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Appendix

In this Appendix, we first discuss the limitations of our approach (Sec. 1).
Then we discuss implementation details (Sec. 2) and provide additional ablations
(Sec. 3). Finally, we show more qualitative examples (Sec. 4) and show a failure
mode we observe (Sec. 5).

1 Limitations

Our method has several limitations. First, it relies on having a few hundred
images per category, which might not always be possible for low-resource classes.
However, this is still a significant step forward from prior works, which need
much more data and/or human annotations.

Next, the symmetry equivariance loss we propose assumes the shape is sym-
metric. While this is true for all shapes we consider, there could be several
instances where this assumption does not hold: (i) if the shape is not symmetric
by design, e.g ., it an animal that misses a leg; (ii) if the shape is articulated and
thus not symmetric. In that instance, the loss Leq should not be used, which
would lead to a small drop in performance.

Finally, our model only predicts image-to-vertex matching, whereas prior
methods such as CSE [1] also predict segmentation masks. However, prior methods
do not evaluate segmentation performance, as they are not competitive, and
this is not the main point of the methods. Furthermore, they use masks as an
additional form of supervision, as the model is additionally trained to predict
masks, whereas we only use masks to sample points used during training (as not
to try matching background points to the shape).

2 Additional implementation details

2.1 Symmetry equivariance loss

We automatically discover the plane of symmetry of the shape. We assume the
shape’s plane of symmetry is either one of the (x, y, z) planes. In practice, this is
most often true. We test each of the (x, y, z) planes as follows. First, we center
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Fig. 1: Background images. To generate synthetic images, we sample from these, do
a random crop, and predict depth.

the mesh. Then, for every plane, we mirror all vertices along that plane. For every
vertex, we find its nearest neighbour mirrored vertex. We sum the Euclidean
distances between all vertices and their mirrored nearest neighbours. Intuitively,
the correct plane of symmetry corresponds to the smallest sum of distances.
Finally, for every vertex x, we obtain its symmetric one xF by finding its nearest
neighbour when we mirror the shape along the selected plane of symmetry.

2.2 Training

During training, we perform data augmentations: random crops, rotations, and
colour jitters. We perform these on both the natural and synthetic (generated
with a depth-to-image model) images. We train using the Adam optimizer for 40
epochs, using lr = 0.001, which is decreased 10× after 20 epochs.

2.3 Synthetically generated ground-truth

As discussed in the paper, to generate each synthetic image, we sample a viewpoint
and a background.In practice, we sample from 4 background images (Fig. 1),
which we randomly crop before computing depth.We find that we can obtain
diverse backgrounds with a small number of background templates by using
different random seeds. We sample viewpoints only from the side and front.We
found that when we sample an image from the back, Stable Diffusion still tries
to place a face on the back of the head, leading to unnatural-looking images. We
show more examples of generated images in Fig. 2.

3 Additional ablations

3.1 Pseudo-ground truth

We perform additional ablations on the features used to construct the pseudo-
ground-truth Σ in Tab. 1. First, we render shaded surfaces instead of surface
normals and find that leads to a small drop in performance. Next, we exclude the
SD features from SD-DINO [2], and only use DINO features for matching.This
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Fig. 2: Synthetically generated images.

makes computing the pseudo-ground-truth Σ faster, as SD features are more
expensive.As expected, we see decreased performance when only using DINO
features.

3.2 Number of training images

We train our method using a different number of natural images in Tab. 2. We
train on {50, 200, 500, and 2k+} images, where 2k+ is the number of images of
the particular class in the dataset, falling between 2k and 3k. We exclude the
classes “bear” and “sheep” as they contain under 2k images.We see that with as
few as 500 images, we achieve comparable performance to our full models.

4 Qualitative examples

In Fig. 3 we show similarity heatmaps of the visual feature with the CSE
embeddings over the shape. We show further qualitative examples of texture
remapping in Figs. 4 to 6.
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Ablation DensePose-LVIS

Ours 24.9

Renders shaded (instead of normals) 25.2

Features w/o SD 25.4
Table 1: Data ablations. First, we ablate using shaded renders of the template shape
instead of surface normals. Next, we train models using only DINO features (w/o SD),
as they are quicker to compute. We evaluate using geodesic distance (lower is better).

No# images DensePose-LVIS

50 34.7
200 29.8
500 24.9
2k+ 22.3

Table 2: Ablation of the number of training images. We ablate the number of
training images used for each class. For this ablation, we exclude the “bear” and “sheep”
classes as they have under 2k images, the other classes have between 2k and 3k images.
We evaluate using geodesic distance (lower is better).

5 Failure case

We observe a failure case, where the model predicts wrong patches (Fig. 7). We
notice that these patches correspond to the same semantic part, but on opposite
sides (e.g ., a patch of “left belly” is predicted where there should be “right belly”).
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Fig. 3: Similarity heatmaps. We show similarity heatmaps between the visual feature
sampled at the annotated location in red with the CSE embeddings learnt over the
shape. We color every vertex according to that similarity and annotate the most similar
vertex in red.
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ZS-DINO          CSE               Ours 

Fig. 4: Qualitative results.
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ZS-DINO                CSE                    Ours 

Fig. 5: Qualitative results.
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ZS-DINO             CSE                 Ours 

Fig. 6: Qualitative results.



SHIC 9

Fig. 7: Failure cases. We annotated failure cases in red, where the model predicts
wrong patches.
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