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1 Ablation studies on other datastes

1.1 Results on Foggy Cityscapes

In Tab. 1, with careful observation of Foggy cityscapes, it becomes evident that
every module introduced in both phases enhances the model’s performance.
Among these methods, the I2I method and IAoU loss exhibit substantial im-
provements, achieving 2.0% mAP and 2.8% mAP, respectively. In addition, the
proposed PLF, compared to the original mean teacher model, demonstrates a
growth of 3.4 % mAP. This further elucidates the efficacy of the various schemes
we have proposed.

Table 1: The ablation results of Cityscapes→Foggy cityscapes. ✓:with, x:without.

GFA I2I IAoU MT PLF mAP

x x x x x 46.5
✓ x x x x 48.1
✓ ✓ x x x 50.1
✓ ✓ ✓ x x 52.9
✓ ✓ ✓ ✓ x 55.0
✓ ✓ ✓ ✓ ✓ 58.4

1.2 Results on Rain Cityscapes

The results on Rain Cityscapes are depicted in Tab. 2. We can see that, among
these methods, the proposed I2I method achieves an enhancement of 3.5 % mAP
and IAoU loss exhibits improvements of 2.9% mAP. What’s more, the proposed
PLF also demonstrates a growth of 3.4% mAP.

2 Results on BDD100K-night

We can see in Tab. 3, on BDD100K-night, Ours-YOLOv5L improves 4.1% mAP,
5.5% mAP, 5.9% mAP and 4.3% mAP over SSDA-YOLOv5L, R-YOLOv5L,
Confmix, and CMT, respectively. Ours-YOLOv7 also exceeds R-YOLOv7 and
SSDA-YOLOv7 by more than 4.2 % mAP and 2.9 % mAP, respectively. In
addition, in Tab. 4, the IAoU loss exceeds the original one by 1.5 % mAP,
highlighting the effectiveness of our proposed loss function. Moreover, we can
observe that PLF outperforms the classical mean-teacher model by 2.2 % mAP,
indicating the method is more suitable for cars.



2 R. Zhao et al

Table 2: The ablation results of Cityscapes→Rain cityscapes. ✓:with, x:without.

GFA I2I IAoU MT PLF mAP

x x x x x 43.8
✓ x x x x 46.1
✓ ✓ x x x 49.6
✓ ✓ ✓ x x 52.5
✓ ✓ ✓ ✓ x 54.1
✓ ✓ ✓ ✓ ✓ 57.5

Table 3: Quantitative comparison results on the BDD100K-night.

Method Detector car mAP

Baseline YOLOv5 84.9 81.9
Baseline YOLOv7 88.6 84.6

TDD [3] FRCNN 76.2 79.2
CMT [1] FRCNN 82.3 85.3
MIGADA [14] FCOS 76.9 76.9
SIGMA++ [4] FCOS 82.8 82.8
ConfMix [5] YOLOv5L 83.7 83.7
R-YOLO [8] YOLOv5L 84.1 84.1
SSDA-YOLO [13] YOLOv5L 85.5 85.5
Ours YOLOv5L 89.6 89.6(+7.7)
R-YOLO [8] YOLOv7 87.1 87.1
SSDA-YOLO [13] YOLOv7 88.4 88.4
Ours YOLOv7 91.3 91.3(+6.7)
Oracle YOLOv5L 91.1 91.1
Oracle YOLOv7 93.2 93.2

3 Generation phase

3.1 Image to Image translation: Clear to adverse

We compare several GAN-based image-to-image translation approaches, includ-
ing CUT and CycleGAN [6, 15] in the Fig. 1, and observe that the method
employed in this paper effectively reduces noise in the clear-to-adverse process
while incorporating the feature of the target domain.

3.2 Image to Image translation: Adverse to clear

Instead of using the rendering technique during the adverse-to-clear process,
we employ the restoration-enabled work to generate intermediate images. The
Fig. 2 below shows that the rendering technique introduces a lot of noise, but
the restoration work reduces the noise while generating many source domain
features.

3.3 Bounding box regression for feature alignment

The target domain is unlabeled, and the bounding boxes of the target domain
need to be generated during the process of alignment. If the alignment of the
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Table 4: The ablation results of BDD100K daytime→night. ✓:with, x:without.

GFA I2I IAoU MT PLF mAP

x x x x x 81.9
✓ x x x x 83.4
✓ ✓ x x x 84.7
✓ ✓ ✓ x x 86.2
✓ ✓ ✓ ✓ x 87.4
✓ ✓ ✓ ✓ ✓ 89.6

Clear-to-hazy Clear-to-rainy

CUT

CycleGAN

Rendering

(Ours)

Fig. 1: Visualization of GAN-based approaches and rendering technology. The first
row represents the CUT, the second row represents CycleGAN and our method is the
last row. The first two columns display test results from clear-to-hazy, and the last two
columns show results from clear-to-rainy.

source domain with the inaccurate regression bounding boxes of the target do-
main is done, it is very likely to result in negative transfer, which adversely
affects the effectiveness of feature alignment. As shown in the Fig. 3, an in-
accurate bounding box will result in the loss of important feature information
i.e., brightly colored areas. On the other hand, an accurate bounding box will
encompass more feature information.

3.4 IAoU loss: Sensitivity experiments on β values

The β values exhibit insensitivity across various datasets. To assess the sensi-
tivity of the IAoU loss introduced in this paper, We set different values of the
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Fig. 2: Visualization of rendering technology and restoration-enabled work. The first
row represents the rendering technology, while the second row represents restoration-
enabled work. The first two columns display test results on RTTS, the middle two
columns show results on Rain Cityscapes, and the last two columns show results on
BDD100K-night.

hyper-parameter β. The specific results are shown in Tab. 5. We can see that,
the influence of β on model performance shows minimal variation, optimal per-
formance is achieved in all four datasets when β is set to 0.4. This indicates that
the effectiveness of β is independent of the dataset and does not require manual
adjustment.

Table 5: Quantitative comparison results of the different β values. The evaluation
metric is mAP.

β Foggy Rainy RTTS BDD100K
0.4 52.9 52.5 51.8 86.2
0.5 52.5 51.9 51.7 86.0
0.6 52.3 51.6 51.5 85.7
0.7 52.1 51.4 51.2 85.8
0.8 52.0 51.4 51.1 85.5

3.5 Effectiveness of the IAoU loss function

Our proposed IAoU loss achieves optimal performance.To assess the effectiveness
of the IAoU loss introduced in this paper, we compare it with several common
regression losses on RTTS. The specific results are shown in Tab. 6. We can see
that, our proposed IAoU loss has an advantage of a 0.7% improvement in mAP
over IoC. This demonstrates that our proposed loss function is more effective in
facilitating feature alignment, thereby enhancing detection performance.



Revisiting Domain-Adaptive Object Detection 5

car 0.53

Inaccurate 

regression box

car 0.53

car 0.62 car 0.62

Accurate regression 

box

Fig. 3: The heat map of different regression boxes. The first row represents the inac-
curate bounding box regression, while the second row indicates the accurate bounding
box.

Table 6: The comparison of different regression loss.

loss mAP
Ciou [12] 49.7
Eiou [11] 50.1
Siou [2] 50.4

MPDIoU [7] 50.6
IoC [10] 51.1
IAoU 51.8

3.6 Details of IoC loss and MPDIoU loss

The IoC [10] is formulated as below:

IoC =
I − (E − U)

E
, (1)

where E is the minimum enclosing convex of the predicted box and the ground
truth (GT), I and U is the intersection and union of the two boxes, respectively.
The total loss can be the Equation 20:

LIoC = 1− IoC +
d2

c2
+ ρ× σ. (2)
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Fig. 4: The situation of prediction boxes and GT.

The penalty terms σ and ρ are as below:

σ =
(w∗ − ŵ)

2

w2
+

(
h∗ − ĥ

)2

h2
,

ρ =
σ

(1− IoC) + σ
,

(3)

Where x̂ and x∗ represent the prediction bounding box and the ground truth, and
w and h correspond to the width and height of the minimum enclosing convex.
Compared to our proposed IAoU loss, the main term of IoC loss lacks balancing
coefficients and degrades to IOU when the two boxes are merely touching, as
shown in Fig. 4. In addition, its numerator is the minimum enclosing convex
of the two boxes, which is not friendly to small targets compared to the union
and slows down the convergence speed. Moreover, the penalty term for IoC loss
σ will fail to converge when the two boxes are in a surrounding situation. The
equation for MPDIoU [7] is shown below:

MPDIoU = IoU − d21
h2 + w2

− d22
h2 + w2

, (4)

LMPDIoU = 1−MPDIoU,

d21 = (x∗
1 − x̂1)

2
+ (y∗1 − ŷ1)

2
,

d22 = (x∗
2 − x̂2)

2
+ (y∗2 − ŷ2)

2
,

(5)

where (x1, y1) and (x2, y2) denote the coordinates of their respective top-right
and bottom-left corners, and w and h correspond to the width and height of this
image. MPDIoU relies solely on the penalty term to generate the gradient when
the two boxes do not intersect, resulting in slow convergence. Additionally, the
penalty term denominator in the equation is based on the width and height of
the images, which is not sensitive to small target regression and can also slow
down the model’s convergence.
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4 Composition phase

4.1 PLF: Sensitivity experiments on θ1 , θ2, θ3, and θ1
3 values

The θ2 value impacts the model performance, but the optimal mAP is achieved
at 0.45, which does not need to be manually adjusted due to changes in the
dataset. We set the low threshold θ1 at 0.1 and the high thresholds θ2 at 0.45,
0.55, 0.65, 0.75, and 0.85 for sensitivity experiments, respectively. As shown in
Tab. 7, the four datasets are not very sensitive to the value of θ2, and all of
them achieve the optimal value when it is 0.45. The way we manually set it is
more relevant than the dynamic threshold selecting methods in the literature [9].
Further illustrating the effectiveness of the proposed high and low thresholds.
The Tab. 8 and Tab. 9 demonstrate that the results are not significantly
impacted by the values of θ3 and θ13, the highest mAP is attained when θ3 is 0.5
and θ13 is 0.2.

Table 7: Quantitative comparison results of the θ1 and θ2 values. The evaluation
metric is mAP. Dynamic indicates the dynamic threshold strategy in [9].

θ1 = 0.1 θ2 Foggy Rainy RTTS BDD100K
0.45 58.4 57.5 58.9 89.6
0.55 58.1 57.2 58.5 89.2
0.65 57.9 56.7 58.3 89.1
0.75 57.5 56.5 58.2 88.9
0.85 57.1 56.2 57.9 88.5

Dynamic 57.6 56.9 58.1 89.1

Table 8: Quantitative comparison results of the θ3values. The evaluation metric is
mAP.

θ13 = 0.2 θ3 Foggy Rainy RTTS
0.40 57.7 56.6 57.8
0.50 58.4 57.5 58.9
0.60 57.4 57.4 56.6

4.2 PLF: When the student model outperforms the teacher model

In this paper, we consider the prediction from both the teacher and student
model, we only select predictions where the teacher model outperforms the stu-
dent model as candidate pseudo-labels. When the student model exceeds the
teacher model, we simply discard it instead of adopting the student model’s pre-
dictions as valid pseudo-labels. We can see in Tab. 10, that our algorithm will
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Table 9: Quantitative comparison results of the θ13values. The evaluation metric is
mAP.

θ3 = 0.5 θ13 Foggy Rainy RTTS
0.10 57.7 56.2 58.0
0.20 58.4 57.5 58.9
0.30 58.1 56.6 57.3

enhance the model’s performance by reducing some misdirection compared to
solely considering the teacher model. And the teacher-student decision is slightly
inferior to our methods. We posit that this phenomenon could stem from the
ease with which misinformation can be conveyed once the student model attains
an advanced level, potentially leading to self-misguidance.

Table 10: Different prediction selection from the teacher-student model. The eval-
uation metric is mAP. Only the teacher indicates to consider the prediction from
the teacher model, teacher-student awareness (ours) represents our strategy, and the
teacher-student decision means selecting the optimal output from the teacher-student
model.

Prediction Selection Foggy Rainy RTTS BDD100K
Only teacher 57.5 56.2 57.6 88.1
teacher-student aware(ours) 58.4 57.5 58.9 89.6
teacher-student decision 57.7 57.1 58.1 88.9

4.3 Visualization of pseudo labels

In Fig. 5, the baseline pseudo-labels encounter difficulties with noise and small
targets. In phase one, our restoration-enabled method reduces noise in the trans-
lation to narrow the image-level domain shift. Feature alignment based on the
proposed IAoU loss reduces the domain gap from the instance level. In phase
two, we use image restoration and super-resolution as data augmentation to im-
prove the texture information of noise targets and details of small targets in the
target domain. The two phases above significantly reduce the miss detection
of noise and small targets in the candidate pseudo-labels. Alternatively, our fil-
tering strategy incorporates regression thresholds to eliminate false detection
and leverages the student-aware method to prevent misguidance from the
teacher.

4.4 Analysis of Complexity

As shown in Tab. 11, our model shows a marginal increase in computation
and training time compared to the baseline. This demonstrates that our model



Revisiting Domain-Adaptive Object Detection 9

Table 11: Comparison of model complexity.

Phase Model Gflops Training Time/h Fps
Generation Baseline 108.3 0.915 95.23

Ours 111.4 1.674 93.45

Phase Model Gflops Training Time/h Fps
Composition Baseline 110.9 1.980 84.03

Ours 113.4 2.639 76.92

Original After FilteringBaseline Phase One: Generation Phase Two before Filtering

Fig. 5: Visualization of pseudo labels during different phases. Red boxes: missed tar-
gets, yellow: inaccurate regression boxes, orange: incorrect detection from the teacher
model.

achieves significant performance improvements with very limited extra complex-
ity.

5 Visualization of detection results

As depicted in Fig. 6 and Fig. 7, we compare our model with YOLOv5L,
SSDA-YOLOv5L, and R-YOLOv5L by visualizing the detection results. We can
see that the other two methods have relatively significant missing ones and some
false detections, but our model can detect small targets at long distances without
any false predictions, significantly enhancing the model’s detection performance
in adverse weather conditions.
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Fig. 6: Visualization of detection results. The first row represents the original
YOLOv5L model, while the second row represents Ours-YOLOv5L. The first two
columns display test results on RTTS, the middle two columns show results on Rain
Cityscapes, and the last two columns show results on Foggy Cityscapes, the blue boxes
indicate missing targets, which demonstrates that our model greatly improves detec-
tion accuracy.

Ours

YOLOv5L

R-

YOLOv5L

SSDA-

YOLOv5L

Fig. 7: Visualization of detection results by different models. The first row represents
the SSDA-YOLOv5L model, while the second row represents the R-YOLOv5L model
and our model is the last row. The first two columns display test results on Foggy
cityscapes, the second two columns display test results on RTTS, the third two columns
show results on Rain Cityscapes, and the last two columns show results on BDD100K-
night. The blue boxes indicate missing targets and the black boxes are wrong detection,
which demonstrates that our model greatly improves detection accuracy.
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