
Any2Point: Empowering Any-modality
Large Models for Efficient 3D Understanding

Yiwen Tang1,2∗, Ray Zhang3∗, Jiaming Liu4∗, Zoey Guo3∗,
Bin Zhao1,2†, Zhigang Wang1, Peng Gao1,

Hongsheng Li3, Dong Wang1†, and Xuelong Li5

1Shanghai AI Laboratory 2Northwestern Polytechnical University
3The Chinese University of Hong Kong 4Peking University 5TeleAI

Abstract. Large foundation models have recently emerged as a promi-
nent focus of interest, attaining superior performance in widespread sce-
narios. Due to the scarcity of 3D data, many efforts have been made to
adapt pre-trained transformers from vision to 3D domains. However, such
2D-to-3D approaches are still limited, due to the potential loss of spatial
geometries and high computation cost. More importantly, their frame-
works are mainly designed for 2D models, lacking a general any-to-3D
paradigm. In this paper, we introduce Any2Point, a parameter-efficient
method to empower any-modality large models (vision, language, au-
dio) for 3D understanding. Given a frozen transformer from any source
modality, we propose a 3D-to-any (1D or 2D) virtual projection strategy
that correlates the input 3D points to the original 1D or 2D positions
within the source modality. This mechanism enables us to assign each
3D token with a positional encoding paired with the pre-trained model,
which avoids 3D geometry loss caused by the true projection and better
motivates the transformer for 3D learning with 1D/2D positional pri-
ors. Then, within each transformer block, we insert an any-to-3D guided
adapter module for parameter-efficient fine-tuning. The adapter incorpo-
rates prior spatial knowledge from the source modality to guide the local
feature aggregation of 3D tokens, compelling the semantic adaption of
any-modality transformers. We conduct extensive experiments to show-
case the effectiveness and efficiency of our method. The code is released
at https://github.com/Ivan-Tang-3D/Any2Point.

Keywords: Large Foundation Model · Cross-modality Transfer · Pa-
rameter Efficient Fine-Tuning

1 Introduction

Driven by the growing volume of model parameters and training data, large foun-
dation models have gained unprecedented attention in a diverse array of domains
and tasks. Numerous large models have been pre-trained for natural language
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Fig. 1: Overview of Any2Point. We propose a general framework for any-to-3D
learning, which is shared for any modalities with parameter-efficient fine-tuning.

process, including BERT [4], T5 [33], GPT series [6, 23], and LLaMA [16, 49],
as well as visual understanding like DINOV2 [24], MAE [11, 39, 41], and ViT-
22B [3]. Existing works [1, 13, 14, 18, 50] also explore efficient fine-tuning tech-
niques to transfer pre-trained large models to a variety of downstream tasks,
consistently achieving excellent performance. Meanwhile, 3D visual understand-
ing [2, 10, 26, 46, 48, 53] is also a significant topic, with its rich geometric repre-
sentation contributing to the development of many applications (e.g., robotics
[17, 21, 30] and autonomous driving [15, 31, 43]). Unfortunately, due to a lack of
large-scale 3D data, the efforts towards 3D foundational model are significantly
lagging compared to language and 2D vision. Specifically, the acquisition and
annotation of high-quality 3D data requires expensive resources and human la-
bor, while synthetic 3D data training falls short of distribution diversity and
real-world applications.

Therefore, some previous works have transferred pre-trained models from
other modalities (mainly 2D vision) to 3D modality, leveraging sufficient pre-
trained knowledge from diverse sources. We categorize existing 2D-to-3D works
into two groups. 1) Data modality transformation. This type of approach
involves projecting 3D point clouds into 2D images [38,48,54], which are subse-
quently fed into 2D pre-trained models. Despite the promising performance on
downstream tasks, the process of modality transformation inevitably causes the
loss of spatial information in 3D data, hindering the full potential for 3D un-
derstanding. 2) Cross-modality knowledge distillation. These approaches
involve the pre-training knowledge transfer from 2D or vision-language models
to a newly trained 3D model [5, 42, 51]. They are not only required to forward
propagate both the 2D and 3D models during training, but also highly rely on
the large-scale paired 2D-3D data. This leads to substantial computation costs
and data engineering, limiting their ability for efficient implementation. Besides
the aforementioned issues, more importantly, current methods mostly focus on
the model adaption from 2D vision to 3D point clouds, rather than a shared
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methodology for other modalities. Therefore, we pose a question: can we de-
velop a general any-to-3D paradigm that empowers any-modality large models
for efficient and effective point cloud understanding?

To address this issue, we propose Any2Point, a unified any-to-3D frame-
work that transfers any 1D (language) or 2D (image/audio) large models to
3D domains with Parameter-Efficient Fine-Tuning (PEFT), as shown in Fig. 1.
Different from prior methods, our Any2Point avoids the point cloud projection,
thereby mitigating the 3D information loss, and directly fine-tunes pre-trained
models from source modalities, which saves resources by knowledge distillation.
Specifically, given an any-modality pre-trained transformer, we first introduce a
3D-to-any (1D or 2D) virtual projection mechanism. This mechanism establishes
a positional mapping between the input 3D points and their virtually projected
1D lines or 2D planes. This enables us to encode 3D coordinates using the orig-
inal positional embeddings of the source modality of pre-trained large models.
In this way, we no longer need to conduct a true projection losing 3D geome-
tries, while better promoting the pre-trained transformer to acquire 3D features
with their original 1D/2D positional priors. Then, for each transformer block,
we insert an any-to-3D guided adapter module for PEFT. This adapter lever-
ages the 1D/2D spatial guidance to aggregate the local semantics of 3D tokens,
facilitating fine-grained feature interaction. Afterward, we perform an adaptive
ensemble for the 3D features guided by different 1D/2D priors, which attains
superior 3D representations.

Extensive experiments across various tasks demonstrate that our Any2Point
framework achieves superior performance compared to current 3D pre-trained
models, while utilizing only 1.0% of the trainable parameters. Using the pre-
trained CLIP Text Encoder [32], Any2Point fine-tunes only 0.8M parameters
and attains 91.9% on ScanObjectNN [36], outperforming the previous state-of-
the-art (SOTA) 3D pre-trained model by +1.3%, and 94.3% on ModelNet40
[40]. Furthermore, Any2Point also achieves comparable results and efficiency by
utilizing other pre-trained models [7,8,19,24,35] of different modalities, including
2D vision, language, and audio, validating the robustness of our approach. The
contributions of our paper are as follows:

– To enable a general any-to-3D transferring framework, we propose Any2Point,
which empowers any-modality pre-trained large models (e.g., 2D vision, lan-
guage, and audio) for efficient 3D understanding.

– We introduce two techniques, i.e., 3D-to-any virtual projection and any-to-
3D guided adapter, to effectively overcome the issues within current methods,
such as 3D geometry loss and excessive resource cost.

– Any2Point achieves superior performance compared to previous SOTA 3D
pre-trained models across various tasks. Notably, these competitive results
remain consistent regardless of leveraging pre-trained models from different
modalities, such as 2D vision, language, and audio.
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Fig. 2: Overall Pipeline of Any2Point. For efficiently fine-tuning Any-modality
pre-trained models, our Any2Point framework contains two components: a 3D-to-any
Virtual Projection, which pairs the pre-trained positional encodings with 3D tokens to
avoid the 3D geometric information loss, and a Any-to-3D Guided Adapter to effectively
grasp local structures.

2 Any2Point

In Sec. 2.1, we first provide a paradigm overview of Any2Point, including the
problem definition and network architecture. Then, in Sec. 2.2 and Sec. 2.3, we
respectively elaborate on the methodologies of our proposed two techniques for
adapting any-modality large models for 3D domains.

2.1 Method Overview

Problem Definition. Given a pre-trained transformer from any modality, e.g.,
vision, language, and audio, our objective is to empower it with 3D understand-
ing capabilities in an effective and efficient manner. Instead of employing full
fine-tuning on 3D data, we seek a parameter-efficient solution with the source
transformers frozen, since their large-scale parameters might cause high compu-
tation cost and over-fitting issues on the limited 3D dataset. We generally divide
the source models into two categories according to their pre-training data dimen-
sion, denoted as 1D and 2D transformers. The 1D transformers are specialized in
processing sequential data, exemplified by language models like RoBERTa [19],
T5 [33], and CLIP’s text encoder [32]. The 2D transformers are expert at 2D
spatial data, including vision models, e.g., DINOv2 [24] and DeiT [35], and audio
models, e.g., ImageBind Audio Encoder [7] and SSAST [8].

Model Pipeline. The overall paradigm of Any2Point is depicted in Fig. 2. To
encode the input point cloud, we discard the original embedding modules in
source transformers, e.g., tokenizers in 1D language models and convolutions in
2D vision/audio models, and employ a 3D mini-network for point cloud tokeniza-
tion. On top of this, the encoded 3D tokens are fed first into a 3D-to-any virtual
projection module for positional encoding, and then into the frozen 1D/2D trans-
former with any-to-3D guided adapters. The former mechanism aims to assign
each 3D token with positional information within the source modality, and the
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Fig. 3: 3D-to-any Virtual Projection. To prevent the loss of 3D geometric infor-
mation, the module assigns 3D tokens with the positional encodings that are paired
with the pre-trained model.

latter is designed for adaptive 1D/2D-guided 3D representation learning, which
we will detail in the following sections. Note that, as the source transformers are
kept frozen, only the initial tokenization network and the inserted adapters are
learnable for parameter-efficient fine-tuning.

2.2 3D-to-any Virtual Projection

Many current 2D-to-3D methods [38,48,54] project 3D point clouds into multi-
view images to meet the input modality of pre-trained 2D models. This dimen-
sion reduction process potentially leads to the information loss of 3D geometries
and deep measurements, enabling insufficient 3D feature encoding. In addition,
these approaches are merely validated on the large models within 2D images,
without considering other modalities like language and audio. Therefore, we
propose a 3D-to-any virtual projection strategy that mitigates the geometric
loss, and is generalizable to any 1D/2D pre-trained models, as shown in Fig. 3.

Tokenization in 3D Space. To avoid any information degradation, we directly
tokenize the input point cloud within the 3D space for the subsequent 1D/2D
transformer. Specifically, we employ a 3D mini-network containing small-scale
parameters, which is a lighter-weight variant of Point-PN [52, 53] . The tok-
enization process involves Farthest Point Sampling (FPS) [26] for point number
downsampling, k-Nearest Neighbor (k-NN) algorithm for local aggregation, and
learnable linear layers for feature encoding. After this, we transform the raw
point clouds into high-dimensional vectors, obtaining N 3D tokens as {Ti}Ni=1,
with {p3Di }Ni=1 denoting their 3D coordinates.

Motivations for Virtual Projection. Positional encodings (PEs) serve as
the only indicator for positional information to the transformer model, since
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the inner attention mechanism is permutation-invariant, treating every token
at different orders all the same. Therefore, a straightforward way for 1D/2D
transformers to comprehend 3D positional information is to integrate new 3D
PEs with 3D tokens. However, the source transformers are pre-trained paired
with their original PEs in 1D/2D space, which leads to semantic discrepancy
between the frozen 1D/2D weights and newly learned 3D PEs. To address this
issue, we virtually project 3D tokens into the source modality, and obtain the
corresponding 1D/2D PEs for better aligning with the transformers.

3D-to-2D Virtual Projection. For 2D transformers in 2D vision and audio
modalities, we virtually project each 3D coordinate, e.g., p3Di , into M views,
deriving the corresponding 2D coordinates as {p2Dij }Mj=1. The M different per-
spectives are capable of providing diverse positional relations within 2D space.
We adopt a simple projection in PointCLIP [48] without learnable parameters.
Importantly, we do not truly produce the projected multi-view images, but only
aim to obtain the virtual 2D positions. Then, according to the original 2D PEs
within pre-trained transformers, we assign each 3D token, e.g., Ti, with M dif-
ferent PEs, denoted as {PE2D(p2Dij )}Mj=1.

3D-to-1D Virtual Projection. Similarly, for 1D transformers in language
modality, we virtually project the 3D coordinates into different 1D lines. To
align the number with 2D modality, we also select M lines passing through the
center of the point cloud with M uniform rotation angles. For simplicity, we
suppose the point cloud center as the origin, the unit direction vectors of M
lines as {v1D

j }Mj=1, and the point coordinate, p3Di , vectorized as p3D
i . Then, the

1D coordinate of point i in line j is formulated by the dot production of

p1Dij = v1D
j · p3D

i , (1)

denoting the projected length. In this way, we refer to the original 1D PEs, and
assign each 3D token, e.g., Ti, with M different PEs as {PE1D(p1Dij )}Mj=1.

Encoding 3D Positions in 1D/2D PEs. After acquiring the corresponding
1D/2D PEs, we average them as an overall positional indicator, and incorporate
it with the 3D token, e.g., Ti, by

T in
i = Ti +

1

M

M∑
j=1

PE1D/2D(p
1D/2D
ij ). (2)

With this approach, we inject sufficient positional information of the source
modality into 3D tokens to better collaborate with the frozen transformer, while
mitigating the information loss of the true projection.

2.3 Any-to-3D Guided Adapter

Different from existing distillation-based methods [9, 51] training a new 3D
network, we directly feed the encoded 3D tokens {T in

ij }Ni=1 to the pre-trained
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Fig. 4: Any-to-3D Guided Adapter. Inserted into every transformer block, the
adapter leverages the 1D/2D-guided Local Aggregation module to capture 3D local se-
mantics and utilizes the Adaptive Any-to-3D Ensemble to obtain high-quality features.

1D/2D transformer. Although the PEs of 3D tokens have been aligned with
the source model, the entirely frozen weights pre-trained by other modalities
are still restricted to learning superior 3D representations. Considering this, we
introduce a learnable any-to-3D guided adapter within each transformer block,
as shown in Fig. 4. The adapters are inserted after the Feed-Forward Networks
(FFNs), and further incorporate 1D/2D-prior knowledge for parameter-efficient
fine-tuning.

Motivations for Inserting Adapters. The self-attention mechanisms within
source transformers normally focus on long-range token interaction in global
contexts, which lacks local feature extraction. However, the detailed spatial ge-
ometries are also significant for the fine-grained understanding of 3D shapes.
To complement the gap, we utilize the proposed adapter layers for specifically
capturing 3D semantics within local neighborhoods. In addition, as the source
transformers are powered by 1D/2D PEs as discussed above, the naive FPS and
k-NN for 3D local grouping might cause positional discrepancy. Therefore, we
further design a 1D/2D-guided aggregation strategy and an adaptive any-to-3D
ensemble approach for robust 3D fine-grained encoding.

1D/2D-guided Local Aggregation. Within the adapter, we first group 3D to-
kens into different local neighborhoods guided by 1D/2D positional priors, which
better align the adopted 1D/2D PEs. For M different views/lines, we conduct
M concurrent local aggregation process to make the best of different projection
perspectives. Specifically, for 2D transformers, we divide each virtually projected
image, e.g., the j-th view, into uniform local 2D patches, and group the 3D to-
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kens within the same patch into a neighborhood, according to their 2D positions
{p2Dij }Ni=1. For 1D transformers, we similarly divide each virtually projected line,
e.g., the j-th direction, into uniform local 1D segments, and group the 3D tokens
within different segments referring to their 1D positions {p1Dij }Ni=1. On top of this,
we adopt a self-attention layer for 3D tokens within each 1D/2D neighborhoods,
performing local feature interaction guided by 1D/2D priors. Then we employ
the operations of pooling and propagation to propagate the local aggregated
feature to every points within the same neighborhood.

Adaptive Any-to-3D Ensemble. After the parallel local aggregation, we ob-
tain M sets of 3D tokens, each representing a 2D view or 1D line. As different
projection perspectives normally showcase different significance for 3D represen-
tations, we propose an adaptive any-to-3D ensemble approach to aggregate the
M features for each token. We denote the i-th 3D token with M sets of features
at this stage as {Fij}Mj=1. To properly indicate the relative importance of each
view/line, we additionally employ a 3D feature transformation branch indepen-
dent of the M 2D-guided local aggregation. This non-parametric branch only
contains the local grouping in 3D space, feature average pooling within local
groups, and propagation operations, converting the 3D token before the adapter
into a feature baseline for adaptive ensemble, denoted as Bi. Then, we calculate
the relative weights for different views/lines by the cosine similarity, and finally
aggregate their features to obtain the final output as

T out
i =

1

M

M∑
j=1

Sim(Bi, Fij). (3)

With the ensemble strategy, we integrate M different features with dynamic
weights, enabling the adapter to adaptively determine which view/line is more
critical, contributing to high-quality adapted features.

3 Experiments

3.1 Experimental Settings

ScanObjectNN. The ScanObjectNN dataset [36] consists of real-world 3D ob-
ject scans, categorized into 15 distinct classes. We select the most challenging
PB-T50-RS split to test the performance of the Any2Point framework without
the voting strategy. For all models, we employ the AdamW optimizer [20] and
the CosineAnnealing scheduler. The initial learning rate is set to 5e-4, with a
weight decay factor of 0.05. We fine-tune the model for 300 epochs with a batch
size of 32. For data augmentation, we use Random scaling, translation, and ro-
tation. For language, 2D vision, and audio modalities, we respectively select the
CLIP Text Encoder [32], DINO V2 [24], and ImageBind Audio Encoder [7] as
pre-trained models. For these three models, the transformer architecture is the
same: a 12-block encoder with 768 feature channels and 1,024 input point num-
ber. The hyperparameter M in the 3D-to-any Virtual Projection is set to 6 with
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Table 1: Comparisons on accuracy with previous methods on 3D classi-
fication datasets. We report the pre-training modality (Pre-train), the number of
learnable parameters (#Param) on the "PB-T50-RS" split of ScanObjectNN (SCAN.)
and ModelNet40 (MN.).† indicates utilizing the voting strategy.

Method Pre-train #Param(M) SCAN.(%) MN.(%)

Point-NN [52] N/A 0.0 64.9 81.8
PointNet [26] N/A 3.5 68.0 89.2
PointNet++ [27] N/A 1.5 77.9 90.7
DGCNN [37] N/A 1.8 78.1 92.9
PointMLP [22] N/A 12.6 85.4 94.1
Point-PN [52] N/A 0.8 87.1 93.8
PointNeXt [29] N/A 1.4 87.7 94.0

Point-BERT [44] 3D 22.1 83.1 92.7
w/ Point-PEFT [34] 3D 0.6 85.0 93.4

Point-MAE [25] 3D 22.1 85.2 93.2
Point-M2AE [47] 3D 15.3 86.4 93.4

P2P-HorNet [38] 2D 1.2 89.3 94.0†

ACT [5] 3D+2D 22.1 88.2 93.7
w/ IDPT [45] 3D+2D 1.7 87.7 94.0†

I2P-MAE [51] 3D+2D 12.9 90.1 93.7
ReCon [28] 3D+2D+Language 43.6 90.6 94.1

Any2Point
Audio 0.8 87.0 92.7

2D 0.8 87.7 93.2
Language 0.9 91.9 94.3

identical angles for the Any-Modality Transformers. To match the shape of the
original PEs within pre-trained models, we virtually project 3D points into a 1D
line segment of length 77 with a line size of 2 in the language modality; a 2D
plane measuring 512x512 with a patch size of 26 in the 2D vision modality; and
a 2D plane sized 192x304 with a patch size of 16 in the audio modality.

ModelNet40. The ModelNet40 dataset [40] consists of 40 categories of synthe-
sized 3D CAD models, with 9,843 training samples and 2,468 test samples. In
our experiments on ModelNet40, we adopt the same fine-tuning settings and the
same pre-trained models as in ScanObjectNN. For data augmentation, we utilize
default random scaling and translation. Notably, during the testing process, we
do not employ the voting strategy.

In this section, we conduct extensive experiments on the ScanObjectNN [36]
and ModelNet40 [40] datasets. We first introduce the fine-tuning settings and
implementation details in Sec. 3.1. Then, in Sec. 3.2, we present the main experi-
ment of transferring any-modality large models (language, 2D image and audio)
to 3D classification tasks. Finally, in Sec. 3.3, we conduct ablation studies to
evaluate each component within our proposed Any2Point framework.

3.2 Quantitative Analysis

The results are shown in Tab. 1. It is observed that: (i) On the 3D real-world
object dataset ScanObjectNN, the Any2Point framework achieves 91.9%, 87.7%,
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Table 2: Ablation Study on Different PEFT Methods. We report the number
of learnable parameters (#P) and classification accuracy(%) of CLIP-Text (1D.) and
DINO V2 (2D.) on the "PB-T50-RS" split of the ScanObjectNN dataset.

Method #P(M) 1D.(%) 2D.(%)

Full Fine-Tuning 86.3 79.9 85.3

Prompt Tuning [14] 0.4 89.1 86.4
Adapter Tuning [12] 0.4 89.6 85.9
LoRA [13] 0.9 86.3 85.1

Any2Point 0.8 91.9 87.7

Table 3: Ablation Study on Main Components. To validate the effectiveness of
3D-to-any Virtual Projection (V.P.) and Any-to-3D Guided Adapter (G.A.).

3D-to-any V.P. Any-to-3D G.A. #P(M) 1D.(%) 2D.(%)

- - 0.3 88.7 86.1
✓ - 0.3 89.3 86.6
- ✓ 0.8 90.9 87.6
✓ ✓ 0.8 91.9 87.7

and 87.0% accuracy based on Language (CLIP-Text), 2D Vision (DINO V2-B),
and Audio (ImageBind-Audio) modalities, respectively. Compared to the previ-
ous SOTA method (ReCon), 1D language pre-trained Any2Point achieves a 1.3%
improvement with only 0.9M learnable parameters. For the 2D (Vision/Audio)
modalities, Any2Point significantly outperforms Point-M2AE, which is the SOTA
method pre-trained only on 3D datasets, by 0.6% and 1.3%, respectively. This
reveals that our framework is capable of fully exploiting pre-trained knowledge
from other modalities to solve 3D recognition tasks. (ii) On the 3D synthetic
object dataset ModelNet40, across the Language, 2D Vision, and Audio modal-
ities, our Any2Point framework attains 94.3%, 93.2%, and 92.7%. Our frame-
work exclusively utilizes one pre-trained model in the 1D language modality,
achieving a 0.2% improvement over the previous SOTA method (ReCon), and
reducing 42.7M learnable parameters. For 2D modalities, Any2Point demon-
strates performance on par with models pre-trained exclusively on 3D datasets.
(iii) Surprisingly, whether on the ScanObjectNN or the ModelNet40 dataset, the
Any2Point framework maintains a performance trend where 1D modality (lan-
guage) outperforms 2D modalities (image and audio). Large language models
provide abundant spatial and semantic information in low-dimensional spaces to
assist in 3D learning. This trend is further validated in the upcoming Sec. 3.3.

3.3 Ablation Study

In this section, we conduct extensive ablation studies to explore the effectiveness
of different components within our Any2Point framework. We adopt CLIP-Text
(1D) and DINO V2 (2D) as the pre-trained transformer, and report the classi-
fication accuracy (%) on the "PB-T50-RS" split of the ScanObjectNN dataset.
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Table 4: Ablation Study on 3D-to-any Virtual Projection. Sinusoidal, Learn-
able and 3D-to-any V.P. refer to sinusoidal positional encoding, learnable positional
encoding and 3D-to-any Virtual Projection.

Sinusoidal Learnable 3D-to-any V.P. 1D.(%) 2D.(%)

- - - 90.9 87.6
✓ - - 87.4 86.0
- ✓ - 90.5 86.5
- - ✓ 91.9 87.7

Table 5: Ablation Study on Any-to-3D Guided Adapter. To validate the effec-
tiveness of 1D/2D-guided Local Aggregation (L.A.) and Adaptive (Ada.) Any-to-3D
Ensemble (Ens.).

1D/2D-guided L.A. Ada. Any-to-3D Ens. #P(M) 1D.(%) 2D.(%)

- - 0.25 89.3 86.6
✓ - 0.8 90.2 86.8
✓ ✓ 0.8 91.9 87.7

Table 6: More Results on ScanObjectNN.

Method Pre-train Model #Param(M) SCAN.(%)

Any2Point
Audio SSAST [8] 0.8 87.1

2D DeiT [35] 0.8 87.3
Language RoBERTa [19] 0.9 89.7

Comparison with traditional PEFT methods. As demonstrated in Tab. 2,
our Any-to-3D Guided Adapter significantly outperforms traditional PEFT tech-
niques when utilizing pre-trained models from 1D or 2D modalities. In compari-
son to Prompt Tuning [14], it achieves improvements of 2.8% and 1.3%; compared
to Adapter Tuning [12], it achieves improvements of 2.3% and 1.8%; and in con-
trast to Low-Rank Adaptation (LoRA) [13], it achieves improvements of 5.6%
and 2.6%, respectively. The experimental results demonstrate that our Any-to-
3D Guided Adapter can efficiently mine and integrate pre-trained knowledge
from other modalities to understand the semantics of 3D objects. Unlike other
methods, our framework leverages 1D/2D spatial guidance to aggregate the lo-
cal semantics of 3D tokens, capturing the local fine-grained information of 3D
objects.

Effectiveness of Main Components. As shown in Tab. 3, to substantiate the
efficacy of our proposed methods, we conducted ablation experiments by progres-
sively incorporating each component into the baseline. The first row indicates
the baseline configuration, which consists of the 3D tokenizer, the pre-trained
transformer, and the task head, with updates applied only to the tokenizer and
head. Introducing the 3D-to-any Virtual Projection resulted in performance im-
provements to 89.3% in the 1D modality and 86.6% in the 2D modality. This
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suggests that using virtual projection, rather than true projection, helps miti-
gate the loss of 3D spatial information caused by modality conversion. Following
the inclusion of the Any-to-3D Guided Adapter, performance in the 1D modal-
ity surged to 90.9%, while in the 2D modality, it rose to 87.6%, with a focus on
local structures leading to greater improvements. Introducing both aforemen-
tioned methods simultaneously led to a surge in performance to 91.9% in the
1D modality and a rise to 87.7% in the 2D modality, effectively showcasing the
effectiveness of our comprehensive framework.

Effects of 3D-to-any Virtual Projection. In Tab. 4, we investigated the
effects of employing different positional encoding methods on the Any2Point
framework. The first row indicates the absence of any positional encoding. In-
troducing sinusoidal positional encoding or learnable positional encoding led to
a certain degree of performance degradation. This is due to the conflict between
the newly introduced positional information and the inherent semantics within
the source modality transformer. On the other hand, employing 3D-to-any Vir-
tual Projection resulted in respective improvements of 1.0% and 0.1% accuracy.
The results demonstrate that using original 1D/2D positional priors can promote
the pre-trained transformer to acquire 3D features.

Components of Any-to-3D Guided Adapter. As shown in Tab. 5, we con-
duct ablation experiments by incrementally adding components to the Any-
to-3D Guided Adapter. The first row signifies the baseline adapter, consisting
of only an MLP with bottleneck layers. By incorporating 1D/2D-guided Local
Aggregation, composed of local aggregation in 1D/2D spaces, self-attention in-
teractions, pooling, and propagation, our approach achieves performance gains
of 0.9% and 0.2%. Leveraging the positional priors from the pre-trained model
facilitates mining fine-grained 3D structural information from different perspec-
tives. The Adaptive Any-to-3D Ensemble brings further improvements of 1.7%
and 0.9% for 1D and 2D modalities, effectively integrating parallel features in
accordance with 3D structural features. The experiments demonstrate the effec-
tiveness of each component in our Any-to-3D Guided Adapter to gather 3D local
geometric information, complementing the global attention in the pre-trained
model.

More Results on Performance Trend. To further validate our previous find-
ings that the Any2Point framework, based on 1D Language pre-trained models,
significantly outperforms those based on 2D modalities (Vision/Audio) in the 3D
object recognition task, we conduct additional experiments in Tab. 6. On the
"PB-T50-RS" split of ScanObjectNN dataset, we select RoBERTa (1D), DeiT
(2D Vision), and SSAST (Audio) as the pre-trained models, with fine-tuning
settings consistent with our previous experiments. These models achieve perfor-
mance of 89.7%, 87.3%, and 87.1%, respectively. The performance trend across
modalities is observed: 1D language > 2D Vision > 2D Audio. We suspect that
due to the pre-training data, large language models possess stronger semantic
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Fig. 5: Visualization of Different Positional Encoding Methods. For the 1D/2D
modalities, we visualize the attention scores of the [CLS] token to other point cloud
tokens, utilizing sinusoidal positional encoding, learnable positional encoding, and 3D-
to-any Virtual Projection. The red color indicates higher values.

information compared to other modalities, which is beneficial for the deep un-
derstanding of different 3D objects.

4 Visualization

In this section, we opt to validate the efficacy of the proposed 3D-to-any Virtual
Projection and the Any-to-3D Guided Adapter by visualizing on the ScanOb-
jectNN test set, utilizing the CLIP-Text Encoder (1D) [32] and DINO V2 (2D) [24].

4.1 Different Positional Encoding Methods

Our 3D-to-any Virtual Projection fully exploits the positional encoding paired
with the pre-trained model, injecting the source modality spatial knowledge into
the 3D tokens during fine-tuning. In Fig. 5, when using sinusoidal positional
encodings, learnable positional encodings, and our 3D-to-any Virtual Projection
respectively, we visualize the attention scores of the [CLS] token to other point
cloud tokens. As illustrated, for the 1D language modality, learnable positional
encodings grasp useless information. After applying the commonly used sinu-
soidal positional encodings in Large Language Models, they fail to capture the
critical 3D semantics. However, our method focuses more on the salient object
parts, such as the armrests and wheels of chairs, and the legs of tables. For the
2D visual modality, learnable encodings are slightly better than sinusoidal posi-
tional encodings, as 2D pre-trained models mainly adopt the learnable encoding
method. Meanwhile, our method directly recognizes the whole object and its key
parts, for example, giving high weights to the chair’s backrest.

4.2 Effects of Any-to-3D Guided Adapter

The Any-to-3D Guided Adapter captures the 3D fine-grained information through
interactions within the local regions of the source modality. In Fig. 6, we visualize
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Fig. 6: Visualization of Effects of Any-to-3D Guided Adapter.For 1D/2D
modalities, we visualize the clusters of the similarities between the [CLS] token and
other point features, with the number of clusters set to 3. It is conducted for the com-
plete Any-to-3D Guided Adapter, for replacing the Adaptive Any-to-3D Ensemble with
maxmean pooling (Maxmean Pool.), and for performing local aggregation solely based
on 3D positions (3D-guided L.A.).

the clustering results of the similarities between the [CLS] token and other point
token features, utilizing the complete Any-to-3D Guided Adapter, replacing the
Adaptive Any-to-3D Ensemble with maxmean pooling, and further only using
3D positional information. As shown, for simple objects like chairs (1st row), our
method effectively distinguishes between the chair’s backrest, armrests, seat, and
wheels, whereas removing components fails to capture the differences between
key parts. For more challenging objects like shelves (2nd row), removing any
components leads to semantic confusion of the object, while our approach clearly
differentiates the shelf’s base, middle layer, and backrest. These experiments in-
dicate that each component within the Adapter effectively utilizes the positional
information from different modalities to promote the 3D structure extraction.

5 Conclusion

In conclusion, our paper proposes Any2Point to enable a general any-to-3D trans-
ferring framework, empowering any-modality pre-trained large models (e.g., 2D
vision, language, and audio) for efficient 3D understanding. Within Any2Point
framework, we introduce two techniques, named 3D-to-any virtual projection
and any-to-3D guided adapter, to extract 3D structure knowledge while effi-
ciently fine-tuning pre-trained models. This enables us to overcome issues within
current methods, such as 3D geometry loss and excessive resource cost. Our ex-
tensive experiments across various tasks demonstrate the superior performance
and efficiency of Any2Point compared to previous SOTA 3D pre-trained models,
achieving remarkable results with only a fraction of the trainable parameters.
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