculate
the G at every iteration. We form a probability density function (PDF) from
the G and plot its skewness value over the whole training in Fig. 2. The results
show that the PDF of the importance sampling distribution becomes increasingly
right-tailed. This indicates that there exists variance in the sample importance
that our method can take advantage of.

Inter-ray discrepancy: low loss samples We can intuitively understand one
major reason why the PDF is skewed: samples belonging to rays that traverse
properly modeled regions get backpropagated a low pixel loss, and consequently
induce a small gradient themselves. Conversely, samples belonging to high pixel
loss rays are exposed to have high-gradients.

Pixel loss PDF for midpoint iteration is given in Fig. 2. The pixel loss vari-
ance is also exemplified by the lego truck scene renderings at different points
of training, where we see the model first converging on major structures of the
truck but still struggling with details like the tires, and the individual knobs of
the platform.

Intra-ray discrepancy: low weight samples. Low weight samples form an-
other set of samples that are by definition exposed to low gradients. Low weight
samples have low impact to the rendered color and subsequently induce only
a small error gradient. Sample weight PDF for midpoint iteration is given in
Fig. 2.

As depicted in Fig. 3, we see that the coloring of the sample points based
on the sample importance automatically distinguishes the samples at the first
surface collision site from samples at empty space before and at occluded space
after. These low-weight samples may still exist in the batch after the grid sam-
pling due to the limited occupancy- and hash-grid resolutions, and occluded
samples not being pruned by the default method. The results indicate that our
method is able to automatically correct for the pruning mistakes of the guided
ray sampling algorithms.

4.2 Runtime and Memory Reduction

Runtime. The network forward and backward pass on hard samples, takes
roughly b

B of the original wall-clock runtime. Combined with the 1
3 coming from
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(a) Loss PDF (iter=500) (b) Weight PDF (iter=500)

(c) Sample gradient PDF skewness over iterations

Fig. 2

the first forward pass in inference mode, we achieve a runtime reduction of B+3b
3B

for the network processing. We can use this as a low-end approximation of the
whole iteration time reduction, that does not take into account the time taken
by the ray sampling and volume rendering modules (which remain to have the
original runtime).

In the experiments, as depicted in Tab. 1, we see a reduction of the average
iteration time down to ∼53-54% when our hard sample batch fraction b

B is on
average ∼10-15%. The roughly ∼10% above the low-end approximation is con-
tributed to the time taken by the ray sampling and volume rendering modules.

Memory usage. The first network forward pass is run in evaluation mode
and no intermediate tensors are required to be saved for backward pass yet.
Since the computational graph is only built during the second forward pass with
the reduced batch size b we see a drastic reduction in GPU memory usage.

Memory usage per iteration is plotted in Fig. 4 averaged over the Mip-NeRF-
360 dataset scenes for both the baseline and our hard sample mining. We see
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Fig. 3: We plot sampled points of one ray during the training. The points are colored
increasingly red based on their importance sampling weight. For visual cue of the
scene contents, we also plot the converged mesh model of the lego truck into the
scene. We can see that the used importance sampling distinguishes the first surface
colliding samples from empty space (before the collision) and occluded samples (after
collision) automatically. This is because by definition these latter samples induce near
zero gradient.

common phases in both memory curves: (1) Peak memory usage happens due
to occupancy grid update with large sample size during the first 256 iterations.
(2) Warmup iterations where adaptive number of rays [19] and/or b

B ratio is
stabilizing. (3) Network memory usage and upticks from continuing to update
the occupancy grid.

We see that the essential statistic for other applications is the reduction
in the network memory usage from the baseline’s ∼1 GB to ∼570 MB by our
hard sample mining. The regular upticks in memory usage are caused by the
occupancy grid updates, which is out the scope of our method.

4.3 View-Synthesis

Training performance. In Fig. 4, we plot the training loss per iteration aver-
aged across all the 7 scenes in the Mip-NeRF-360 dataset [2]. We see our hard
sample mining closely following the baseline training loss per iteration. This in-
dicates that training on the samples that our hard sample mining prunes has
a negligible effect on the training loss. Due to the significantly reduced train-
ing iteration time, our hard sample mining method allows running substantially
higher number of iterations and reaches significantly lower loss within the same
8-minute wall-clock training time period.

Validation performance For quantitative results, Fig. 4 indicates average
validation PSNR performance over all the Mip-NeRF-360 scenes. We can see our
hard sample mining beating the baseline convincingly over the whole training
time. It converges much faster (∼2x) to a given PSNR level, and has ∼1 dB gain
per same training time.
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Table 1: Performance statistics of applying hard sampling to training the Instant-NGP
for the Mip-NeRF-360-dataset scenes. Average PSNR over all the validation images are
reported for 2, 5, and 8 minutes of training. τ−1 describes the converged b

B
. ms

iter
is the

average training iteration time in milliseconds per iteration. We report in format hard
sample mining | baseline when comparing our hard sample mining to baseline training
performance. * denotes the repository reported benchmark results for 8 minutes of
training the baseline.

bonsai kitchen room counter garden bicycle stump

2min 27.9 | 26.8 25.7 | 24.1 27.9 | 27.3 24.7 | 23.8 25.4 | 24.5 21.8 | 21.3 23.0 | 22.8
5min 29.2 | 28.1 26.9 | 26.0 28.8 | 28.3 25.4 | 24.9 26.5 | 25.8 22.2 | 22.1 23.3 | 23.3
8min 29.7 | 28.4 27.5 | 26.7 29.1 | 28.7 25.6 | 25.3 26.9 | 26.3 22.4 | 22.1 23.4 | 23.4
8min* 29.0 26.4 28.6 25.2 23.7 21.3 22.7

τ−1 0.10 0.11 0.13 0.11 0.14 0.11 0.15
ms
iter

31 | 58 35 | 64 33 | 61 34 | 64 37 | 60 32 | 56 37 | 68

For qualitative results, Fig. 5 shows validation image renderings after just 2
minutes of training. We see our hard sample mining achieving a better overall
appearance, and especially better details: as a representative example at the
uppermost row we see that our hard sample mining training has already achieved
to model the fine structures of the lego bonsai tree when the random sampling
still struggles to differentiate between the leaves and the branches.

Variability in hard sample mining effectiveness . We observe that a in-
dicator of the effectiveness of our hard sample mining method is τ−1, which
essentially tells us the ratio b

B . Subsequently, we see the achieved Peak Signal-
to-Noise Ratio (PSNR) gain achieved with our method is inversely aligned with
this metric.

Looking at Tab. 1 for the converged τ−1 values per scene, we notice that
scenes like room, garden, and stump have notably higher values. These scenes
seem to have more consistent difficulty across the scene, with characteristics such
as unboundedness and/or multiple outward-facing objects. On the other hand,
scenes with low values (bonsai, kitchen, counter, and bicycle) share a common
characteristic - they have centrally placed objects against a relatively easy back-
ground. Uniformly challenging content in a scene seems to limit the anticipated
computational efficiency gains resulting from our method. We attribute this to
the pixel loss distribution of the samples being more uniform.

5 Discussion & Conclusions

We showcase a hard sample mining algorithm that employs propagated pixel loss
to rank the point samples and subsequently subsamples a hard minibatch, esti-
mated to retain most of the update information. The construction of the network



Efficient NeRF Optimization - Not All Samples Remain Equally Hard 13

(a) Training loss (b) Memory usage

1 2 3 4 5 6 7 8
Training Time (min)

23.0

23.5

24.0

24.5

25.0

25.5

26.0

26.5

Av
g.

 P
SN

R

Hard Sample Mining (Ours)
Baseline

(c) Validation PSNR

Fig. 4: Performance over training time: (a) We see our hard sample mining closely
following the training loss of the baseline per iteration, and reducing the (b) training
time memory usage. Due to reducing iteration time, our hard sample mining gets to
run for more iterations, and achieves higher (c) validation PSNR per training time. All
statistics are averaged over the Mip-NeRF-360 scenes.

computational graph and parameter updates based on only this hard sample
minibatch reduces the iteration time and the memory usage during the training.
This optimization strategy applied to the PyTorch reimplementation [31] of the
Instant-NGP [19] effectively enhances the novel view synthesis quality achieved
with the tested Mip-NeRF-360 dataset [2] scenes with reduced training time and
memory usage. We demonstrated the efficiency improvements of integrating our
hard sample mining into neural radiance fields (NeRF) optimization in Fig. 4.

Our results indicate that it is beneficial to take the pixel loss into account
when doing importance sampling of the point samples. In this regard, our method
is first-of-its-kind as far as we know. The provided speed-up to the training by
focusing on the hard samples could be very useful for slow methods like [2, 15].
The hyperparameter-free way of automatically determining the hard minibatch
size also offers an interesting solution to a relevant problem of the optimal batch
size when doing NeRF optimization. It enables the utilization of large batch sizes
for sufficient coverage of the scene, without excessive memory usage. We see that
this idea could be very useful for the methods [2,15], but also to the prominent
3D gaussian splatting approach [11], which suffers from extremely high memory
usage during training.

In the future work, we aim to investigate the interactions of our method
with various NeRF techniques with diverse scenes. To achieve this, we plan to
implement our method in NeRFStudio [30], which gives access to multiple NeRF
models and datasets. Implementation in NeRFStudio also allows us to make a
comparison to Nerfacc [13] way of just pruning the low-weight samples. We
anticipate our method to be easily integratable as it only interfaces with the
NeRF network module. The impact of pose errors in the dataset also remains
mostly an unexplored area. It is possible that severe pose mistakes could produce
"impossible to learn" point samples that consistently crowd the hard minibatch.
To this end, we could apply the available techniques like uncertainty [16] and
pose [33] estimation in NeRFStudio, to mitigate the possible issues caused by
the pose mistakes.
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Baseline/PSNR 28.38 HSM(Ours)/PSNR 29.38

Baseline/PSNR 21.87 HSM(Ours)/PSNR 22.31 Baseline/PSNR 22.32 HSM(Ours)/PSNR 23.93

Baseline/PSNR 29.74 HSM(Ours)/PSNR 30.63 Baseline/PSNR 23.73 HSM(Ours)/PSNR 24.43

Baseline/PSNR 20.06 HSM(Ours)/PSNR 20.46 Baseline/PSNR 25.35 HSM(Ours)/PSNR 26.27

Fig. 5: Rendered validation images after training an Instant-NGP model for 2 minutes
for the scenes of the Mip-NeRF-360 dataset. We see our hard sample mining (HSM)
method achieving better quality especially on details compared to the baseline.
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