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Abstract. In order to improve the quality of synthesized videos, cur-
rently, one predominant method involves retraining an expert diffusion
model and then implementing a noising-denoising process for refinement.
Despite the significant training costs, maintaining consistency of content
between the original and enhanced videos remains a major challenge.
To tackle this challenge, we propose a novel formulation that considers
both visual quality and consistency of content. Consistency of content is
ensured by a proposed loss function that maintains the structure of the
input, while visual quality is improved by utilizing the denoising process
of pretrained diffusion models. To address the formulated optimization
problem, we have developed a plug-and-play noise optimization strategy,
referred to as Noise Calibration. By refining the initial random noise
through a few iterations, the content of original video can be largely
preserved, and the enhancement effect demonstrates a notable improve-
ment. Extensive experiments have demonstrated the effectiveness of the
proposed method.
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1 Introduction

Recently, diffusion models have emerged as a distinct type of generative mod-
els, in contrast to traditional Generative Adversarial Networks (GANs) [17] and
Variational Autoencoders (VAEs) [29]. These models [22,54] have demonstrated
superior performance across a wide range of applications. In particular, visual
synthesis has significantly benefited from the development of diffusion models.
A popular subset of methods [2, 11, 19, 40, 42, 54, 74, 76, 79, 90, 96] leverages pre-
trained Text-to-Image (T2I) models and incorporates additional temporal blocks
to extend video generation capabilities. However, obtaining results with both ac-
curate semantics and high visual quality through a single inference often proves
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Reference SDEdit

A camel walking on the snow field, Miyazaki Hayao anime style.

Impressionist style, a yellow rubber duck floating on the wave on the sunset.

Fig. 1: Examples demonstrating video
enhancement based on SDEdit

Reference Video

Initial Estimation

Final Result

Noise1 Noise2

Fig. 2: Decomposition of the video en-
hancement process based on SDEdit

challenging. Typically, a low-quality video with diverse and semantically ac-
curate motions is generated from the base model, and then an expert model is
retrained to implement a noising-denoising process, as pioneered by SDEdit [41],
to refine the generated video. The expert model is further trained using high-
quality videos with earlier noise scales, aiming to amplify the model’s attention
to spatio-temporal details. This approach is anticipated to further improve the
spatio-temporal continuity and clarity of the video, effectively addressing arti-
facts in both time and space dimensions.

However, despite the substantial resources invested in retraining, the well-
established structures in the original video are often disrupted during the process
of quality enhancement. Consequently, we believe that solely utilizing pre-trained
Text-to-Video (T2V) diffusion models for content-preserving video enhancement
is a worthwhile research direction. This T2V model does not need to generate
videos with accurate semantic motions; however, it is required to produce videos
with high visual quality. By only using SDEdit for video enhancement based on
pre-trained T2V models, it is common for the spatial structure of the original
video to be disrupted when the initial denoising step is set sufficiently large to
achieve satisfactory quality enhancement, as shown in Fig. 1. For instance, in
the "camel" example, while the quality is enhanced, brown camel hair appears
to be flying across the sky. In the "rubber duck" example, the duck transforms
from a static object into a dynamic creature, and the sunlight is transformed
into a swaying tail.

To address this challenge, we propose a novel formulation for video enhance-
ment that ensures both quality improvement and consistency with the content
of original video. Specifically, noise is first introduced to disrupt a given video,
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which is then gradually eliminated based on a pre-trained model. By leveraging
the ability of the pre-trained model to generate high-quality videos, we enhance
the quality of the original video. To ensure consistency, we propose an additional
loss function that constrains the content loss between the enhancement result
and the original video. To solve this optimization problem, we provide a simple
but effective solution, Noise Calibration. By refining the initial random noise
only 1-3 times before adding it to the original video, we can largely preserve the
content of original video and significantly improve the enhancement effect.

A significant amount of theoretical analysis and experiments demonstrate
that our method can effectively preserve the content of videos before and af-
ter enhancement when using pre-trained T2V models for video enhancement.
Furthermore, this approach can conveniently serve as a plug-in to enhance the
performance of state-of-the-art visual refinement models. We summarize our
contributions as follows:

– We introduce a novel formulation for video enhancement based on diffusion
models, which focuses not only on improving quality but also on maintaining
consistency of content with the original video.

– We propose a concise yet effective content-preserving strategy for video en-
hancement, called Noise Calibration, which only requires calibrating the
initial random noise, without any additional fine-tuning or operations.

– Extensive quantitative and qualitative experiments demonstrate that Noise
Calibration can be effectively applied to video enhancement and various
tasks based on SDEdit, achieving more controllable image/video generation.

2 Related Work

The aim of this study is to investigate how to maintain consistency of content
between the enhancement results and the original video while performing video
enhancement based on SDEdit. Consequently, we will briefly review relevant
domains in this section to facilitate a better understanding.

2.1 Video Diffusion Models

The recent emergence of diffusion models [15, 22, 47, 62, 63, 66, 68, 82] as a type
of generative model [14, 17, 30, 31, 45, 48, 53] has significantly advanced the field
of T2I generation [6,15,16,22,25,33,46,47,49,56,60,62,63,65–68,71,82]. These
models have also demonstrated potential in various tasks, such as image-to-image
translation [12,32,41,55,75,83,95], image super-resolution [10,36,57,73,86,91],
image inpainting [3, 4, 35, 46, 87], and image editing [8, 20, 27, 37–39, 44, 50, 70],
among others.

Text-to-video synthesis is a complex and challenging task with significant
practical implications, as it aims to generate relevant videos from textual de-
scriptions. Early approaches [5,61,69,77,78,80] primarily utilized GANs, which
unfortunately resulted in subpar video quality. As a pioneering work introduc-
ing diffusion models to the field of video generation, Video Diffusion Models [23]
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adopted the 3D U-Net from [13], achieving impressive results in both uncon-
ditional and text-conditional video generation tasks. Subsequently, to reduce
training costs, a significant number of studies [2,11,19,40,42,54,74,76,79,90,96]
have extended pre-trained image diffusion models to video and learned Video
Diffusion Models in latent or hybrid-pixel-latent spaces.

Given the complexity of video generation, limited computational resources,
and the scarcity of high-quality video data, cascade models [21,24,79,92,93] have
emerged as the mainstream paradigm, adopting a divide-and-conquer approach
to tackle these challenges. Specifically, a cascade model typically comprises three
components: a base model, a frame interpolation model, and a refinement model.
Based on the base model trained with a large number of low-resolution videos,
we can generate well-structured low-resolution videos. Subsequently, the frame
interpolation model enhances the video’s continuity by adding frames. Finally, a
refinement model is employed to further improve the spatio-temporal continuity
and clarity of the video.

2.2 Refinement Models of Video Diffusion Models

As mentioned above, refinement models play a crucial role in determining the
final quality of generated videos. In this section, we will review the methods
employed by existing refinement models. Refinement models differ from conven-
tional super-resolution models, which solely focus on increasing the resolution. A
critical aspect of refinement models is their ability to refine the videos generated
by the base model, which might lack sufficient details, by adding appropriate
details to enhance the overall quality. There are few existing methods, which
can primarily be categorized into two approaches: methods based on SR3 [57],
which resemble traditional super-resolution techniques, and methods based on
SDEdit [41], which lean towards further generation.

As the first diffusion-based Super Resolution method, SR3 [57] incorporates
the low-resolution (LR) image as an additional input to the denoising network,
constructing a conditional denoising network. To further enhance visual quality
of generated videos and increase spatial resolution, Lavie [79] utilizes SD-x4-
Upscaler [54] as a prior and incorporates an additional temporal dimension,
enabling temporal processing within the diffusion UNet. Although the additional
initial video embedding greatly ensures consistency of content before and after
enhancement, it also restricts the refinement capabilities of diffusion models.

SDEdit [41] is a pioneering approach that achieves editing through iterative
denoising via a stochastic differential equation (SDE). Initially designed to ad-
dress the Stroke Painting to Image problem, SDEdit’s impressive scalability has
since facilitated advancements in various other fields [52, 84, 89]. In the realm
of video generation, both Show-1 [92] and Modelscope [93] have successfully
implemented SDEdit to enhance the quality of videos produced by their base
models. To amplify the refinement model’s focus on spatio-temporal details, they
specifically train it on low noise scales, using high-resolution videos. Although
this method possesses a stronger generative capability and can enrich video de-
tails more effectively, the randomness inherent in the generation process may
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lead to the final video deviating from the original content or even damaging
well-established structures. To address this issue, we propose a training-free and
plug-and-play method that aims to enhance the consistency of content between
the final video and the original video without compromising the refinement qual-
ity. This method is versatile, compatible with both pre-trained T2V models and
expert models retrained on a low noise scale.

Despite SDEdit’s wide application across various tasks, the trade-off between
realism and fidelity often falls short of user expectations in practical applications,
as noted in several studies [1, 7, 18, 26, 28, 43, 88, 94]. Despite this, there is a no-
ticeable lack of research in this area. Peng et al. [51] proposed a method that
uses source semantics to guide the generation process, aiming to enhance the
consistency between the source and target domain content in SDEdit’s image
translation tasks. However, this method’s effectiveness is contingent on the ac-
curacy of semantic maps, and its applicability in the latent space is yet to be
assessed. Singh et al. [59] also concentrated on optimizing the subsequent sam-
pling process with the goal of enhancing the realism of the editing results for
stroke painting to image. However, a universally applicable method has not been
established yet. Our approach, while primarily designed for content-preserving
video enhancement, can be easily adapted for other tasks based on SDEdit. Ad-
ditionally, it is worth noting that our work is partially inspired by ILVR [12],
which refines each generation step with low-frequency component of purturbed
reference image for controlling the generation of unconditional Diffusion Models.

3 Proposed Methods

3.1 Preliminaries

Diffusion models start from the given image x0, and then progressively add
Gaussian Noise ϵt ∼ N (0, 1). This transformation yields xt in each timestep t,
which can be directly computed as:

xt =
√
ᾱtx0 +

√
1− ᾱtϵt, (1)

where ᾱt represents the diffusion schedule parameters following a given sequence
0 = ᾱT < ᾱT−1... < ᾱ1 < ᾱ0 = 1. During inference, diffusion models can
synthesize new image by starting with a random noise sample xT ∼ N (0, 1)
and iteratively denoising it. Given a noised image xt at timestep t, the model
predicts the next-step xt−1 as follows:

pθ (xt−1 | xt) = N (µθ (xt, t) , σtI) ,

µθ (xt, t) =
1
√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ (xt, t)

)
,

(2)

where ϵθ represents a neural network trained to predict the noise at each step.
At each timestep, the noiseless image x̂t

0 can be approximated as:

x̂t
0 =

xt√
ᾱt
−
√
1− ᾱtϵθ (xt, t)√

ᾱt
. (3)
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As a pioneering method, SDEdit [41] introduces a reference image xr to ini-
tialize the denoising process at an intermediate step t0 ∈ [0, T ]. This initializa-
tion takes the form xt0 ∼ N (

√
ᾱt0x

r, (1− ᾱt0) I). The choice of t0 represents a
trade-off between realism (t0 ≈ T ), understood as producing images in line with
the training distribution p∗(x), and faithfulness (t0 ≈ 0), emphasizing similarity
with the reference image xr.

3.2 Formulation of Content-Preserving Video Enhancement

As illustrated in Fig. 1, when only using random noise ϵt0 to perturb the refer-
ence video xr and subsequently applying quality enhancement based on a pre-
trained video model ϵθ(xt, t), achieving satisfactory enhancement often leads to
unintended alterations in content. To tackle this issue, we propose a novel for-
mulation for video enhancement that prioritizes not only visual quality but also
imposes constraints on the content loss between the enhanced result x0 and the
reference video xr, as illustrated below:

minϵt0 dist (x0, x
r)

s.t. x0 ∼ Pθ (x | xr, ϵt0)
. (4)

Using Noise1 and Noise2 from Fig. 2 as examples, given reference video xr and
pre-trained video model ϵθ(xt, t), various initial noises ϵt0 will generate diverse
enhanced videos x0 based on the training distribution Pθ of the pre-trained video
model ϵθ(xt, t). The optimization goal is to identify a more appropriate initial
noise ϵt0 that effectively minimizes the content loss, dist (x0, x

r), between the
reference video xr and the enhanced video x0. A smaller value of dist (x0, x

r)
indicates a higher consistency of content between the two videos.

To derive a specific optimizable form of dist (x0, x
r), we decompose the video

enhancement process based on SDEdit. Specifically, the reference video xr is
combined with random noise ϵt0 corresponding to the selected initial denoising
step t0, using the following formula:

xt0 =
√
ᾱt0x

r +
√

1− ᾱt0ϵt0 , ϵt0 ∼ N (0, 1). (5)

Based on Eq. (3), the initial estimation x̂t0
0 of the enhancement result at step

t0 can be expressed as:

x̂t0
0 =

xt0 −
√
1− ᾱt0ϵθ (xt0 , t0)√

ᾱt0

. (6)

In accordance, xt0 is decomposed using the following equation:

xt0 =
√
ᾱt0 x̂

t0
0 +

√
1− ᾱt0ϵθ(xt0 , t0). (7)

Subsequently, the noise video xt0−1 at steps t0 − 1 is obtained as:

xt0−1 =
√

ᾱt0−1x̂
t0
0 +

√
1− ᾱt0−1ϵt0−1, (8)
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where, if the DDIM [64] sampling method is utilized, ϵt0−1 should be ϵθ(xt0 , t0).
Subsequently, noise video xt undergoes progressive denoising, and the corre-
sponding estimation x̂t

0 for the enhancement result is gradually refined until the
final enhancement result x0 is obtained.

As illustrated in Fig. 2, the primary content loss occurs between the ini-
tial estimation x̂t0

0 and the reference video xr during the enhancement process.
Therefore, we propose to measure dist (x0, x

r) by assessing the difference be-
tween the low-frequency components of x̂t0

0 and xr, following the decomposition
method outlined in [58]:

xr = fν
l (x

r) + fν
h (x

r),

x̂t0
0 = fν

l (x̂
t0
0 ) + fν

h (x̂
t0
0 ),

(9)

where fν
l denotes the low-frequency component, fν

h denotes the high-frequency
component, and the threshold frequency ν lies between 0 and 1, defining the
boundary between high and low frequencies.

Based on the analysis above, we redefine our formulation as follows:

minϵt0 ||f
ν
l (x

r)− fν
l (x̂

t0
0 )||

s.t. x̂t0
0 ∼ P̂ t0

θ (x | xr, ϵt0)
, (10)

where x̂t0
0 represents the initial estimation of the enhancement result x0.

3.3 Noise Calibration

In order to solve the formulation defined in the previous section, we propose a
simple and effective optimization method called Noise Calibration, which es-
sentially obtains a more suitable initial noise through 1-3 iterations. Specifically,
by combining Eqs. (5), (7) and (9), we obtain:√
ᾱt0(f

ν
l (x

r)− fν
l (x̂

t0
0 )) =

√
1− ᾱt0(ϵθ(xt0 , t0)− ϵt0)+

√
ᾱt0(f

ν
h (x̂

t0
0 )− fν

h (x
r)).
(11)

This implies that,

min
ϵt0
||fν

l (x
r)− fν

l (x̂
t0
0 )|| ≡ min

ϵt0
||ϵθ(xt0 , t0)− ϵt0 +

√
ᾱt0√

1− ᾱt0

(fν
h (x̂

t0
0 )− fν

h (x
r))||.

(12)
The goal of ILVR [12] is to generate an image x ∈ {x : ϕ(x) = ϕ(y)} based on

a diffusion model, given a reference image y. Here, ϕ(·) denotes a linear low-pass
filtering operation, a sequence of downsampling and upsampling. This goal is
achieved by ensuring ϕ(xt) = ϕ(yt) in the denoising process through:

xt ← xt + ϕ (yt)− ϕ (xt) . (13)

Motivated by this insight, we employ Fixed Point Iteration based on Eq. (12)
to optimize the initial noise as:

ϵt0 ← ϵθ(
√
ᾱt0x

r +
√
1− ᾱt0ϵt0 , t0) +

√
ᾱt0√

1− ᾱt0

(fν
h (x̂

t0
0 )− fν

h (x
r)). (14)
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Algorithm 1 SDEdit with Noise Calibration for video enhancement
Input: reference video xr, initial denoising step t0, diffusion model ϵθ(xt, t), iteration
steps N , threshold frequency ν
ϵt0 ∼ N (0, 1)
for n = 1 to N do

xt0 =
√
ᾱt0x

r +
√
1− ᾱt0ϵt0

x̂t0
0 = (xt0 −

√
1− ᾱt0ϵθ (xt0 , t0))/

√
ᾱt0

ϵt0 = ϵθ(xt0 , t0) +

√
ᾱt0√

1−ᾱt0

(fν
h (x̂

t0
0 )− fν

h (x
r))

end for
xt0 =

√
ᾱt0x

r +
√
1− ᾱt0ϵt0

for t = t0 to 1 do
ϵt ∼ N (0, 1)

xt−1 =
√
ᾱt−1

(
xt−

√
1−ᾱtϵθ(xt,t)√

ᾱt

)
+

√
1− ᾱt−1 − σ2

t · ϵθ(xt, t) + σtϵt

end for

Essentially, during each iteration, a replacement on the low-frequency domain
resembling LIVR [12] is performed on xt0 as:

xt0 ← xt0 +
√
ᾱt0(f

ν
l (x

r)− fν
l (x̂

t0
0 )). (15)

After obtaining the calibrated noise through 1-3 iterations, we re-add noise to
the reference video and enhance video quality using pre-trained video models, as
shown in Algorithm 1, referred to as NC-SDEdit. As illustrated in Fig. 2, Noise2,
being a calibrated version of Noise1, results in a a superior initial estimation x̂t0

0 ,
thereby effectively achieving content-preserving video enhancement.

4 Experiments

4.1 Experiments Setup

Setting up. We conduct our experiments using an open-source T2V diffusion
model, VideoCrafter(576×1024) [11], known for its superior visual quality, al-
beit with limitations in semantic understanding. We use SDEdit as a bench-
mark, while introducing our approach, NC-SDEdit, which essentially incorpo-
rates Noise Calibration into SDEdit. The initial denoising step, iteration steps,
and threshold frequency are set to t0 = 600, N = 3, ν = 1.0 as default.
Dataset and Metrics. We utilize a reference set consisting of 700 videos with
a resolution of 320×512, generated by Lavie [79], along with their corresponding
texts from EvalCrafter [34] for quantitative evaluation. Firstly, to evaluate the
consistency of content, we report the MSEl (MSE on the low-frequency domain
with ν=0.5), MSE and SSIM [81] between the enhancement results and the refer-
ence videos. Secondly, to assess the visual quality of the enhanced results, we also
report the state-of-the-art video quality assessment metric, DOVER [85]. The im-
age quality metric CLIP-IQA [72] is also used to assist in the evaluation. Finally,
spatial frequency (SF) can measure the gradient distribution thus revealing the
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Old man walking in the moorland valley, snowing heavily.

A deer is walking cautiously through the woods.

Reference SDEdit NC-SDEdit

The octopus camouflages itself among the coral reef.

Reference SDEdit NC-SDEdit

A beautiful mosque stands tall in the city center.

An yellow clock is ticking on a wooden table.

A bowl of hot noodle soup.

Fig. 3: Visual comparisons of video enhancement based on VideoCrafter [11]

Table 1: Quantitative comparisons based on VideoCrafter [11]

Method MSEl↓ MSE↓ SSIM↑ DOVER↑ CLIP-IQA↑ DSF↑
SDEdit 4.3447 0.7600 0.6464 60.17 0.4482 0.0527
Ours(N=1) 2.9201 0.6546 0.6998 60.62 0.4471 0.0531
Ours(N=2) 2.8039 0.6506 0.7040 62.71 0.4400 0.0554
Ours(N=3) 2.9540 0.6638 0.6971 62.45 0.4387 0.0584
Ours(N=10) 4.6107 0.7570 0.6209 54.42 0.3873 0.0741

detail and texture of the video frame. Therefore, we use DSF = SF(x)− SF(xr)
to measure whether video details have been enhanced.

4.2 Quantitative and Qualitative Evaluation

Quantitative Evaluation. We evaluate our method against SDEdit, with the
quantitative results presented in Tab. 1, by enhancing the videos in the reference
set at a resolution of 640×1024. According to the results, our proposed method
only requires an additional one to three iterations and significantly outperforms
previous approaches in all evaluation metrics, with a slight exception in the image
quality assessment metric CLIP-IQA. Additionally, it is observed that when the
number of iteration steps becomes too large (e.g., 10), the enhancement effect
does not increase but rather decreases. We will discuss this in Sec. 4.3.
Qualitative Evaluation. Fig. 3 presents the visual comparison of video en-
hancement results with various types and aspect ratios. It can be observed that
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Table 2: User study of human preference

Method Consistency Visual Quality Texture
SDEdit 13.89% 26.74% 24.65%
NC-SDEdit 86.11% 73.26% 75.35%

Reference NC-SDEditSD-x4-UpscalerBasicVSR++

Fig. 4: Comparison with entirely different methods

our method is capable of maintaining the original content during the video en-
hancement process. In contrast, existing methods either introduce strange noise
(as in the ’mosque’ case) or object (ike in the ’deer’ case), or alter the details of
the existing content (e.g., the time in the ’clock’ case).
User Study and extra Comparisons. We also conduct a user study with 18
samples and invite 15 volunteers to evaluate the results. As shown in Tab. 2,
our method performs much better than SDEdit, especially in terms of consis-
tency. Additionally, we compare our method with a traditional SR method, Ba-
sicVSR++ [9], and a SR3-based method, SD-x4-Upscaler [54]. Results are shown
in Fig. 4. As discussed in Sec. 2.2, unlike NC-SDEdit, the two other methods
merely increase the resolution and fail to enhance the texture.

4.3 Ablation Studies and Analysis

Influence of Iteration Steps N . Our proposed method involves iterating the
initial noise multiple times. We provide an intuitive analysis of the effects corre-
sponding to different numbers of iterations using a specific case as an example,
depicted in Fig. 5. In the original video, a young man is shown holding his head
with one hand while looking at a laptop. However, SDEdit, while enhancing
the quality, modifies the content of the original video, such as altering the hand
posture and the shape of the coffee cup. In contrast, our method requires only a
single iteration to significantly preserve the overall content of the original video
while enhancing it. Subsequent iterations, two or three in total, further enhance
the preservation of original details, such as the laptop’s logo. However, when
the number of iteration steps becomes excessive (e.g., 10), the video structure
is preserved identically to the reference, but the colors become oversaturated.
The reason is that the content loss ||fν

l (x
r) − fν

l (x̂
t0
0 )|| in Eq. (10) emphasizes

the consistency of low-frequency information, i.e., video structure, which might
have side effects on color. Designing a more appropriate consistency objective
could be a direction to mitigate color oversaturation. As a general guideline, we
recommend limiting the iteration steps to between 1 and 3.
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Reference SDEdit Ours(N=1)

Ours(N=2) Ours(N=3) Ours(N=10)

Reference SDEdit Ours( =0.3)

Ours( =0.5) Ours( =0.7) Ours( =1.0)

Fig. 5: Visual comparisons about iteration steps N and threshold frequency ν

Reference SDEdit NC-SDEdit Reference SDEdit NC-SDEdit

Fig. 6: Visual comparisons of Stroke Painting to Image(t0 = 800, N = 1, ν = 0.1)

Influence of Threshold Frequency ν. We suggest using the Fourier transform
to extract the low-frequency components. The threshold frequency ν serves as
the boundary between high and low frequencies, influencing the constraint range
of the objective function ||fν

l (x
r) − fν

l (x̂
t0
0 )||. Using the ’bear’ case in Fig. 5 as

an example, SDEdit, without any additional consistency preservation, can be
likened to having a threshold frequency of ν = 0 resulting in alterations to de-
tails such as the teddy bear’s collar button. As the threshold frequency increases,
the range constrained by the objective function ||fν

l (x
r) − fν

l (x̂
t0
0 )|| expands,

thereby enhancing the consistency of content between the final enhanced video
and the original video. When the threshold frequency reaches 1.0, the texture
of the teddy bear’s fur in the enhanced video is almost identical to that in the
original video. Additionally, the threshold frequency ν enables the application of
our method to other tasks based on SDEdit, such as sketch-to-image translation,
as depicted in Fig. 6. In addition, as shown in Tab. 3 we conduct an ablation
study on 60 videos about initial denoising step t0 and threshold frequency ν.
Firstly, it can be observed that increasing t0 results in decreased content consis-
tency but enhances details more effectively. Secondly, for a given t0, a larger ν
improves the effectiveness of content-preserving video enhancement. Ultimately,
we choose a compromise parameter combination (t0=600; ν=1.0) as the default
hyperparameters.
Convergence of Noise Calibration. To further validate whether Noise Cali-
bration can effectively optimize the objective function (Eq. (10)), We calculate
the L2 distance ||fν

l (x
r) − fν

l (x̂
t0
0 )||2 in the latent space between fν

l (x
r) and

fν
l (x̂

t0
0 ) on the Lavie700 dataset [34], as the number of iterations N increases

for different threshold frequencies ν. As shown in Fig. 7, for different values
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Table 3: Ablation Study about t0 and ν (Ll
2 ↓/DSF ↑)

Method ν=0.0 ν=0.3 ν=0.5 ν=0.7 ν=1.0
t0=500 2.9677/0.0544 2.2955/0.0535 2.0532/0.0548 1.9383/0.0571 2.0706/0.0641
t0=600 4.2997/0.0561 3.2612/0.0554 2.8896/0.0566 2.7246/0.0589 2.7957/0.0658
t0=700 6.2563/0.0586 4.7217/0.0574 4.1862/0.0586 3.9240/0.0606 3.9010/0.0664

Fig. 7: Demonstration of the Optimization Effect of the Objective Function

of the threshold frequency ν, the average value of the optimization target de-
creases as the number of iterations N increases. Notably, the most significant
effect is observed with just one iteration, indicating that achieving a high level
of consistency maintenance can be accomplished with a single iteration.
Evaluation about training and inference costs. Firstly, our method is
training-free and incurs no training costs. Secondly, during inference, using the
default setting of initial denoising step t0 = 600 and DDIM steps = 30, our
method requires only 1 to 3 additional refinement steps, resulting in less than
10% additional inference time compared to SDEdit.

4.4 Improving upon State-of-the-Art Visual Refinement Models

MS-Vid2Vid-XL [93] and SDXL-1.0-refiner [52] are two refinement models that
fine-tune existing generative models and utilize SDEdit for quality enhancement.
However, during the enhancement process, the existing details of the original
video/image are often smoothed out, and the originally correct structures tend to
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Traditional Chinese painting style, a pickup truck at the beach at sunrise.

Zoom in, A boy, fascinated by the fish, spends hours at the aquarium.

A towering steampunk robot stands amidst intricate industrial structures.

Reference MS-Vid2Vid-XL MS-Vid2Vid-XL+NC

Fig. 8: Visual Demonstration of MS-Vid2Vid-XL [93] with Noise Calibration

be disrupted. Our method, Noise Calibration, can address this issue. To validate
the effectiveness of Noise Calibration, we employ the same 700 paired text-
video samples from EvalCrafter as the test set for MS-Vid2Vid-XL. Furthermore,
we generate corresponding images using SDXL [52] based on these 700 texts
as the test set for SDXL-1.0-refiner. Given the default initial denoising step
t0 = 300 in SDXL-1.0-refiner, we set the threshold frequency ν to 0.5. The
results, as presented in Tab. 4, demonstrate that Noise Calibration improves
the performance of existing refinement models across all metrics. Moreover, as
illustrated in Figs. 8 and 9, our method yields more consistent enhancement
effects intuitively.

5 Limitation, Societal Impact and Acknowledgements

Limitation. Like SDEdit, the enhancement effectiveness of our method is also
limited by the performance of the base model.
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Tom Cruise's face reflects focus, his eyes filled with purpose and drive.

With the style of da Vinci, A woman gently pets a cat purring in her lap.

Reference SDXL-refiner SDXL-refiner+NC

Fig. 9: Visual Demonstration of SDXL-1.0-refiner [52] with Noise Calibration

Table 4: Quantitative Comparisons based on MS-Vid2Vid-XL and SDXL-1.0-refiner

Method MSEl↓ MSE↓ SSIM↑ CLIP-IQA↑ DOVER↑ DSF↑
MS-Vid2Vid-XL [93] 3.2214 0.7490 0.7079 0.4232 52.89 0.0478
MS-Vid2Vid-XL+NC 2.6848 0.7120 0.7253 0.4305 57.61 0.0517
SDXL-1.0-refiner [52] 1.2775 0.6933 0.7344 0.8590 - 0.0503
SDXL-1.0-refiner+NC 0.8750 0.5834 0.7625 0.8734 - 0.0530

Societal Impact. As our method is for improving video quality, it does not
introduce additional ethical concerns.
Acknowledgements. This research is supported by National Key R&D Pro-
gram of China (No. 2018AAA0100300).

6 Conclusion

In this work, we propose a novel formulation for video enhancement that takes
into account both visual quality and consistency of content. While using the pre-
trained T2V diffusion model for denoising to improve video quality, we introduce
Noise Calibration, a simple yet effective method for maintaining consistency
of content before and after enhancement. Extensive analysis and experiments
demonstrate the effectiveness of our approach.
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