
SweepNet Supplementary Material

Mingrui Zhao1, Yizhi Wang1, Fenggen Yu1, Changqing Zou2, and
Ali Mahdavi-Amiri1

1 Simon Fraser University
2 Zhejiang University

1 Neural Sweeper Training

Fig. 1: Sweep surfaces data samples for neural sweeper training.

1.1 Data Preparation

To fully train our neural sweeper, we create a dataset of sweep surfaces with a
variety of parameters using the technique introduced by Sèllan et al. [3]. Fig. 1
showcases some randomly selected samples in the dataset. Specifically, the pa-
rameters of a sweep surface data sample are set as follows:

Sweeping Axis. As mentioned in our main paper, the sweeping axis is a B-spline
curve. Control points for the sweeping axis are randomly generated within the
range [−0.5, 0.5]n, where n is the number of control points. Since the input
shapes to SweepNet (our main network) are normalized within the unit cube,
this range selection ensures that the sweeping axis remains within the confine,
preserving the integrity of the sweep surfaces.

Superellipse Profile. Parameters for the superellipse profile, including the major-
minor axis and degree, are selected randomly within the ranges [0.01, 0.5]2 and
[0.3, 5], respectively. This approach prevents the generation of overly small pro-
files which could potentially hinder the learning process. The degree lower bound
is set to be 0.3 to avoid extreme star-shape profile with diminishing corners.



2 M. Zhao et al.

Scaling Function. We adopted quadratic function ax2 + bx + c with c = 1 for
the profile scaling. This setup allows for constant scaling when a and b are set to
zero. The parameters a and b are confined within the range [−0.5, 0.5], ensuring
the scaling velocity remains within a reasonable limit.

1.2 Point Cloud Sampling

After obtaining the mesh of a sweep surface, we sample a point cloud from it as
a training input to our neural sweeper. For each sweep surface, we sample (a) 15
profile frames, with each consisting of 50 contour points and (b) 124 points from
the sweeping axis. There are altogether 15 × 50 + 124 points as a point cloud
fed to the neural sweeper. Traditionally, a point cloud contains only the points
from the object surface. Here we include the points from the sweeping axis as
auxiliary information in the network input. The sampling details are as follows:

– The axis points are uniformly sampled from the B-spline curve’s parameter
space.

– The contour points are uniformly sampled using the superellipse formulation
with θ ranging from 0 to 2π.

– The profile frames position are uniformly sampled from the spline curve in
parameter space. For each profile frame position, a 2D profile is scaled with
the scaling function then transformed to the corresponding position with
transformation matrix calculated by the parallel-transportation frame.

1.3 Training Strategy

The training protocol follows the implementation of POCO [1], using an Adam
optimizer with a learning rate of 1e − 3. After completing training, the neural
sweeper is frozen and cascaded to the swept volume head in SweepNet.

2 Additional Results

More visual results and comparisons are provided in Fig. 2. The results demon-
strate the power of sweep surfaces in representing curved surfaces, and our pro-
posed scaling function further enhances their expressive capabilities.

Fig. 3 provides additional examples to show how the number of control points
affects the abstraction results. A sweeping axis with more control points exhibits
more curvy features, while our method remains stable in both settings.

Despite curvy-feature objects, we provide additional qualitative results of
SweepNet on Thingi10K [4] and ShapeNet [2] datasets. These datasets contain
many CAD-like shapes where the sweep elements are not commonly observed.
Our method can provide comparable results. We would like to emphasize that no
single primitive is perfect for all 3D shapes. Each primitive has its strengths and
weaknesses, and the combination of various methods can often provide a more
comprehensive solution. SweepNet excels in handling objects with curvy and



SweepNet 3

SQInput SECAD Ours OracleExtrudeNet UCSG Cuboid

SQInput SECAD Ours OracleExtrudeNet UCSG Cuboid

Fig. 2: Additional qualitative results on GC-objects and quadrupeds datasets. Our
method better captures curves.



4 M. Zhao et al.

Input 3 control points 4 control points Oracle

Input 3 control points 4 control points Oracle

Fig. 3: Shape abstraction outcomes from SweepNet utilizing sweeping axes defined
by 3 and 4 control points, respectively. Primitives characterized by 3 control points
are more concise, while those with 4 control points showcase more turning curves and
employ fewer primitives in abstraction.

tubular features but may not be the best fit for CAD-like shapes. Combining
SweepNet with other parametric primitives can harness the strengths of each
method to achieve better overall performance.

Lastly, we provide qualitative results from SweepNet in representing alpha-
betical letters and numbers in Figs. 9 and 10.

3 Loss function

As detailed in the main paper, we propose four distinct loss functions: Lrecon,
Lol, Lpars, and Laxis. This section elucidates the rationale behind the design
of each loss function and delineates the methodology for tuning their respective
weights.

3.1 Reconstruction Loss Formulation

We used the Boltzmann operator to formulate the reconstruction loss to enable
a smoother gradient flow. This operator calculates the occupancy value at a test
point by taking the weighted sum of the occupancy values from all present prim-
itives, ensuring that all primitive parameters can be updated during backpropa-
gation. The weight is determined by a biased softmax function controlled by the
parameter α. Alternatively, the argmax operator could be used to update only



SweepNet 5

the primitive contributing the highest occupancy, but this method empirically
slows convergence. The Boltzmann operator provides a smooth approximation
of the maximum function, and its sharpness toward the true maximum can be
adjusted by tuning the parameter α.

Lrecon = Et∼T

[∥∥∥∥OGT (t)−
∑q

i=1 Oi(t)e
αOi(t)∑q

i=1 e
αOi(t)

∥∥∥∥2
2

]
. (1)

3.2 Loss Tunning Strategy

The primary loss function, Lrecon, measures the fidelity between the abstracted
shape representations and their corresponding GT counterparts. Nevertheless,
relying solely on Lrecon may result in suboptimal abstraction. This is charac-
terized by a tendency of the model to produce aggregated and cumbersome
representations that merely approximate the target shape, without achieving
meaningful abstraction. To address this, we introduced the overlap loss, Lol,
and the parsimony loss, Lpars, to encourage more parsimonious reconstructions
by penalizing overlapping primitives and the excessive use of primitives. Empir-
ical observations suggest that the overlap loss also facilitates faster convergence
by introducing a repulsive force among primitives.

Furthermore, the axis loss, Laxis, guides the selection of sweeping axes to-
wards the medial axis of the target object, which can be directly extracted from
the input voxel data. Incorporating the medial axis as additional supervision
significantly enhances our model’s performance, rapidly narrowing the solution
space and establishing a robust prior for the sweeping axis.

When determining the weights assigned to each loss function, we consider
the following principles: The reconstruction loss has the dominant weight to
ensure a faithful shape representation, followed by the overlap loss to regularize
cleanliness. The parsimony loss introduces a trade-off between parsimony and
fidelity, so it is set to a comparatively small value to preserve fidelity. The axis
loss is mandatory but only serves as a prior. It is set with a decaying weight,
with higher importance at the beginning of the training process. The impact of
each loss function is shown in Fig. 4.

4 Primitive Edits

We showcase additional examples of primitive editing from Figs. 5 to 7. The
abstracted shapes demonstrate versatile editing capabilities of our method by
altering the profile, axis, and scaling functions of the primitives. These examples
highlight the advantages of the proposed sweep surface parametrization and its
flexibility.



6 M. Zhao et al.

SQInput SECAD Ours Oracle

Input SQ SECAD Ours Oracle

Full No parsimony loss No axis loss

Oracle

No overlap lossInput Oracle

Fig. 4: Ablation study on loss functions. Parsimony loss encourages minimal use of
primitives, overlap loss reduces overlaps, and axis loss provides superior guidance on
sweeping axes

Fig. 5: A light bulb model is transformed into a mushroom by manipulating sweeping
axis length, adjusting the scaling function, and enlarging the profile size. Each shape is
represented by three primitives, with three control points each, employing a quadratic
scaling function. In total, this representation requires 42 floating-point numbers.



SweepNet 7

Fig. 6: An ECCV 3D calligraphy undergoes variations in its brush style by adjusting
the degree of the superellipse profile. This adjustment creates different profiles, includ-
ing a star shape profile (top left), circular profile (top right), square profile (bottom
left), and rhombus profile (bottom right), showcasing various font effects. Each shape
is represented by five primitives, each with four control points and a constant scaling
function, totaling 85 floating-point numbers. Only one float from each primitive needs
to be updated to achieve this edit.

Fig. 7: A vase model transforms to a table by adjusting the sweeping axis length, and
scaling function coefficients. Each shape is represented by two primitives, each with
three control points and a quadratic scaling function, requiring a total of 28 floating-
point numbers.



8 M. Zhao et al.

SQInput SECAD Ours OracleExtrudeNet UCSG Cuboid

Fig. 8: Additional qualitative results on Thingi10K [4] and ShaepNet datasets [2]. Our
method provides reasonable abstractions on objects lack of sweep elements.



SweepNet 9

Fig. 9: Representing letters with sweep surfaces produced by SweepNet.

Fig. 10: Representing numbers with sweep surfaces produced by SweepNet.



10 M. Zhao et al.

References

1. Boulch, A., Marlet, R.: Poco: Point convolution for surface reconstruction. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion. pp. 6302–6314 (2022)

2. Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z., Savarese,
S., Savva, M., Song, S., Su, H., et al.: Shapenet: An information-rich 3d model
repository. arXiv preprint arXiv:1512.03012 (2015)

3. Sellán, S., Aigerman, N., Jacobson, A.: Swept volumes via spacetime numerical
continuation. ACM Transactions on Graphics (TOG) 40(4), 1–11 (2021)

4. Zhou, Q., Jacobson, A.: Thingi10k: A dataset of 10,000 3d-printing models. arXiv
preprint arXiv:1605.04797 (2016)


	SweepNet Supplementary Material

