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We provide additional details on the loss functions used for training ReMoS,
more statistics on the ReMoCap dataset, and describe how the datasets and
baselines are prepared for evaluation. We also show some additional results.

1 Additional Details of Loss Functions

Kinematic Loss Terms. We describe the details of the velocity, acceleration,
bone length and foot sliding losses loss terms from Eqn. 10 in the main paper.
To improve the temporal consistency of the motion [12], we minimize the joint
velocities and joint accelerations between two consecutive frames of the ground-
truth reactive motions, X, and the synthesized reactive motions, X̂, defined as
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1

N − 1

N−1∑
n=0

∥∥∥(Xn+1 −Xn)− (
X̂n+1 − X̂n

)∥∥∥2

2
, (1.1)
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where N is the total number of frames.
Additionally, we introduce a bone length consistency loss, Lbone, to ensure

that the synthesized reactor joint positions satisfy the skeleton consistency [5].
We define this loss as

Lbone =
∥∥∥B (X)−B

(
X̂
)∥∥∥2

2
, (1.3)

where B represents the bone lengths in a pre-defined human body kinematic
tree.

Further, foot sliding is a common artifact in motion synthesis [8,9]. We con-
strain this by ensuring that the toe joint in contact with the ground plane has
zero velocity. We use a binary foot contact loss [11, 12] on the foot joints of
the synthesized pose to ensure that the output motion does not slide across the
ground plane, defined as

Lfoot =
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where 1̂
n
foot ∈ {0, 1} is the foot-ground contact indicator for the synthesized

reactive motion X̂n at each frame n.

2 ReMoCap Dataset Analysis

Our proposed ReMoCap dataset covers two types of motion, namely the Lindy
Hop dance and the martial art technique of Ninjutsu (see Sec. 4 in the main
paper).

Lindy Hop motion capture. The Lindy Hop part of the dataset consists of 8
dance sequences captured at 50 fps, each around 7.5 minutes long, resulting in
around 174.2K motion frames. We had 4 trained dancers, 2 males (denoted A
and B) and 2 females (denoted C and D), participate in the Lindy Hop motion
capture. We pair the dancers as (A, C), (B, D), (A, D), and (B, C). Of these
pairings, (A, D) contains dance sequences not performed by the other three pairs
(in terms of twists and maneuvers). We also capture multiview RGB videos at
50 fps from 116 camera views for each sequence, which can benefit two-person
pose reconstruction work in the future. We show samples from these videos
in Fig. 2.1. From these sequences, almost 145.2K frames have a hand-in-hand
contact between the two dancers with a contact threshold of 50 mm between the
finger joints of the two dancers. By increasing the contact threshold to 100 mm,
the number of frames where the two dancers have contact increases to 147.5K.

Ninjutsu motion capture. The Ninjutsu part of the dataset consists of 79
sequences each captured at 25 fps. The sequences vary in length with a total
number of around 99.8K motion frames resulting in around 66.5 minutes of
motion. We had 5 trained, male Ninjutsu artists participate in the Ninjutsu
motion capture. We pair them in all possible combinations and ask them to
perform different variations of motion. Along with the 3D pose, we also capture
multiview RGB videos at 25 fps using 116 cameras. We show samples from these
videos in Fig. 2.2. From these sequences, almost 81K frames have contact-based
interactions between the two performers, where the closest distance between any
joints is 50 mm.

3 Dataset and Baseline Preparation

We discuss the preparation of the different datasets and the baseline methods
for our evaluation purposes.

3.1 Dataset Preparation

Preparing the Lindy Hop data in ReMoCap. We split the dataset such
that motions captured from dancer pairs (A, C), (B, D), and (B, C) are in our
training set, and motions captured from pair (A, D) are in our test set. We
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Fig. 2.1: Samples from the Lindy Hop motion capture for the ReMo-
Cap dataset. We show multi-view RGB samples with corresponding 3D poses from
our Lindy Hop motion capture performed by trained dancers. Lindy-hop requires coor-
dination between the two dancers, while also allowing individual dancers the freedom
to perform their own motions. This makes it suitable for testing our reactive motion
synthesis approach.

downsample each motion sequence to 20 fps and filter the frames where the
dancing partners have hand-to-hand contact between the actors’ and reactors’
finger joints. We represent each character using 27 body joints and 22 hand joints.
We convert the 3D joint angle representations into joint positions using forward
kinematics and then convert them to root local representations, as explained in
Sec. 5.1 in the main paper. For training, we use a sequence length of 20 frames.

Preparing the Ninjutsu data in ReMoCap. We divide the whole dataset
into roughly 3 : 1 train-test ratio and take 28 sequences of diverse attacking and
maneuvering motions for testing, and the rest for training. We downsample each
motion sequence to 10 fps, and filter out the frames where the pairs are more
than 1 meter of each other. We represent each character using 27 body joints and
22 hand joints. We convert the 3D joint angle representations into joint positions
using forward kinematics and then convert them to root local representations, as
explained in Sec. 5.1 in the main paper. For training, we use a sequence length
of 50 frames.

Preparing the Extreme Pose Interaction (ExPI) Dataset [3]. The ExPI
dataset consists of 2 pairs of professionals performing acrobatics and Lindy Hop
aerial sequences. It consists of 16 different acrobatic actions. Each couple consists
of a leader and a follower. We aim to synthesize the motions of the followers as
they react to the leaders’ movements. We use the common action split proposed
by the original authors [3], and split the dataset into train and test sets such
that all the actions performed by (A, B) are in the train set and all the actions
performed by (C, D) are in the test set. We represent each subject using 16 joints
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Fig. 2.2: Samples from the Ninjutsu motion capture for the ReMo-
Cap dataset. We show multi-view RGB samples with corresponding 3D poses from
the Ninjutsu motion capture performed by trained artists. In contrast to existing mar-
tial arts datasets [7, 13], we include finger joint motion capture and moves of varying
interaction complexity.

(omitting the ‘lhead’ and ‘rhead’ joints) and convert the global 3D joint positions
given in the dataset to root relative joint representations, as explained in Sec. 5.1
in the main paper. Since the ExPI dataset does not have hand motions, we only
train with body motions and forego the hand diffusion stage. We train ReMoS for
about 20K iterations on the ExPI dataset using the Adam optimizer [4], with a
base learning rate of 10−5 and a batch size of 32.

Preparing the Character-Character Dataset (2C) [7]. The 2C dataset
consists of full-body motions of kickboxing actions performed by pairs of par-
ticipants. The interactions include motions such as kicking and punching, with
diverse reactions such as avoiding and being hit. We use the pose sequence of
the leading character, who throws the punches and kicks, as the acting sequence
for our model. We aim to synthesize the full body motion of the reacting char-
acter, who is blocking or avoiding the moves, as our output. Following the split
of MixNMatch [2], we use a roughly 3 : 1 train-test ratio to train our method.
Each character contains 25 joints and we convert the 3D joint angle represen-
tations into joint positions using forward kinematics and then convert them to
root relative joint position representations, as explained in Sec. 5.1 in the main
paper. Since the 2C dataset does not have hand motions, we only train with
body motions and forego the hand diffusion stage. We train ReMoS for about
25K iterations on the 2C dataset using the Adam optimizer [4], with a base
learning rate of 10−5 and a batch size of 16.

Preparing the InterHuman Dataset [5]. We report additional results on the
InterHuman dataset in this appendix. It consists of human-human interactions
for daily motions, such as passing objects, greeting, and communicating, and
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professional activities, such as, Taekwondo, Latin dance, and boxing. It consists
of a total of 7, 779 motions with 22 joints per person. We randomly select the
pose sequence of one of the characters as the acting sequence for each motion to
train our model. We aim to synthesize the full body motion of the corresponding
other character in each motion as our output. We follow the split of InterGen [5]
for our experiments. Since the InterHuman dataset does not have hand motions,
we only train with body motions and forego the hand diffusion stage. We train
ReMoS for about 45K iterations on the InterHuman dataset using the Adam
optimizer [4], with a base learning rate of 10−5 and a batch size of 64.

3.2 Baseline Preparation

As we mention in Sec. 5.2 in the main paper, we use InterFormer [1], MixN-
Match [2], ComMDM [6], RAIG [10] and InterGen [5] as baselines. We describe
how we use each of these methods in our setting.

InterFormer [1]. InterFormer consists of a transformer network with temporal
and spatial attentions. It takes an input acting sequence Y and encodes it with
spatial and temporal self-attention. It also needs the initial pose of the reactor X
and predicts the subsequent frames of the reactor in an autoregressive manner.
It uses information from skeletal adjacency matrices and an interaction distance
module that provides information on the interactions. We use the normalization
technique mentioned in Sec. 5.1 in the main paper to normalize the actor’s and
the reactor’s body poses. We train InterFormer on an NVIDIA RTX A4000
GPU for about 20K iterations for both the LindyHop and the Ninjutsu sets of
ReMoCap, using the Adam optimizer [4] with a base learning rate of 10−5 and
a batch size of 128. We use 207 dimensional latent embedding and 6 layers in
the transformer decoder with 3 heads to calculate the attention.

MixNMatch [2]. MixNMatch proposes an end-to-end framework to synthesize
stylized reactive motion informed by multi-hot action labels. It operates in one
of two settings, interaction mixing and interaction matching. In interaction mix-
ing, it generates a reaction combining different classes of reactive styles according
to the multi-label indicator. In interaction matching, it generates the reactive
motion corresponding to the interaction type and the input motion. Our set-
ting is similar to interaction matching, where we input the acting sequence into
the model and synthesize the reactive sequence. We mask out the action label
defining the interaction type from the input and train the reactor’s motion X
based on the actor’s motion Y . We use the normalization technique mentioned
in Sec. 5.1 in the main paper to normalize the actor’s and the reactor’s body
poses. We train MixNMatch on an NVIDIA RTX A4000 GPU for about 3.6K
iterations for both the LindyHop and the Ninjutsu sets of ReMoCap, using the
Adam optimizer [4] with a base learning rate of 10−5 and a batch size of 16. We
use 256 LSTM neurons for each spatial slice and 1,200 for the attention layer.
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ComMDM [6]. ComMDM is proposed as a communication block between two
MDMs [11] to coordinate interaction between two persons. It uses single-person
motions from a pre-trained MDM as fixed priors, and a parallel composition
with few-shot training that shows how two single-person motions coordinate
for interactions. ComMDM is a single-layer transformer model that inputs the
activations coming from the previous layer from the two MDM models, and
learns to generate a correction term for the MDM models along with the initial
pose of each person. ComMDM was originally trained for two motion tasks:
prefix completion and text-to-motion synthesis. We follow the prefix completion
setting of ComMDM which does not use textual annotations as a condition and
was trained to complete 3 seconds of motion given a 1 second prefix. We train
ComMDM on an NVIDIA RTX A4000 GPU for about 24K iterations for both
the LindyHop and the Ninjutsu sets of ReMoCap, using the Adam optimizer [4]
with a base learning rate of 10−5 and a batch size of 64. We use 256 dimensional
latent embedding for the ComMDM block. During inference, we provide the full
ground truth motion of actor Y into the first MDM module. Thus, the ComMDM
block takes in the ground truth features from the first MDM module and the
learned features from the second MDM module. In turn, the output of the second
MDM module is the reactive motion X for our setting.

RAIG [10]. Role-Aware Interaction Generation (RAIG) is a diffusion-based
model that learns two-person interactions by generating single-person motions
for a designated role. The role is supplied in the form of textual annotations,
which are translated into active and passive voices to ensure the text is con-
sistent with each role. The model generates interactions with two transformers
that share parameters, and a cross-attention module connecting them. The ac-
tive and passive voice descriptions are proveded as inputs to the corresponding
transformers responsible for generating the actor and the reactor. The trans-
formers consist of cross-attention modules both for language and motion. To
use RAIG as a baseline for our annotation-free setting, we mask out the cross-
attention module for the language in both the transformers and train to generate
two-person motions unconditionally. We normalize the interactions as described
in the original paper [10]. We train RAIG on an NVIDIA RTX A4000 GPU for
about 20K iterations for both the LindyHop and the Ninjutsu sets of ReMoCap,
using the Adam optimizer [4] with a base learning rate of 2−4 and a batch size
of 32. We use 512 dimensional latent embedding and 8 attention blocks. During
inference, we freeze the transformer that learns the actor’s motion Y . The other
transformer generates the reactor’s motion X, being influenced by the actor’s
ground truth motion.

InterGen [5]. InterGen is a diffusion-based approach that generates two-person
motions from text prompts. It was originally trained by conditioning on rich
textual annotations. It uses cooperative denoisers with novel weight-sharing and
a mutual attention mechanism to improve interactions between two persons.
To use it as a baseline in our annotation-free setting, we mask out the text
embeddings from the model input, and train InterGen to generate two-person
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Table 4.1: Quantitative evaluation on the Inter-
Human dataset [5]. We compare ReMoS with state-of-
the-art motion synthesis methods on the InterHuman [5]
dataset. ↓: lower is better, ↑: higher is better, →: values
closer to GT are better. Bold indicates best.

Methods MPJPE MPJVE FID Div Multi-modality
(mm) ↓ (mm) ↓ (body) ↓ → ↑

GT − − − 7.74 −
ComMDM [6] 76.4 2.75 0.72 7.17 1.71± 0.5
RAIG [10] 83.2 2.76 0.67 7.26 2.01± 0.6
InterGen [5] 69.5 2.61 0.59 7.32 2.11± 0.6

ReMoS (ours) 66.7 2.56 0.56 7.33 2.13± 0.3

Table 4.2: Trainable
parameter counts.

Method Params
(full model)

InterFormer 8.2M
MixNMatch 6.5M
ComMDM 22.2M
RAIG 81.2M
InterGen 170M

ReMoS (ours) 17.4M

motions (both actor and reactor) unconditionally. We use the non-canonical
motion representation proposed in the original paper [5]. During inference, we
use the customization used in InterGen for person-to-person generation. We take
a single-person motion (the actor’s motion Y ) as input, and freeze it during the
forward diffusion process. The frozen weights from the first person propagate
into the model, which then uses the ground truth actor’s motions to reconstruct
the second person’s motion (the reactor’s motion X). We train InterGen on an
NVIDIA RTX A4000 GPU for about 30K iterations for both the LindyHop and
the Ninjutsu sets of ReMoCap, using the Adam optimizer [4] with a base learning
rate of 10−4, a cosine LR scheduler, and a batch size of 64.

4 Additional Results

We provide additional results and the trainable parameter counts of all models.
We further show how ReMoS can be used as a motion editing tool for character
control applications.

4.1 Quantitative Evaluation on the InterHuman Dataset [5]

We report additional evaluation of ReMoS compared to its diffusion-based base-
lines on the InterHuman [5] dataset in Table 4.1. We report performance on the
standard evaluation metrics, including MPJPE, MPJVE, FID, Diversity and
Multi-modality. For Multi-modality, we generate each sequence 5 times and re-
port numbers with a 95% confidence interval. InterHuman dataset does not
provide hand motions, so we only evaluate the reactors’ body motions. Re-
MoS achieves state-of-the-art performance in the aforementioned metrics in the
InterHuman dataset, highlighting the utility of our method for diverse forms of
two-person interactions.
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Table 4.3: Quantitative evaluation on body joints. We compare the body syn-
thesis module of ReMoS with state-of-the-art motion synthesis methods on body joints
only. Bold indicates the best.

Methods Lindy Hop (body only) Ninjutsu (body only)

MPJPE ↓ MPJVE ↓ FID ↓ Div → MPJPE ↓ MPJVE ↓ FID ↓ Div →
GT - - - 7.62 - - - 11.5
MixNMatch 69.8 10.5 0.74 2.52 260.1 5.14 0.72 4.94
InterFormer 63.2 8.91 0.52 4.64 262.5 3.53 0.51 6.27
ComMDM 50.2 4.42 0.23 7.51 192.4 3.45 0.25 9.83
RAIG 68.5 4.01 0.26 9.02 188.3 4.25 0.19 10.14
InterGen 55.1 2.87 0.22 7.49 165.5 3.82 0.23 9.87

ReMoS (ours) 40.2 2.21 0.12 7.52 137.2 3.19 0.16 10.26

4.2 Trainable Parameters

We report the total number of trainable parameters of ReMoS as compared to the
baseline methods. Table 4.2 shows that ReMoS has lesser trainable parameters
than the existing diffusion-based two-person synthesis models [5, 6, 10].

4.3 Comparison with baselines without hand motions.

We compare the body synthesis module of ReMoS with baselines trained only
on the body joints (Table 4.3). We report state-of-the-art performance for Re-
MoS even when finger joints are not included.

4.4 Motion Editing Applications of ReMoS

We describe how to use ReMoS as an interactive motion editing tool, providing
control to animators for tasks such as pose completion and motion in-betweening.
These are crucial applications that are possible due to the strong generative
abilities of DDPMs. We provide visual results of these applications in our sup-
plementary video.

Pose Completion with Controlled Joints. When an animator manually
customizes some of the reactor’s body joints to align with specific animation
tasks, ReMoS can automatically synthesize the reactor’s remaining body joints
to complete the reactor’s motion. We achieve this by providing the forward-
diffused values of the controlled joints as the network input at each diffusion step.
For example, to synthesize the motions of the remaining joints of the reactor’s
body given customized motions for some joints Ji and Jk, we set

X
(0)
B = fθB

(
X

(t)
B , t, YB ,1{Ji,Jk}

)
, (4.1)

where 1{Ji,Jk} is a mask we use at each denoising step on all frames to ensure
that the joints Ji and Jk are not denoised. Instead, we populate Ji and Jk with
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the identical noise vectors as the ones used during forward diffusion, while in-
troducing random noise to the rest of the joints throughout the sequence. Thus,
animators can incorporate flexible spatial control over chosen joints while Re-
MoS synthesizes the remaining joints of the reactor to faithfully capture the in-
teraction. In Fig. 5b in the main paper, we show the results of a pose-completion
application where we manually control the right-hand wrist joint of the reactor
and let ReMoS synthesize the remaining body joints conditioned on the actor.

Motion In-Betweening. Likewise, we can use the existing framework to per-
form motion in-betweening for the reactive sequence. We achieve this by pro-
viding some keyframes of the reactive motion and letting ReMoS synthesize the
intermediate frames using a motion in-betweening routine. To synthesize the re-
actor’s motion between two given keyframes Na and Nb through reverse diffusion,
we set

X
(0)
B = fθB

(
X

(t)
B , t, YB ,1{Na,Nb}

)
, (4.2)

where 1{Na,Nb} is a mask we use at each denoising step to ensure that all joints
at frames Na and Nb are not denoised. Thus, ReMoS can fill in the motions
between the two seed frames as shown in Fig. 5c in the main paper.
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