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Fig. 1: Given a voxelized shape, SweepNet acquires abstraction without any supervi-
sion. With few sweep surfaces, the overall geometry of the objects is nicely captured.

Abstract. Shape abstraction is an important task for simplifying com-
plex geometric structures while retaining essential features. Sweep sur-
faces, commonly found in human-made objects, aid in this process by
effectively capturing and representing object geometry, thereby facilitat-
ing abstraction. In this paper, we introduce SweepNet , a novel approach
to shape abstraction through sweep surfaces. We propose an effective pa-
rameterization for sweep surfaces, utilizing superellipses for profile repre-
sentation and B-spline curves for the axis. This compact representation,
requiring as few as 14 float numbers, facilitates intuitive and interactive
editing while preserving shape details effectively. Additionally, by intro-
ducing a differentiable neural sweeper and an encoder-decoder architec-
ture, we demonstrate the ability to predict sweep surface representations
without supervision. We show the superiority of our model through sev-
eral quantitative and qualitative experiments throughout the paper. Our
code is available at https://mingrui-zhao.github.io/SweepNet/.
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1 Introduction

Sweep surfaces play an important role in computer graphics and computer vision,
serving as fundamental constructs for modelling and analyzing complex shapes
and structures. Sweep surfaces are extensively utilized for generating intricate
geometric forms by sweeping a cross-sectional profile along a defined path. This

https://mingrui-zhao.github.io/SweepNet/
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enables the creation of diverse objects ranging from simple curves to intricate
architectural designs, and more. On the other hand, shape abstraction is also an
important problem in computer vision and graphics that involves representing
complex geometric structures or objects in a simplified form while preserving es-
sential characteristics for analysis or visualization purposes. Sweep surfaces can
serve as a powerful tool for shape abstraction due to their ability to efficiently
capture and represent the geometry of objects or structures due to their gener-
ality and ubiquity in the objects existing around us. By utilizing sweep surfaces,
3D shapes can be abstracted into more manageable representations, facilitating
tasks such as shape recognition, and manipulation in various domains including
computer graphics, or computer-aided design.

Current approaches to shape abstractions can be categorized by the type
of constituent primitives. Popular choices include cuboid [54, 62, 73, 80], su-
perquadrics [32, 33, 39, 51, 70, 76], parametric surfaces [53, 74], convex shapes
[7, 12], neural parts [22, 25, 38], sketch-and-extrude [29, 45, 63], and a combina-
tion of simple primitives [19,24,27,31,44,52]. However, each representation un-
dergoes unique advantages and limitations. For instance, parametric primitives
like cuboids and superquadrics offer ease of modification through parameter ad-
justments, facilitating interactivity. However, their simplicity often leads to less
compact and expressive abstractions. Conversely, neural primitives showcase su-
perior expressiveness by capturing complex shapes more accurately but suffer
from reduced manipulability post-creation, which limits user control.

Shape abstraction via sweep surfaces can strike a balance between compact-
ness and expresiveness (see Fig. 1). However, learning shape abstraction via
sweep surfaces is challenging, primarily due to the limitations of accurate repre-
sentation and the complexities involved in their parametrization. Existing meth-
ods of determining sweep surfaces are formulated as optimization problems [50]
concerning sweep profile, sweep axis, and sweep motion, which makes it hard to
integrate within a larger problem or a deep neural network. When integrated
into computational methods, this introduces a nested optimization challenge,
and within a learning framework, it results in a non-differentiable component.

In this paper, we first provide a simple parameterization for sweep surfaces
that can be learned via a differentiable network. We employ superellipses for
the profile representation due to its simplicity to learn and diversity in shape
(see Fig. 3). For the axis, we use B-spline curves, in conjunction with basic
polynomials to control sweep dynamics. Consequently, in our representation, a
sweep surface can be represented with as few as 14 float numbers. Moreover, the
complexity of these primitives can be easily scaled by expanding the parame-
ter space. We then show how we can utilize this representation to learn shape
abstractions for a given 3D object. Our approach involves an encoder-decoder
architecture and a differentiable neural sweeper, enabling the model to predict
the sweep surface representations without any supervision. By jointly optimizing
representation faithfulness, sweeping rationality, and primitive parsimony, our
model delivers high-quality abstractions of the target shape (Fig. 2 and Fig. 1).
Therefore, our contributions are as follows:
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– We provide the first deep learning model equipped with a differentiable
sweeper specifically designed for shape abstraction through sweep surfaces.

– Our method introduces a new and compact parameterization of sweep sur-
faces, enabling intuitive and interactive editing.

– We demonstrate the advantages of our sweep surfaces over traditional para-
metric primitives in representing curvy-featuring objects, showcasing its su-
periority in achieving concise and expressive shape abstractions.

2 Related Work

Swept Volumes. Swept volume [1,5,46,50,57,66,78] refers to the total volume
displaced by a moving object as it travels through a particular path or trajectory.
The key challenges of constructing swept volumes involve not only constructing
ruled surface patches for each edge and face but also trimming their mutual in-
tersections to remove components not contributing to the final surface. Sèllan et
al. [50] introduce spacetime numerical continuation for swept volume construc-
tion, offering enhanced generality and robustness with asymptotic complexity
one order lower than prevailing industry standards. However, the construction
process of swept volumes is typically non-differentiable, precluding its integra-
tion into our network. To address this challenge, we propose Neural Sweeper,
a neural network designed to approximate implicit fields for swept volumes us-
ing profile and axis information as input. We leverage the methodology outlined
in [50] for data preparation, wherein ground-truth mesh data of swept volumes
is generated to calculate the occupancy field for training our neural network.
Neural Implicit Fields. OccNet [34], IM-Net [8], and DeepSDF [36] con-
currently introduced the coordinate-based neural implicit representation. These
early works only model global shape features, yielding over-smooth results which
lack geometric details. The next wave in this direction has focused on condition-
ing implicit neural representations on local features stored in voxel [6,10,23,40,
59], image grids [28, 47,72] or surface points [4, 17,21, 68] to more effectively re-
cover geometric or topological details and to scale to scene reconstruction, or at
the patch level [15,61,67,77] to improve generalizability across object categories.
We utilize POCO [4] as the backbone network of our neural sweeper, which takes
as input the point cloud of the sweep surface to predict its implicit field.
Primitive Detection and Fitting. Traditional methods [3,13,30,35,43,49] for
primitive detection involve RANSAC [14] and Hough Transform [20]. The work
of Zou et al. [80] and Tulsiani et al [62] are among the earliest works that em-
ploy neural networks for primitive fitting, using cuboids as the only primitives.
SPFN [27] and ParSeNet [53] consider unions of primitive patches to fit given
3D objects typically represented by point clouds. Constructive solid geometry
(CSG) is a classical CAD representation which models a 3D shape as a recur-
sive assembly of solid primitives using operations including union, intersection,
and difference. Many recent works of primitive fitting are built on CSG trees,
such as CSGNet [52], UCSG-NET [24], BSP-Net [7], CSG-Stump [44], CAPRI-
Net [76], and D2CSG [75]. Inspired by the user-level construction sequence of
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Fig. 2: Pipeline overview. The model processes voxel input to extract a skeletal
prior and encodes the data with a voxel encoder. The sweep surface head predicts
sweep surface parameters: 2D profiles, 3D sweeping axes, and profile scaling function
coefficients, conditioned on the skeletal prior. Training involves generating point clouds
for each sweep surface through a differentiable sampler, which the neural sweeper uses
to estimate their occupancy. This data is then assembled to reconstruct the input shape
to quantify loss. At inference time, the sweep surface parameters are directly processed
by a non-differentiable, imperative sweeper to produce the resembled shape.

CAD models [69], Point2Cyl [63] and SECAD-Net [29] utilize sketch-and-extrude
operations which enable the construction of 3D solid shapes from 2D sketches,
which can ease the process of primitive fitting. We introduce a customized sketch-
and-extrude process to create our sweep surfaces, with a superellipse as the 2D
profile, a B-spline curve as the sweeping axis (direction) and a scaling function
re-scaling the profile along the sweeping axis.
Shape Abstraction. Shape abstraction aims to fit 3D objects using simple and
compact geometric primitives. Computational approaches [2, 9, 18, 26, 32, 33, 41,
55, 64, 70] directly optimize the parameters of primitives to fit a given shape.
The primitives are typically superquadrics due to its extensive shape vocabulary
including cuboids, ellipsoids, cylinders, octohedra, and many shapes in between.
However, computational approaches typically rely on dense inputs (point clouds
or SDFs) and require a closed-form equation for the implicit function of the
primitives. Learning-based approaches [16,19,37,39,51,56,62,65,73] are versatile
in dealing with different input sources, such as point clouds, voxel grids, or even
RGB images. Since the implicit function of sweep surfaces has no closed-form
equations, we learn a neural implicit field for them to approximate the function.

3 Method

This section presents an unsupervised model that parses 3D shapes using para-
metric sweep surfaces. We call our model SweepNet whose overall pipeline is
outlined in Fig. 2. It encodes the input voxel shape using a 3D convolutional
network to extract features, which are then enhanced through a three-layer MLP
to produce a latent representation, z. This representation feeds into a dual MLP
head: one predicting parameters for multiple sweep surfaces (sweep surface head)
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Fig. 3: Sweep surface primitives parameterized with different profiles, axis, and scaling
functions. The 2D profiles (superellipses) are shown in blue. Constant and dynamic
scales of sweep surfaces are shown in alternating columns with respect to each profile
and axis pair.

and another selecting a subset of these primitives (selection head) for parsimo-
nious shape assembly. During this process, the prediction of the sweeping axes
is guided by the medial axis [58] of the input voxel shape. For each sweep sur-
face, we select a series of points along its sweeping axis as well as a number of
profile slices for examination. These profile slices are created by projecting the
2D profile onto the 3D sweeping curve, utilizing the curve’s coordinate frame for
transformation. The resulting point cloud is a compilation of points from both
the sweeping axis and these transformed loops. This gathered data is then pro-
cessed by the neural sweeper to predict the occupancy field of the sweep surface.
The final assembled shape is presented by the union of the selected sweep surface
occupancies. At inference time, the predicted primitive parameters are used di-
rectly to produce the final sweep surfaces using standard but non-differentiable
sweepers, bypassing the neural sweeper, for efficient primitive production, and
the parsed shape is compactly described by their parameters in the size of only
tens of floats.

3.1 Sweep Surface Primitive

A sweep surface is defined by a 2D profile, a 3D sweeping axis, and a function
f controlling the profile’s scale along the axis. Here, we target for a param-
eterizable, compact and expressive representation for all three components. A
2D profile is defined as a finite closed loop with no self-intersections. Existing
works attempted implicit fields [29], neural sketches [63] and rational Bézier
polygons [45] to represent such profiles. Implicit fields can well represent com-
plex profiles, however, they are carried through a neural network and hence offer
limited editability post-creation. The rational Bezier polygon is parameteriz-
able and offers good expressiveness. However, it needs additional constraints in
formulation to maintain the non-self-intersection property, requires critical coef-
ficients, and is sometimes impossible, to represent certain regular shapes such as
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rectangles. Alternatively, we choose superellipse to parameterize the 2D profile,
formulated as {

x(θ) = a · | cos(θ)| 2d · sgn(cos(θ)),

y(θ) = b · | sin(θ)| 2d · sgn(sin(θ)),
(1)

where θ ∈ [0, 2π] is the polar angle, x, y ∈ R are the Cartesian superellipse
contour coordinates, a, b ∈ R+ represents the major and minor axis and d ∈ R+

stands for the curvature degree. A superellipse is parameter-compact with as
few as 3 parameters, naturally preserves self-intersection, and offers a flexible
representation from rectangular to star shapes. It offer a straightforward way to
model essential shapes such as squares and circles, striking a balance between
parameter simplicity and representation versatility

For the 3D sweeping axis, our methodology employs a third-order B-spline
characterized by n control points {c1, · · · , cn} ∈ R3, ensuring a flexible yet pre-
cise control over the shape’s curvature. The spline is parametrized over a clamped
knot vector, guaranteeing that the B-spline’s trajectory starts at c1 and con-
cludes at cn. The spline curvature is modulated by the intermediate control
points positions. In scenarios where these control points align collinearly, the
sweep axis simplifies to a straight line, accommodating the fundamental sketch-
and-extrude cases.

To address the inherent rotation ambiguity of the profile during sweeping, we
adopt the parallel transport frames to regularise the sweeping motion. Fig. 4 (a),
(b) show two sweep surfaces produced with the same profile and axis but with
different sweeping motions. The convention of the sweep motion is aligning the
profile normal (z-axis) with the sweeping trajectory tangent, which still leaves
the x − y axis of the profile indeterminate. The parallel transport coordinate
frame establishes consistent local coordinate frames along the B-spline curve,
eliminating the ambiguity in profile orientations. This method is particularly
effective in maintaining consistent and deterministic sweeping motion, while be-
ing robust against extreme curvature scenarios, such as inflection points. As a
result, the translation and rotation of the profile are uniquely derived along the
sweeping motion, enhancing the model’s precision and reliability.

The last component, scaling function f , dynamically adjusts the profile scale
along the sweep. Defined as f(t) : [0, 1] → R+ for a sweeping axis s(t) : [0, 1] →
R3, it ensures the profile is appropriately scaled at each point s(t). To achieve a
smooth and continuous sweep, f needs to be strictly C0 continuous. We choose
degree k polynomials with a fixed constant term to formulate a scaling func-
tion, offering both effective scaling behaviour and a compact parametrization.
Collectively, a sweep surface primitive is uniquely defined by:

S = [c1, · · · , cn, a, b, d, f1, · · · , fk] ∈ R3n+k+3 (2)

Figure 3 showcases sweep surfaces with various profiles, sweeping axes, and in
different combinations with the scaling function.
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(a) (b) (c) (d) (e) (f)

Fig. 4: Sweep surfaces visualised under various conditions. (a): Sweep surface produced
with parallel-transportation frame regularization. (b): Sweep surface produced with free
profile rotations. (c): Reference sweep surface produced by off-the-shelf sweeper. (d)
Point cloud sampled from sweep surfaces for neural sweeper input. (e) Sweep surface
produced by naively interpolating profile stamps, notice the sharp crease and aliasing
effect at high curvature regions. (f) Sweep surface produced by neural sweeper with
the input point cloud in (d).

3.2 Neural Sweeper

The integration of sweep surface primitives into a learning framework is compli-
cated by the lack of a differentiable method to generate these primitives from
their defining parameters. Traditional approaches for creating sweep surfaces in-
volve densely sampling profile frames along the sweeping axis. This sampling
is followed by one of two methods: connecting adjacent profile points to con-
struct an explicit swept volume mesh [11] or employing numerical continuation
to compute an implicit swept volume field as the profile traverses the sweeping
axis [50]. Unfortunately, both methods present integration challenges within a
learning context due to their non-differentiable nature. Moreover, a direct ana-
lytical approach, involving dense sampling and occupancy interpolation between
profile frames, incurs significant computational costs and is susceptible to alias-
ing effects, particularly with sharply curved profiles. An example is provided in
Fig. 4 (e), where the sweep surface produced from interpolation shows visible
coarse granularity and sharp creases at high curvature regions.

In response to these challenges, we introduce the concept of a neural sweeper,
a differentiable surrogate for sweep surface generation. This approach begins
with the use of a differentiable sampler to collect sweep surface key points.
The key points are collected by sampling points along the sweeping axis, and
3D profile slices by sparsely transforming the 2D profile into 3D space based
on curve coordinate frames (Fig. 4 (d)). These sampled points are then pro-
cessed by the neural sweeper to compute the corresponding implicit field. For
model training, we generated a dataset comprising sweep surface samples with
varied parameters, and applied the existing point-cloud-to-implicit-field model,
POCO [4], as the backbone model. Once the model is trained, we freeze the
neural sweeper and plug it into SweepNet to facilitate subsequent outer scope
training sessions. The selected architecture of the neural sweeper must support
smooth gradient flow across interfaces with other components. We observed that
the use of a discretized feature grid and stochastic sampling can impede gradient
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flow, potentially obstructing the training process of the larger framework. How-
ever, the POCO model is particularly advantageous in this context, capable of
capturing detailed implicit shape features while maintaining compatibility with
back-propagation techniques, thereby serving as an effective submodule within
our proposed methodology.

3.3 Training and Inference

SweepNet implements a two-phase training strategy: initially, the neural sweeper
is trained, followed by the comprehensive training of SweepNet itself. The train-
ing of the neural sweeper utilizes Binary Cross-Entropy loss to evaluate the
accuracy of the predicted occupancy fields for sweep surfaces. Training Sweep-
Net model involves a blend of reconstruction loss, axis loss, overlap loss, and
parsimony loss to optimize shape parsing.

With K sweep surfaces predicted, the neural sweeper generates occupancy
fields O1, · · · , OK . From these, SweepNet selects a subset of primitives p1, · · · , pq
(where q ≤ K) to construct the final shape. Testing points T spread throughout
the 3D space are used to calculate the reconstruction loss, which is the mean
squared error between the ground truth occupancy field and the assembled occu-
pancy field. The latter is derived using the Boltzmann operator with a sharpness
parameter α ∈ R:

Lrecon = Et∼T

[∥∥∥∥OGT (t)−
∑q

i=1 Oi(t)e
αOi(t)∑q

i=1 e
αOi(t)

∥∥∥∥2
2

]
. (3)

Furthermore, to ensure a parsimonious representation, SweepNet minimizes the
use of primitives through both overlap loss and parsimony loss. The overlap
loss penalizes excessive overlapping among sweep surface primitives beyond a
threshold β:

Lol = Et∼T

[
min(

q∑
i=1

Oi(t)− β, 0)

]
. (4)

The parsimony loss, encouraging minimal primitive usage, is represented as a
sublinear function of the count of selected primitives:

Lpars =
√
q. (5)

Axis loss is introduced to guide the prediction of sweeping axes, aligning them
closely with the object’s medial axis. This is crucial as unsupervised learning of
sweep axes is inherently ambiguous due to the multitude of possible profile-axis
combinations that can generate the same object. The learning is regularized
by ensuring the predicted sweeping axes encompass the object’s medial axis,
quantified by the chamfer distance between the medial axis points M = mi and
the points sampled from selected sweeping axis S = ∪q

i=1{sij}:

Laxis = Em∼M

[
min
s∈S

dist(m, s)

]
. (6)



SweepNet 9

The overall SweepNet loss function is defined as:

L = λ1Lrecon + λ2Lol + λ3Lpars + λ4Laxis. (7)

Before the training starts, the sweep surface primitives are initialized regarding
the medial axis for a warm start. At inference time, we use off-the-shelf sweepers
[50] to create explicit sweep surface primitives from the predicted parameters,
bypassing the neural sweeper to improve speed and accuracy. Empirically, we
set λ1 = 12, α = 40, λ2 = 6, β = 0.8 · K, λ3 = 0.3K/8 and λ4 = 5. More
details about the hyper-parameter setting and training practice can be found in
the supplemental material.

4 Results

In this section, we begin by offering comprehensive insights into our datasets
and implementation methodologies. Subsequently, we present both quantitative
metrics and qualitative observations of our method compared to alternative ap-
proaches. We also provide ablation studies to justify our design choices. More
results and ablations will be provided in the supplementary material.

4.1 Dataset and Implementation Details

We conduct experiments over two datasets, a custom GC-Object dataset con-
taining 50 models sourced from prior works [48,79] and internet; and quadrupeds
dataset [62,71] with 124 animal shapes. The data are preprocessed following the
scheme of CAPRI-NET [76].

We showcase the parametric lightness and sweep-versatility properties of
sweep surfaces. To this end, we compare SweepNet with several baseline models:
two primitive-fitting shape abstraction methods using superquadrics (SQ) [39]
and cuboids (Cuboid) [73], one network using sketch-and-extrude primitives with
neural profiles (SECAD-Net) [29], one network using sketch-and-extrude primi-
tives with CSG operations (ExtrudeNet) [45] and one network using geons with
CSG operations (UCSG) [24]. In addition, we provide insight on SweepNet with
point cloud input modality by switching the encoder to DGCNN [42] module,
denoted as Ourspcd, showcasing the flexibility of our pipeline.

Our intention with this comparison is to demonstrate that, within a compa-
rable training period, SweepNet produces superior results with minimal training
iterations. Sweep surfaces exhibit greater expressiveness and versatility when
dealing with curvy objects compared to conventional parametric and sketch-and-
extrude primitives. This highlights the necessity of introducing sweep surfaces
as a new primitive for shape abstraction

Since our model works on a per-shape basis, we empirically adapt the training
scheme for the baseline models to accommodate single-shape fitting. We prior-
itize using the default setups for each baseline model. If they do not converge
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well within this setup, we increase the training iterations and/or enhance super-
vision signals, capped at a maximum of 10 minutes per shape training cost on
an NVIDIA RTX4090 GPU.

For SQ, we train the model on each input shape for 4,000 iterations. For
Cuboid, we train the model on each input shape for 10,000 iterations. For
SECAD-Net, we pretrain the model on the entire dataset for 1,000 epochs, fol-
lowed by fine-tuning on each model for another 2,000 iterations before inference.
ExtrudeNet and UCSG require longer training epochs to learn CSG operations.
For ExtrudeNet, we replace the voxel input with a point cloud of 32,764 points
and provide 100,000 occupancy points for supervision (3.05 × our input). Extru-
deNet is trained for 60,000 iterations, and UCSG is trained for 40,000 iterations.
For SweepNet, we train the model on each input shape for 2,000 iterations with-
out any pre-training. All models are trained with a maximum of eight primitives.

4.2 Quantitative Comparisons

We present quantitative measurements obtained for Chamfer-Distance (CD),
Volumetric Intersection over Union (IoU), and F-score with an accuracy thresh-
old of 0.05 (F1) [60].

The detailed quantitative results are presented in Table 1 for the GC-Object
dataset and in Table 2 for quadrupeds. Across all three metrics provided for the
GC-Object dataset, our method outperforms others. In the quadrupeds dataset,
our method demonstrates superior performance in all metrics compared to other
methods, except for IoU against SQ [39], where our method falls slightly short.

Table 1: Quantitative evaluations on GC-Object dataset. Our method outperforms
other alternatives in all the metrics included.

EN UCSG SECAD Cuboid SQ Ours Ourspcd

IoU ↑ 0.420 0.554 0.584 0.343 0.597 0.608 0.620

CD ↓ 0.0481 0.0170 0.0179 0.0280 0.0182 0.0168 0.0168

F1 ↑ 0.652 0.947 0.967 0.871 0.977 0.984 0.985

Table 2: Quantitative evaluations on quadrupeds. Our method with voxel input
slightly falls short of SQ [39] while leading with point cloud input.

EN UCSG SECAD Cuboid SQ Ours Ourspcd

IoU ↑ 0.197 0.436 0.270 0.259 0.512 0.482 0.562

CD ↓ 0.0668 0.0177 0.0224 0.0313 0.0179 0.0176 0.0168

F1 ↑ 0.458 0.952 0.932 0.840 0.964 0.967 0.989
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4.3 Qualitative Comparisons

The qualitative results are demonstrated in Fig. 10, it can be seen that sweep
surfaces, with appropriate scaling, have superior expressiveness. Sweep elements
like curvy-linear limbs can be compactly represented by sweep surfaces using a
single primitive, whereas other baseline primitives require multiple components
for approximation. By leveraging the sweeping axis from straight lines to curves,
sweep surfaces faithfully represent tubular parts such as ant legs which are chal-
lenging for sketch-and-extrude. Additionally, the scaling function enhances the
versatility of sweep surfaces, effectively capturing shapes such as the gradually
thinning gecko tail and the cone shape in the icecream.

4.4 Ablation Studies

We conducted an extensive ablation study on our total loss designs, deactivating
each loss component one at a time. In each experimental setting, we trained our
model for a fixed iteration of 1,000 and simultaneously assessed the convergence
speed. The qualitative outcomes are depicted in Fig. 5.

As illustrated in Fig. 5, employing the full loss incorporating all four com-
ponents yields results that closely mirror the input. When Lpars is disabled,
there is a noticeable increase in the utilization of primitives to compensate for
fine-scale details. Similarly, omitting the overlap loss Lol leads to the emergence
of undesired overlaps, particularly evident in the body of the dog. Furthermore,
excluding the axis loss Laxis results in a loss of fidelity in preserving the curvy
shape of the dog, yielding a more cumbersome appearance. These observations
underscore the significance of each component within our loss framework. Addi-
tional results can be found in the supplementary material.

FullInput No parsimony loss No axis loss OracleNo overlap loss

Fig. 5: Shape abstraction results with various loss settings. Our model performs the
best with all loss functions equipped.

We additionally assess the impact of the parametric complexity of sweep
surfaces by increasing the number of control points from 3 to 4. A qualitative
example is demonstrated in Fig. 6. With both options, the model can make a
reasonable abstraction of the input shape. Although our standard configuration
utilizes 3 control points for our B-spline axis, our method also performs effec-
tively with 4 control points. This indicates the relative robustness of our method
against variations in the number of axis control points.
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SQ

Input

SECAD Ours Oracle

3 control points 4 control points Oracle

Fig. 6: Ablation study showing how the number of control points affects the abstraction
results. While our default is to have 3 control points for our B-spline axis, our method
performs well with 4 control points too.

Lastly, we conduct a sensitivity test on the medial axis. The medial axis is
a crucial component in SweepNet, leading to a faster and more rational fitting
of sweep surfaces. Despite the reliance of SweepNet on this skeletal prior, our
method exhibits a certain degree of robustness against noisy medial axes. We
showcase two examples in Figure 7. In the first example, we inject Gaussian
noise with a standard deviation of 0.01 to the extracted gecko medial axis. In
the second example, the extracted medial axis of the octopus is incomplete,
missing the head. In both cases, SweepNet can compensate for the faulty part
and produce reasonable abstracted results.

Oracle ExtrudeNet UCSG Ours Oracle ExtrudeNet UCSG Ours

Oracle Perturbed 
medial axis Sweeping axis Ours Oracle

Incomplete 
medial axis Sweeping axis Ours

Fig. 7: Shape abstraction results with noisy or incomplete medial axis guidance.

4.5 Editablity

In this section, we illustrate the flexibility of parametric sweep surfaces through
post-creation editing. We present a case study in Fig. 8, where the faucet valve is
rotated by applying an affine transformation to the sweeping axis control point
coordinates, demanding a change to only 9 float numbers. We provide additional
edit examples in the supplementary material.

5 Conclusion, Limitations, and Future Work

Our method faces some limitations and future directions can be explored. The
current model falls short in representing high-porosity or overly thin objects with
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Fig. 8: Primitive editing of spinning faucet valve by altering sweep surface parameters.

solid sweep surfaces. Moreover, shape abstraction tends to struggle when deal-
ing with complex models containing numerous intricate details (refer to Fig. 9).
Our method performs optimally when the provided model includes sweep ele-
ments. If the model lacks such elements, our method may not achieve the most
favourable outcome. Hence, an intriguing area for exploration lies in integrat-
ing neural sweepers with other types of primitives within more complex systems
(e.g., CSG techniques) to capture geometric intricacies while maintaining com-
pactness. Also, currently SweepNet fits to each model individually, which can
encounter local optimums at different initialization, future research can be done
to extend this work for a generalizable shape abstraction model.

SQInput SECAD Ours OracleExtrudeNet UCSG Cuboid

Fig. 9: Failure cases of shape abstraction methods.

In this paper, we presented SweepNet , a method designed for shape abstrac-
tion through the utilization of sweep surfaces. Our approach introduces a novel
and compact parameterization that facilitates intuitive editing and effectively
retains shape details. The integration of neural sweepers introduces a new way
to incorporate challenging primitives into shape abstraction tasks. Neural sweep-
ers can be seamlessly plugged and played in other deep learning networks for
sweep surface production or tailored to tackle other complex geometric primi-
tives, providing a versatile tool for advancing shape abstraction techniques. Col-
lectively, our model showcases its ability to accurately predict shape abstractions
via sweep surfaces without the need for supervision. We have also demonstrated
the superiority of our approach over conventional methods in shape abstraction
targeting on curvy-feature objects. In conclusion, SweepNet is a step further in
3D shape abstraction, combining the strengths of sweep surfaces with efficient
parameterization and dynamic scaling. While there are limitations to address,
the potential for future enhancements is vast.
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SQInput SECAD Ours OracleExtrudeNet UCSG Cuboid

SQInput SECAD Ours OracleExtrudeNet UCSG Cuboid

Fig. 10: Qualitative comparison among ExtrudeNet [45], UCSG [24], SECAD-Net [29],
Cuboid [73], SQ [39] and our method. Models abstracted by our method requires less
primitives while better representing curvy geometric features.
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