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Abstract. Recent learning-based calibration methods yield promising
results in estimating parameters for wide field-of-view cameras from sin-
gle images. Yet, these end-to-end approaches are typically tethered to
one fixed camera model, leading to issues: (i) lack of flexibility, necessi-
tating network architectural changes and retraining when changing cam-
era models; (ii) reduced accuracy, as a single model limits the diversity
of cameras represented in the training data; (iii) restrictions in cam-
era model selection, as learning-based methods need differentiable loss
functions and, thus, undistortion equations with closed-form solutions.
In response, we present a novel two-step calibration framework for ra-
dially symmetric cameras. Key to our approach is a specialized CNN
that, given an input image, outputs an implicit camera representation
(VaCR), mapping each image point to the direction of the 3D light ray
projecting onto it. The VaCR is used in a subsequent robust non-linear
optimization process to determine the camera parameters for any radially
symmetric model provided as input. By disentangling the estimation of
camera model parameters from the VaCR, which is based only on the as-
sumption of radial symmetry in the model, we overcome the main limita-
tions of end-to-end approaches. Experimental results demonstrate the ad-
vantages of the proposed framework compared to state-of-the-art meth-
ods. Code is at github.com/andreadalcin/RadiallySymmetricCalib.

1 Introduction

Camera calibration is crucial for various Computer Vision tasks, such as image
rectification, 3D reconstruction, and visual localization. As wide field-of-view
cameras become more prevalent, calibration techniques have increasingly tar-
geted the intrinsic and distortion parameters of fisheye lenses, 360-degree cam-
eras, and spherical cameras. This paper specifically addresses the calibration of
radially symmetric cameras, encompassing these devices.

Calibration methods can be categorized into geometric-based [1, 3, 5, 11, 23,
27,30,32,38,39] and learning-based [4,13,14,17,18,20,24,29,34,35]. Geometric-
based approaches utilize checkerboard patterns or handcrafted features to es-
timate camera parameters, but often falter in unstructured settings or without
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Fig. 1: Comparison with End-to-End Calibration Methods. Our two-step ap-
proach uses a CNN to regress the VaCR, the implicit camera representation driving
a robust fitting procedure to estimate the parameters for the input camera model M.
This contrasts with end-to-end approaches, which either directly estimate parameters
for a fixed camera model or produce undistorted images without intermediary steps.

manual intervention. Conversely, learning-based approaches can calibrate a cam-
era without calibration objects and have shown promising results in estimating
intrinsic and extrinsic parameters in uncontrolled settings.

Nonetheless, learning-based methods have practical limitations. (i) They typ-
ically regress camera parameters directly using an end-to-end approach that re-
lies on a fixed camera model, which limits calibration accuracy when said model
mismatches the types of cameras being calibrated. (ii) Transitioning to a more
appropriate camera model requires architectural changes and retraining of the
network with a dataset of distorted images based on the new camera model.
(iii) Selecting an effective loss function for network training presents difficul-
ties. The mainstream approach involves formulating the loss function based on
the undistortion equations of the camera model, as seen in [24, 34]. However,
differentiating the loss requires these equations to have a unique closed-form so-
lution, which does not hold for all camera models. Thus, this limitation narrows
the range of models suitable for this approach. Another strategy involves deriv-
ing the loss directly from camera parameters, as in [4], with metrics such as the
root-mean-square error. Nevertheless, this approach is incompatible with camera
models having inherent ambiguities, such as the Extended Unified (EUCM) [15]
and Double Sphere (DSCM) [33], where multiple parameter sets can describe
the same physical camera. Such ambiguities1 can result in treating different but
correct parameter sets as errors, causing networks to learn parameter ranges
instead of camera characteristics, diminishing accuracy and generalization.

Building on these insights, we propose a novel two-step, learning-based frame-
work for radially symmetric camera calibration designed to overcome the limi-
1 Refer to SM 7 for details about ambiguities and visualizations for EUCM and DSCM.
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tations of traditional end-to-end approaches. Our framework takes an image I
and a radially symmetric model M as inputs to estimate camera parameters ac-
cording to M. In the first step, a convolutional neural network (CNN) processes
I and, rather than directly regressing camera parameters, estimates an implicit
camera representation, the VaCR (Viewing-angle Camera Representation). De-
signed for radially symmetric cameras, the VaCR maps each image pixel into
the ray of light projecting onto it, i.e., the VaCR is independent of the input
camera model M. Secondly, a robust fitting procedure estimates the optimal
parameters for M that best fit the estimated VaCR. Our approach, in Fig. 1,
offers advantages over existing methods. (i) The model-agnostic VaCR allows
considering M only in the robust fitting step, thus bypassing network retraining
when the camera model changes. (ii) This eliminates the need for new model-
specific data for network training when the camera model changes. (iii) By using
the unambiguous VaCR as an intermediate camera representation, our robust
fitting converges to a valid set of parameters for the target camera even when
the input camera model has inherent ambiguities, e.g., EUCM and DSCM.

In sum, we advance concerning the state-of-the-art with three contributions:

1. We introduce the VaCR, a camera representation for radially symmetric
cameras devoid of ambiguities and independent of a specific camera model.

2. We design a VaCR estimation CNN, exploiting radial symmetries for im-
proved efficiency and accuracy. By estimating the VaCR instead of camera
parameters directly, our CNN is trained independently of any camera model
and supports many cameras without retraining or architectural changes.

3. These elements contribute to a novel two-step calibration framework for ra-
dially symmetric cameras: first, the CNN predicts the VaCR; then, a robust
fitting procedure minimizes a cost function based on the VaCR to estimate
parameters specific to the input camera model, even for ambiguous models.

We validate our framework’s efficacy using public datasets, showing that it
surpasses current leading methods in camera calibration through quantitative
and qualitative tests. Additionally, we attain results on par with or better than
the state-of-the-art in image rectification despite it not being our main objective.

2 Problem Formulation

Calibration of radially symmetric cameras is framed as follows. The inputs are
(i) an image I captured by the target camera, (ii) a radially symmetric camera
model M depending on a set of intrinsic parameters iM = [f,d], where f ∈ R
is the focal length and d = [d1, . . . , dn] ∈ Rn is a set of coefficients to model the
lens distortion. Our goal is to recover iM in a learning-based framework, where
the training dataset comprises a set of distorted images, each labeled with the
set of ground truth parameters that model the image distortion.

This work focuses on wide-angle cameras, i.e., cameras with an angular field-
of-view (AFOV) greater or equal to 80◦. We follow the common assumptions of
zero skew, principal point at the camera center, and square pixel aspect ratio.
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3 Related Work

Camera calibration approaches fall into geometric-based and learning-based.

Geometric-based methods use calibration objects [32, 39], line detection [1,
3, 5, 11, 30, 38], or vanishing points [23, 27] to establish world-to-image relation-
ships, enabling accurate and reliable camera parameter estimation. Despite their
effectiveness, they struggle in unstructured environments without manual input.

Learning-based methods, based on CNNs, calibrate cameras end-to-end from a
single image from an uncontrolled environment. These methods primarily target
intrinsic and distortion parameter estimation, although recent works [7, 12, 28]
have also addressed extrinsic parameter calibration. While our work is focused on
intrinsics, it can be adapted to also estimate extrinsics, as discussed in Sec. 5.5.

We categorize learning-based methods into regression and reconstruction.
(i) Regression models [4,13,14,17,18,24,29,34,35] estimate parameters based
on a predefined camera model M specific to each method. Despite effectiveness,
they lack accuracy and generalization due to their single-model dependency,
which hampers network adaptability to different camera types. This single-
model setup also induces a narrow range of distortion parameters in the training
datasets, yielding poor calibration accuracy when parameters are outside prede-
fined ranges. While "general" camera models have been proposed [34], they lack
the representational capacity to suit cameras with complex projection functions.

Liao et al. [20] model-free approach first uses adversarial learning for image
rectification, estimating a parameter-free distortion distribution map (DDM)
without relying on a predefined camera model. Yet, the DDM does not ex-
ploit radial symmetries and the overall method underperforms in accuracy and
efficiency compared to the state-of-the-art, as shown in Sec. 5. The adversar-
ial training process further introduces challenges in loss balancing between the
generator and discriminator. In contrast, our method introduces the VaCR, a
camera model-independent representation. Unlike the DDM, which assigns a
distortion level to each pixel based on the 2D image coordinates’ ratio between
the distorted and the rectified image, the VaCR assigns each pixel to a bearing
vector, describing the direction of the ray of light incident onto said pixel. In-
cluding 3D information in our camera representation aligns with recent advances
in learning-based calibration, mainly through adopting bearing losses [24,34] to
drive the network training on re-projection errors.

Another limitation of successful, recent calibration methods, e.g., Wakai et
al. [34], lies in their reliance on loss functions formulated from the camera model’s
undistortion equations, which, to be differentiable, require the model’s 2D-to-
3D back-projection function to have a unique, closed-form solution for comput-
ing bearing vectors. However, sophisticated camera models like EUCM [15] and
DSCM [33] do not fulfill this condition, restricting their use in these methods.
In scenarios lacking a differentiable back-projection function, other approaches,
such as direct loss computation from camera parameters [4] or iterative solutions
for the back-projection function [24] have been proposed, yet these often fall short
in accuracy. Moreover, computing the loss directly from camera parameters, e.g.,
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Fig. 2: Left. Mapping each image pixel u = (ρ, θ) to a bearing vector s = (ψ, ϕ).
Right. For pixels u with the same angle θ = θ̂ = 3π

4
(outlined in cyan), their bearing

vectors (in shades of red) have constant ϕ = ϕ̂ = θ̂, but their ψ values vary by ρ. The
VaCR comprises the set of angles ψ of the bearing vectors of all pixels with θ = θ̂.

using the root-mean-square error, is problematic for models with ambiguities,
where multiple parameter sets can represent the same camera. By estimating
the VaCR rather than camera parameters directly, our approach sidesteps the
requirement of a closed-form solution to the model’s back-projection function, as
the VaCR is model-independent and the loss used to train the VaCR estimation
network does not involve any model’s back-projection function.
(ii) Reconstruction models [6, 9, 19, 36] employ adversarial learning, lever-
aging multi-scale information to train generators and discriminators for image
undistortion without explicitly estimating camera parameters. [40] employs po-
lar coordinates within to estimate a 1D distorted-to-rectified flow instead of a 2D
flow. Conversely, our two-step regression framework leverages polar coordinates
to enable specialized pooling operations that exploit the radial symmetries of
cameras. In Sec. 5.4 we compare reconstruction approaches to our method in
image rectification, showing that we attain consistently superior results.

4 Method

This section outlines our two-step calibration method for radially symmetric
cameras. Initially, in Sec. 4.1, we present our model-independent camera repre-
sentation, the VaCR. Next, in Sections 4.2 - 4.3, we detail the CNN designed
for VaCR estimation from the input image I, which enables us to disentangle
network training from a specific camera model. Lastly, we describe the robust
fitting process in Sec. 4.4, fitting camera parameters for the input model M via
nonlinear least squares to the estimated VaCR.

4.1 Viewing-angle Camera Representation

This section introduces the Viewing-angle Camera Representation, or VaCR, a
key component of our calibration framework that enables full characterization
of any radially symmetric camera, independently of a specific camera model.
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Image rectification may be achieved by mapping each pixel u to the direction
of its incident light ray s. For instance, in the ideal case of a pinhole camera,
where there is no distortion, and the projection equation writes λu = K (R | t)U,
it is sufficient to know the matrix of intrinsic parameters K to determine the
direction of the light ray s = K−1u for a pixel u. On the other hand, to account
for lens distortion, it is necessary to model the camera’s physics and employ
analytical expressions to back-project a pixel in its optical ray. The idea behind
the VaCR is to avoid using a complex analytical camera model. Since the number
H×W of pixels in I is finite, the back-projection equations are reduced to a look-
up table, which can be further compressed by exploiting common assumptions
such as invariance to the radial symmetries in cameras.

We define the VaCR as a function π : I → S2 mapping each image point
u ∈ I to a bearing vector s = (ψ, ϕ) on the unit sphere S2 (see Fig. 2-left). π is
fully characterized by H×W ×2 parameters, as each bearing vector s comprises
two angles, ψ and ϕ, describing the direction of the 3D ray projecting onto u.

In the context of estimating the VaCR in a learning-based framework, we
aim to further reduce the number of parameters defining π. By exploiting the
angle-invariance property of radially symmetric cameras, illustrated in Fig. 2-
right, we can accomplish this reduction without loss of information. Specifically,
we express the image point u = (ρ, θ) in polar coordinates, with ρ denoting
the radial distance and θ the azimuth angle. Under the assumption of radial
symmetry, any generic radial projection function does not alter the angle ϕ
when projecting s onto u, i.e., ϕ = θ.2 Knowing that ϕ = θ and assuming θ
is known for any image point, each bearing vector has only one undetermined
parameter, i.e., ψ, meaning the parameter count of π is reduced to H ×W .

We also observe that the radial distance ρ of a pixel depends only on the
angle ψ of its bearing vector. Thus, all pixels at the same radial distance, ρ = ρ̂,
will map to bearing vectors with the same angle ψ = ψ̂ (see Fig. 2-right). Hence,
it is unnecessary to map each pixel to an angle ψ; instead, encoding ψ for only
one representative pixel per radial distance value ρ suffices. Consequently, the
function π simplifies to N parameters, where N is the count of discrete radial
distances in I, effectively reducing to N = H

2 = W
2 for square images.

The formulation of the VaCR, optimized for radial symmetry, is:

VaCR : {ρi}Ni=1 → R , (1)
mapping each radial distance to the angle ψ of the corresponding bearing vector.
This definition highlights that the VaCR is unambiguous, as mapping each radial
distance to an angle ψ ensures that, if two cameras differ, their VaCRs will not
match due to their distinct back-projection functions yielding different angles ψ.

4.2 VaCR Estimation Network

We detail the architecture of the proposed VaCR estimation CNN, summa-
rized in Fig. 3. Unlike existing approaches, we first transform the input image
2 The verification of the angle-invariance property depends on the adopted camera

model; we provide a proof for the DSCM model in SM 8.
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Fig. 3: VaCR Estimation Network: Dual encoders ϵp and ϵc derive features from
the polar and Cartesian images. Cartesian features (Fc) are first mapped to polar
coordinates (Fc2p) and then concatenated with polar features (Fp), forming Fcat. After
pooling operations on Fcat, distinct regressors M

(i)
reg estimate the VaCR. We provide

an expanded view of the regression head in Fig. 4.

I into polar coordinates Ip before providing it to the feature encoder. This
transformation reorganizes image data, enabling specialized pooling operations
that regularize the VaCR estimation while also reducing the network parameter
count, improving efficiency. To address information losses from the Cartesian-to-
polar conversion, we employ an additional encoder that extracts features from
the Cartesian image I, which are then concatenated with polar features in later
CNN stages, creating a specialized feature volume for VaCR regression.

Image pre-processing. The input image I is zero-padded to form a square
image of size S and, then, is then transformed into polar coordinates, resulting
in Ip. The height of Ip is S

2 , matching the inscribed circle’s radius, and width
Wp is set based on the chosen angular resolution, which is thus a parameter that
can be tuned. By setting Wp = S, we balance between reducing information loss
and minimizing pixel deformation.3

Feature extraction. Our network employs two distinct ConvNeXt [22] en-
coders, ϵp and ϵc, which separately extract features from Ip and I respectively.
Starting from Ip, sized S

2 × S, ϵp produces a feature volume Fp of dimensions
C × S

2k × S
k , where C denotes the number of feature channels and k the down-

sampling factor of the feature encoder. Similarly, ϵc produces a feature volume
Fc, sized D× S

k × S
k . As discussed in Sec. 5.5, we opt to extract fewer Cartesian

feature channels D compared to polar ones C due to observed diminishing im-
provements in VaCR accuracy when incrementing D beyond a certain threshold.

Combining features. Features Fp and Fc merge into Fcat for VaCR regression.
To achieve this, Fc is transformed into polar coordinates as Fp, creating Fc2p

sized D × S
2k × S

k . This process parallels the transformation of I into Ip, but,
notably, it is performed after image features are extracted from I by a specialized
encoder. Thus, Fc2p comprises features extracted from the Cartesian image, with
3 Refer to SM 9 for an ablation study on Wp’s effects on VaCR regression.
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Fig. 4: Regression Head of VaCR Network. The feature volume Fcat undergoes
width-wise averaging to form Fgap, which is then divided height-wise into slices F (i)

gap.
Independent estimation modules M

(i)
reg predict the VaCR, i.e., S

2k
viewing angles.

a spatial arrangement compatible to that of polar features Fp. By concatenating
Fp and Fc2p along the channel dimension, we obtain a combined feature volume
Fcat sized (C+D)× S

2k ×
S
k having a consistent spatial arrangement throughout.

VaCR Regression. In the network’s final stage, the VaCR is regressed from
the combined feature volume Fcat. The polar transformation brings points at
the same radial distance, or viewing angles in the VaCR, along the same row
in the polar image Ip. This setup ensures that viewing angles in the VaCR for
adjacent image rows are highly correlated due to their similar radial distances.
Capitalizing on this spatial correlation, the kernels of our CNN traverse the axes
of the polar image, processing image regions that are highly correlated for VaCR
regression, even when the receptive field is compact.

We design the regression head to exploit the same-row arrangement in Ip of
points at equal radial distance. Specifically, we employ Global Average Pooling
across the width of Fcat to obtain a feature volume Fgap, sized C × S

2k × 1
(see Fig. 4). This strategy averages features at each row, regularizing information
for each radial distance, i.e., viewing angle in the VaCR, while reducing the size
of the feature volume. Notably, due to feature downsampling, each row in Fcat

combines data from k radial distances, as the image is downsampled from size
S
2 to S

2k . This condensation increases efficiency while maintaining accuracy since
adjacent radial distances are usually mapped to nearly identical viewing angles.4

We exploit the spatial relationship between Fgap and the VaCR, where each
row in Fgap maps to an angle in the VaCR, and divide Fgap along its height
into feature slices {F (i)

gap}S/2ki=1 , each sized C × 1× 1. Each slice feeds into a sep-
arate estimation module M

(i)
reg, comprising fully connected layers that regress

a viewing angle (see Fig. 4). This regression head architecture, with dedicated
M

(i)
reg with distinct weights for each slice, exploits the spatial feature arrange-

ment in Fgap, providing individual regression pathways for each angle. Distinct
statistical properties of features at different viewing angles justify the use of indi-

4 SM 9 analyzes the effects of different downsampling rates on calibration accuracy.
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vidual M(i)
reg modules and allows for tailored specialization, contrary to existing

methods that regress camera parameters from a unified feature set.

4.3 Network Training

We train the feature extractors, ϵp and ϵc, and the regression modules M
(i)
reg

end-to-end. In each mini-batch of size B, for each sample j, the CNN estimates
the VaCR {ρi → ψ̃ij}S/2ki=1 , comprising S

2k radial distance ρi and angle estimate
ψ̃ij pairs. The loss L is:

L(ψ̃ij) =
1

B S
2k

B∑
j=1

S/2k∑
i=1

Huber(∥ρi − Pr,j(ψ̃ij , igt,j)∥2) , (2)

where Pr,j is the radial projection for the j-th sample, and igt,j the ground truth
camera parameters. The predicted viewing angles, ψ̃ij , are used within Pj along
with ground truth parameters igt,j to evaluate the Euclidean distance from the
correct ρi. This loss computation is independent on any specific camera model,
allowing each batch sample to contribute its own model with projection function
Pj and parameters igt,j . The Huber(•) denotes the Huber loss.

Dataset Generation. We train the network on datasets comprising synthet-
ically distorted images labeled with ground truth camera parameters. Existing
approaches [4, 24, 34] generate synthetic datasets using a fixed camera model
by uniformly sampling the focal length f and distortion parameters within a
preset range. This strategy leads to a skewed distribution of the angular field-of-
view (AFOV) in the dataset when the camera model has ambiguities – different
parameters describe the same camera. Since AFOV is crucial for camera char-
acterization, having a skewed distribution may induce biases in the network and
limit its ability to generalize to certain camera types.

Our setup synthesizes images using DSCM [33] and EUCM [15] camera mod-
els, as they exhibit superior representational capabilities, as discussed in SM 7.
Unlike existing approaches, we directly sample the AFOV between 80◦ and
190◦ before sampling model-specific parameters, ensuring uniform AFOV dis-
tribution in the dataset. Then, for DSCM, parameters α and ϵ are uniformly
sampled in [0, 1] and [−1, 1], respectively, and the focal length is derived as
f = S/

[
2D

(
1
2AFOV, a, ξ

)]
, where S is the image size and D(θ, a, ϵ) a function

of AFOV, a, ϵ. EUCM settings follow similarly, as detailed in SM 7.

4.4 Fitting Camera Parameters to the VaCR

The final step involves estimating the intrinsic parameters iM for the input cam-
era model M from the VaCR returned from our estimation network (Sec. 4.2),
i.e., {ρi → ψ̃i}S/2ki=1 . Parameters for the input model M are obtained by mini-
mizing the following objective function for iM:

argmin
iM

S/2k∑
i=1

α
[(
ρi − Pr,M

(
ψ̃i, iM

))2]
, (3)



10 Porfiri Dal Cin et al.

where Pr,M is the input model M’s radial projection function that depends on
the predicted viewing angle ψ̃i for radial distance ρi and parameters iM. α is
the Cauchy loss function α(s) = ln(1 + s), which reduces the impact of outliers.

To address this optimization, we apply the trust region reflective (TRF) al-
gorithm. TRF optimizes an initial guess i0M of the parameters in a constrained
parameter space, which we define based on prior knowledge about the input
camera model M to improve the robustness and computational speed of the
algorithm. The initial estimate i0M of the camera parameters is obtained by the
stochastic evolution method in [31].

5 Experiments

We evaluate our method and compare it to state-of-the-art approaches for the
tasks of: (i) camera calibration (Sec. 5.3), (ii) image rectification (Sec. 5.4), as
the quality of rectified images provides a good qualitative and quantitative indi-
cator of calibration accuracy. The public datasets used to generate our synthetic
datasets for training and testing are presented in Sec 5.1, while we provide imple-
mentation details in Sec 5.2. Finally, we conduct an ablation study (Sec. 5.5) to
demonstrate the effectiveness of select design choices in the proposed framework.

5.1 Datasets

We consider the following publicly available datasets for synthetic data genera-
tion: (i) KITTI-360 [21] provides urban and landscape images from wide-angle
fisheye cameras with AFOV over 190◦. (ii) StreetLearn [26] offers 360◦ urban
panoramas from Google Street View, rich in lines, arcs, and repeated geomet-
ric patterns. (iii) SILDa [2] includes images from a low-end spherical camera
with 200◦ AFOV, capturing diverse urban outdoor conditions over a year. (iv)
WoodScape [37] contributes a rich automotive dataset with images from various
190◦ AFOV fisheye cameras and different aspect ratios.

Images are generated at a resolution of 400x400 pixels, cropping non-square
originals to fit this size. We partition the starting datasets into training and
testing sets before data generation, ensuring no overlap. This process yields
145953 training samples and 14082 testing samples across all datasets.

5.2 Implementation Details

In our implementation, two ConvNexT [22] feature extractors, ϵp and ϵc, are
utilized, with initial pre-trained weights from ImageNet [8] and downsampling
factor k = 8. Specifically, the weights of ϵp and ϵc are frozen for two training
epochs, then unfrozen for end-to-end training. Training data augmentation in-
cludes rotation and flipping. The learning rate is set at 10−4 for 100 epochs,
with a batch size of 40. An early stopping mechanism is applied if there is no
improvement after 10 consecutive epochs, starting after the first 10 epochs. We
employ the AdamW [25] optimizer with a learning rate of 10−4, weight decay of
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KITTI-360 [21] StreetLearn [26] SILDa [2] WoodScape [37]

Method f [px] a k1 Re [px] f [px] a k1 Re [px] f [px] a k1 Re [px] f [px] a k1 Re [px]

López-Antequera [24] 54.601 - - 28.401 52.163 - - 32.044 48.170 - - 28.691 18.210 - - 22.384

DeepCalib [4] 48.082 0.280 - 21.936 37.033 0.219 - 19.692 33.639 0.211 - 14.905 11.041 0.105 - 12.339

Ours w/ UCM 11.790 0.062 - 5.272 14.482 0.070 - 6.950 11.302 0.074 - 5.376 7.069 0.065 - 3.350

Wakai [34] 18.035 - 0.049 7.882 17.501 - 0.051 8.925 14.538 - 0.059 8.060 9.263 - 0.054 5.017

Ours w/ KB3 11.623 - 0.030 5.324 14.217 - 0.037 6.861 11.441 - 0.042 5.361 6.731 - 0.031 3.316

Liao et al. [20] - - - 6.021 - - - 7.956 - - - 8.405 - - - 6.899

Ours w/ EUCM - - - 4.633 - - - 6.861 - - - 5.197 - - - 3.239
Ours w/ DSCM - - - 4.015 - - - 6.676 - - - 5.097 - - - 3.265

Table 1: Calibration Evaluation. Absolute parameter errors and reprojection errors
for the datasets in Sec. 5.1. Absences in the table imply unavailability or inapplicability
of certain parameters for respective methods. For all metrics, lower is better.

5×10−3, and β parameters of (0.9, 0.999). Training is conducted on an NVIDIA
RTX 4090, allowing the network to converge in about 23 hours.

5.3 Evaluation of Camera Calibration

Evaluation Metrics. We evaluate parameter prediction accuracy using Mean
Absolute Error (MAE) and Mean Reprojection Error (Re), with a focus on Re
for camera models with ambiguities like EUCM and DSCM. To compute Re, we
back-project 160,000 points per test image onto the unit sphere at the camera’s
origin using the model’s back-projection function with ground truth parameters.
Subsequently, we reproject these points from the sphere onto the image using the
predicted parameters. Re is then assessed as the average distance between the
original and reprojected image points (refer to SM 10 for a detailed definition of
error metrics.)

Comparing Methods. We compare our method with state-of-the-art learning-
based calibration techniques: DeepCalib [4], López-Antequera [24], and Wakai
[34], each setting the standard for different camera models. DeepCalib is based on
UCM [10], while López-Antequera and Wakai use 4th and 3rd-order polynomial
projection functions, respectively, with Wakai’s model known as KB3. We also
include Liao et al.’s model-free approach [20], which, despite being parameter-
free, allows for Re computation from the predicted distortion distribution map
(DDM). As López-Antequera, Wakai, and Liao et al. are not publicly available,
we replicated their implementation and trained them on our datasets.

Quantitative Results. Tab. 1 shows our method outperforming competitors in
camera calibration. With the UCM model, our method surpasses DeepCalib [4] in
Re and MAE across all datasets. With KB3, we are better than Wakai [34] in all
metrics, though with a smaller margin than against DeepCalib. Lopez [24] per-
forms the weakest, particularly with large AFOV cameras, as confirmed by [34].
Liao et al.’s [20] model-free approach, which doesn’t provide direct parameter
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KITTI-360 [21] StreetLearn [26] SILDa [2] WoodScape [37]

Methods SSIM ↑ PSNR ↑ FID ↓ SSIM ↑ PSNR ↑ FID ↓ SSIM ↑ PSNR ↑ FID ↓ SSIM ↑ PSNR ↑ FID ↓

Auto-DE [5] 0.179 3.48 285.1 0.146 4.21 210.1 0.140 4.01 239.0 0.137 3.20 346.1
Auto-DC [1] 0.186 3.72 260.4 0.136 4.78 195.3 0.154 4.22 218.2 0.150 3.54 306.7

DeepCalib [4] 0.517 14.39 97.0 0.452 16.02 84.0 0.596 18.84 79.2 0.501 17.41 86.9
López-Antequera [24] 0.487 13.92 110.4 0.439 15.18 97.3 0.391 12.91 137.0 0.429 15.37 110.4
Blind [16] 0.534 14.76 94.5 0.490 17.13 89.4 0.561 17.48 83.0 0.490 17.38 87.3
Liao et al. [20] 0.520 14.60 96.1 0.448 16.09 91.7 0.559 17.51 82.8 0.502 17.28 87.0
Wakai et al. [34] 0.521 14.89 95.0 0.473 16.21 90.4 0.552 17.21 84.4 0.508 17.35 86.8
Jin et al. [14] 0.501 14.11 99.6 0.432 15.20 95.2 0.511 16.28 93.4 0.411 15.03 110.4

DR-GAN [19] 0.491 14.02 102.4 0.429 14.96 100.6 0.501 15.98 98.6 0.403 14.20 134.2
PCN [36] 0.504 14.39 96.4 0.435 15.77 91.2 0.533 17.10 89.4 0.429 16.22 93.3

Ours w/ UCM 0.582 16.35 84.6 0.518 17.42 86.2 0.601 18.69 80.1 0.524 17.89 83.5
Ours w/ KB3 0.581 16.28 85.4 0.516 17.35 88.6 0.602 18.75 79.6 0.518 17.54 84.0
Ours w/ EUCM 0.610 17.53 78.4 0.520 17.60 81.8 0.609 19.01 76.5 0.564 18.95 80.5
Ours w/ DSCM 0.583 16.37 83.2 0.523 17.77 80.4 0.612 19.06 73.7 0.544 18.54 81.2

Table 2: Image Rectification Evaluation. Our method versus state-of-the-art
across datasets in Sec. 5.1, with "↑" indicating better when higher, "↓" when lower.

estimates, shows inferior Re compared to ours. For the ambiguous EUCM and
DSCM, we omit MAE due to the high errors when calibrations are equivalent
yet defined by different sets of parameters. Using DSCM or EUCM models, our
method achieves the best Re across all datasets. These results prove that our
method can effectively adapt to several camera models, even those ambiguous
but with high representational power.

5.4 Evaluation of Image Rectification

Evaluation Metrics. Peak Signal to Noise Ratio (PSNR) and Structural Simi-
larity (SSIM) evaluate image quality, with PSNR focusing on detail accuracy and
SSIM on structural integrity. Additionally, Fréchet Inception Distance (FID),
leveraging Wasserstein-2 distance, assesses distributional discrepancies. We use
these metrics for objective assessment of our experimental results.

Comparing Methods. Our method is compared with state-of-the-art geomet-
ric and learning-based models. In geometric approaches, we include Auto-DE [5]
and Auto-DC [1]. For learning-based, we consider both regression and reconstruc-
tion methods: DeepCalib, López-Antequera, Liao et al., Wakai, Jin et al. [14]
plus Blind [16], designed specifically for image rectification. For reconstruction
approaches, focusing on rectification without parameter estimation, we evaluate
DR-GAN [19] and PCN [36], the current top performers.

Quantitative Comparison Results. Tab. 2 demonstrates the superior im-
age rectification performance of our method over state-of-the-art geometric and
learning-based approaches. Notably, using the EUCM and DSCM models, we
achieve the highest SSIM and PSNR and lowest FID, demonstrating improve-
ments in image quality and structural integrity. Blind [16] encounters issues
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Fig. 5: Image Rectification Qualitative Results. Comparisons to state-of-the-art
methods illustrate the effectiveness of our technique across different datasets.

with strong image distortions, while DeepCalib [4] and Wakai [34] improve cen-
tral regions, but exhibit issues near the boundaries. López-Antequera [24] faces
challenges with large AFOV, a limitation known from [34]. DR-GAN [19] yields
blurred images with artefacts, while Liao et al. [20] and PCN [36] present de-
graded quality in localized areas. Jin et al. [14] yields lower scores than all meth-
ods except [24] due to using only the FOV parameter for modeling distortions.
Our approach excels particularly when using EUCM and DSCM, demonstrating
superior overall results. The model-free Liao et al. [20] is our closest competitor,
but our approach surpasses it in all metrics, confirming our claims of accuracy
and adaptability to various camera models.

5.5 Ablation Study & Discussion

We conduct ablations to verify the effectiveness of core settings and components.

Qualitative Comparison is performed against competitors [4, 16, 36] on the
synthetic test set. In Fig. 5 it can be appreciated that our method’s rectified
images exhibit less distortion.

Impact of Polar vs. Cartesian. Tab. 3 illustrates the impact of varying the
number of feature channels extracted from the polar (C) and Cartesian image
(D) respectively, confirming that the proposed CNN can effectively exploit the
polar image layout to produce accurate VaCR estimates. By increasing D with
constant C, we observe diminishing improvements in image rectification accuracy
after the D = 96 threshold. Conversely, an increase in C with constant D usu-
ally yields non-negligible improvements in accuracy. We set (C,D) = (384, 96)
achieving an optimal trade-off between accuracy and efficiency. Notably, elim-
inating polar features (C = 0) and relying on Cartesian features only severely
impacts performance, leading to worse results than most methods in Tab. 2.
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C/D 0 96 192 384
0 - 0.289/10.61 0.294/10.78 0.299/10.84
96 0.508/14.05 0.512/14.21 0.515/14.29 0.517/14.33
192 0.569/15.97 0.571/16.00 0.572/16.03 0.572/16.04
384 0.594/16.74 0.610/17.53 0.611/17.55 0.611/17.56

Table 3: Comparison of PSNR and SSIM
in KITTI-360 [21] for image feature channels
in polar (C) and Cartesian (D) coordinates.
Each cell represents the metrics formatted as
PSNR/SSIM. The highlighted cell represents
the configuration used in our experiments.
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Fig. 6: Running FPS comparison be-
tween our framework and Wakai [34],
PCN [36], Liao et al. [20] on processing
different resolution images (x-axis).

Running Times. We benchmark our method against Wakai [34], PCN [36],
and Liao et al. [20] across different image resolutions. Results in Fig. 6 show our
method achieves higher FPS (frames per second) than both PCN and Liao et
al., supporting our claims of efficiency and accuracy. The polar transformation
detailed in Sec. 4.2 helps reduce the parameter count by enabling width average
pooling, which compacts feature volumes and reduces parameters in subsequent
network layers. Our network uses 6.6M parameters, significantly fewer than the
39M parameters of our model-free competitor, Liao et al. [20]. Although Wakai,
which regresses camera parameters directly without a robust fitting procedure,
is up to 13% faster, it is less accurate, as demonstrated in Tab. 1 and Tab. 2.

Extrinsic parameter estimation. While our focus is intrinsic parameter esti-
mation, our method can extend to extrinsic estimates, like camera tilt and roll,
by including additional regressors, as proposed in [34]. In SM 9, we demonstrate
our approach’s comparable state-of-the-art performance in these extensions.

6 Conclusion

Driven by the need for accurate and efficient calibration of wide-angle radially
symmetric cameras, we introduce a novel two-step learning-based framework
overcoming many of the limitations of existing methodologies. Our approach
excels in calibrating radially symmetric cameras and rectifying images, repre-
senting a significant leap forward in this domain.

Acknowledgements: This paper is supported by PNRR-PE-AI FAIR project funded
by the NextGeneration EU program and by GEOPRIDE ID: 2022245ZYB, CUP:
D53D23008370001 (PRIN 2022 M4.C2.1.1 Investment).



Revisiting Calibration of Wide-Angle Radially Symmetric Cameras 15

References

1. Alemán-Flores, M., Alvarez, L., Gomez, L., Santana-Cedrés, D.: Automatic lens
distortion correction using one-parameter division models. Image Processing On
Line 4, 327–343 (2014) 1, 4, 12

2. Balntas, V.: SILDa: A Multi-Task Dataset for Evaluating Visual Localization.
Medium (Apr 2019), https://medium.com/scape- technologies/silda- a-
multi-task-dataset-for-evaluating-visual-localization-7fc6c2c56c74 10,
11, 12

3. Benligiray, B., Topal, C.: Blind rectification of radial distortion by line straightness.
In: 2016 24th European Signal Processing Conference (EUSIPCO). pp. 938–942.
IEEE (2016) 1, 4

4. Bogdan, O., Eckstein, V., Rameau, F., Bazin, J.C.: Deepcalib: A deep learning
approach for automatic intrinsic calibration of wide field-of-view cameras. In: Pro-
ceedings of the 15th ACM SIGGRAPH European Conference on Visual Media
Production. pp. 1–10 (2018) 1, 2, 4, 9, 11, 12, 13

5. Bukhari, F., Dailey, M.N.: Automatic radial distortion estimation from a single
image. Journal of mathematical imaging and vision 45, 31–45 (2013) 1, 4, 12

6. Chao, C.H., Hsu, P.L., Lee, H.Y., Wang, Y.C.F.: Self-supervised deep learning for
fisheye image rectification. In: ICASSP 2020-2020 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). pp. 2248–2252. IEEE (2020)
5

7. Chen, Y., Schmid, C., Sminchisescu, C.: Self-supervised learning with geometric
constraints in monocular video: Connecting flow, depth, and camera. In: Proceed-
ings of the IEEE/CVF International Conference on Computer Vision. pp. 7063–
7072 (2019) 4

8. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-
scale hierarchical image database. In: 2009 IEEE conference on computer vision
and pattern recognition. pp. 248–255. Ieee (2009) 10

9. Feng, H., Wang, W., Deng, J., Zhou, W., Li, L., Li, H.: Simfir: A simple frame-
work for fisheye image rectification with self-supervised representation learning.
In: Proceedings of the IEEE/CVF International Conference on Computer Vision.
pp. 12418–12427 (2023) 5

10. Geyer, C., Daniilidis, K.: A unifying theory for central panoramic systems and
practical implications. In: Computer Vision—ECCV 2000: 6th European Confer-
ence on Computer Vision Dublin, Ireland, June 26–July 1, 2000 Proceedings, Part
II 6. pp. 445–461. Springer (2000) 11

11. Gonzalez-Aguilera, D., Gomez-Lahoz, J., Rodríguez-Gonzálvez, P.: An automatic
approach for radial lens distortion correction from a single image. IEEE Sensors
journal 11(4), 956–965 (2010) 1, 4

12. Gordon, A., Li, H., Jonschkowski, R., Angelova, A.: Depth from videos in the wild:
Unsupervised monocular depth learning from unknown cameras. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision. pp. 8977–8986
(2019) 4

13. Hosono, M., Simo-Serra, E., Sonoda, T.: Self-supervised deep fisheye image rectifi-
cation approach using coordinate relations. In: 2021 17th International Conference
on Machine Vision and Applications (MVA). pp. 1–5. IEEE (2021) 1, 4

14. Jin, L., Zhang, J., Hold-Geoffroy, Y., Wang, O., Blackburn-Matzen, K., Sticha, M.,
Fouhey, D.F.: Perspective fields for single image camera calibration. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
17307–17316 (2023) 1, 4, 12, 13

https://medium.com/scape-technologies/silda-a-multi-task-dataset-for-evaluating-visual-localization-7fc6c2c56c74
https://medium.com/scape-technologies/silda-a-multi-task-dataset-for-evaluating-visual-localization-7fc6c2c56c74


16 Porfiri Dal Cin et al.

15. Khomutenko, B., Garcia, G., Martinet, P.: An enhanced unified camera model.
IEEE Robotics and Automation Letters 1(1), 137–144 (2015) 2, 4, 9

16. Li, X., Zhang, B., Sander, P.V., Liao, J.: Blind geometric distortion correction on
images through deep learning. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 4855–4864 (2019) 12, 13

17. Liao, K., Lin, C., Liao, L., Zhao, Y., Lin, W.: Multi-level curriculum for train-
ing a distortion-aware barrel distortion rectification model. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. pp. 4389–4398 (2021)
1, 4

18. Liao, K., Lin, C., Wei, Y., Li, F., Yang, S., Zhao, Y.: Towards complete scene
and regular shape for distortion rectification by curve-aware extrapolation. In:
Proceedings of the IEEE/CVF International Conference on Computer Vision. pp.
14569–14578 (2021) 1, 4

19. Liao, K., Lin, C., Zhao, Y., Gabbouj, M.: Dr-gan: Automatic radial distortion
rectification using conditional gan in real-time. IEEE Transactions on Circuits and
Systems for Video Technology 30(3), 725–733 (2019) 5, 12, 13

20. Liao, K., Lin, C., Zhao, Y., Xu, M.: Model-free distortion rectification framework
bridged by distortion distribution map. IEEE Transactions on Image Processing
29, 3707–3718 (2020) 1, 4, 11, 12, 13, 14

21. Liao, Y., Xie, J., Geiger, A.: Kitti-360: A novel dataset and benchmarks for urban
scene understanding in 2d and 3d. IEEE Transactions on Pattern Analysis and
Machine Intelligence 45(3), 3292–3310 (2022) 10, 11, 12, 14

22. Liu, Z., Mao, H., Wu, C.Y., Feichtenhofer, C., Darrell, T., Xie, S.: A convnet for
the 2020s. In: Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. pp. 11976–11986 (2022) 7, 10

23. Lochman, Y., Dobosevych, O., Hryniv, R., Pritts, J.: Minimal solvers for single-
view lens-distorted camera auto-calibration. In: Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision. pp. 2887–2896 (2021) 1,
4

24. Lopez, M., Mari, R., Gargallo, P., Kuang, Y., Gonzalez-Jimenez, J., Haro, G.:
Deep single image camera calibration with radial distortion. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 11817–
11825 (2019) 1, 2, 4, 9, 11, 12, 13

25. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101 (2017) 10

26. Mirowski, P., Banki-Horvath, A., Anderson, K., Teplyashin, D., Hermann, K.M.,
Malinowski, M., Grimes, M.K., Simonyan, K., Kavukcuoglu, K., Zisserman, A.,
et al.: The streetlearn environment and dataset. arXiv preprint arXiv:1903.01292
(2019) 10, 11, 12

27. Pritts, J., Kukelova, Z., Larsson, V., Chum, O.: Radially-distorted conjugate trans-
lations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. pp. 1993–2001 (2018) 1, 4

28. Ren, L., Song, Y., Lu, J., Zhou, J.: Spatial geometric reasoning for room layout
estimation via deep reinforcement learning. In: Computer Vision–ECCV 2020: 16th
European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXVII
16. pp. 550–565. Springer (2020) 4

29. Rong, J., Huang, S., Shang, Z., Ying, X.: Radial lens distortion correction us-
ing convolutional neural networks trained with synthesized images. In: Computer
Vision–ACCV 2016: 13th Asian Conference on Computer Vision, Taipei, Taiwan,
November 20-24, 2016, Revised Selected Papers, Part III 13. pp. 35–49. Springer
(2017) 1, 4



Revisiting Calibration of Wide-Angle Radially Symmetric Cameras 17

30. Santana-Cedrés, D., Gomez, L., Alemán-Flores, M., Salgado, A., Esclarín, J., Ma-
zorra, L., Alvarez, L.: An iterative optimization algorithm for lens distortion cor-
rection using two-parameter models. Image Processing On Line 6, 326–364 (2016)
1, 4

31. Storn, R., Price, K.: Differential evolution–a simple and efficient heuristic for global
optimization over continuous spaces. Journal of global optimization 11, 341–359
(1997) 10

32. Tsai, R.: A versatile camera calibration technique for high-accuracy 3d machine vi-
sion metrology using off-the-shelf tv cameras and lenses. IEEE Journal on Robotics
and Automation 3(4), 323–344 (1987) 1, 4

33. Usenko, V., Demmel, N., Cremers, D.: The double sphere camera model. In: 2018
International Conference on 3D Vision (3DV). pp. 552–560. IEEE (2018) 2, 4, 9

34. Wakai, N., Sato, S., Ishii, Y., Yamashita, T.: Rethinking generic camera models
for deep single image camera calibration to recover rotation and fisheye distortion.
In: European Conference on Computer Vision. pp. 679–698. Springer (2022) 1, 2,
4, 9, 11, 12, 13, 14

35. Xue, Z., Xue, N., Xia, G.S., Shen, W.: Learning to calibrate straight lines for fisheye
image rectification. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 1643–1651 (2019) 1, 4

36. Yang, S., Lin, C., Liao, K., Zhang, C., Zhao, Y.: Progressively complementary
network for fisheye image rectification using appearance flow. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 6348–
6357 (2021) 5, 12, 13, 14

37. Yogamani, S., Hughes, C., Horgan, J., Sistu, G., Varley, P., O’Dea, D., Uricár,
M., Milz, S., Simon, M., Amende, K., et al.: Woodscape: A multi-task, multi-
camera fisheye dataset for autonomous driving. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision. pp. 9308–9318 (2019) 10, 11, 12

38. Zhang, M., Yao, J., Xia, M., Li, K., Zhang, Y., Liu, Y.: Line-based multi-label
energy optimization for fisheye image rectification and calibration. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 4137–
4145 (2015) 1, 4

39. Zhang, Z.: A flexible new technique for camera calibration. IEEE Transactions on
pattern analysis and machine intelligence 22(11), 1330–1334 (2000) 1, 4

40. Zhao, K., Lin, C., Liao, K., Yang, S., Zhao, Y.: Revisiting radial distortion rectifi-
cation in polar-coordinates: A new and efficient learning perspective. IEEE Trans-
actions on Circuits and Systems for Video Technology 32(6), 3552–3560 (2021)
5


	Revisiting Calibration of Wide-AngleRadially Symmetric Cameras

