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A Formalization of Empirical Set-up

The Information Bottleneck Lagrangian in Sect. 3 cannot be computed because
we do not have access to the analytical form of the joint distributions of the
variables (x,h), (h,y) and (x, ĥ), (ĥ,y). Even defining, let alone computing,
the Shannon Information for random variables that are deterministic maps ϕ(·)
of variables h defined in the continuum is non-trivial [1]. It is possible, how-
ever, to bound the Information Bottleneck, which is not computable, with the
Information Lagrangian [2], which only depends on the datasets Dy,Dz and Ds.
However, the bound depends on constants that are functions of the complexity
of the datasets, which are different for different tasks, which would render them
useless in answering the question in (3). Therefore, we consider the validation
error as a proxy of residual information:

Lz(w
′′|w) =

∑
hn=ϕw(xn)

− log pw′′(yn|hn) ≃ H(y|h) (1)

for pre-training using depth estimation, and

Ly(w
′′|w′) =

∑
ĥn=ϕw′ (xn)

− log pw′′(yn|ĥn) ≃ H(y|ĥ) (2)

for pre-training using another pre-training method. The complexity terms I(h;x)
and I(ĥ;x) are minimized implicitly by the capacity control mechanisms in the
architecture (i.e., the maps ϕw(·|Dz) and ϕw′(·|Dy)), for instance pooling; in the
regularizers, for instance weight decay and data augmentation [1]; and in the
optimization, for instance stochastic gradient descent [3]. The losses above are
computed by summing over the samples in the validation set Ds = {xn,yn}.

B Implementation Details

B.1 Warping

x̂(i, j) = x ◦ π−1
g,z(i, j) (3)
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is the warping of an image x onto the image plane of another camera related to
it by a change of pose g ∈ SE(3), through the depth map z, via a reprojection
map π−1

π−1(i, j) = K+π(RtK
−1[i, j, 1]T z(i, j) + Tt) (4)

that embeds a pixel (i, j) in homogeneous coordinates, places it in the camera
reference frame via a calibration matrix K, back-projects it onto the scene by
multiplying it by the depth z(i, j) = ϕw(x(i, j)|Dz) and then transforming it to
the reference frame of another camera with a rigid motion g = (R, T ), where
the rotation matrix R ∈ SO(3) and the translation vector T ∈ R3 transform the
coordinates of spatial points P ∈ R3 via P 7→ RP + T . Here π is a canonical
perspective projection π(P ) = [P (1), P (2)]/P (3) and the calibration map K+

incorporates quantization into the lattice. Here, we assume that the intrinsic
calibration matrix K is known, otherwise it can be included among nuisance
variables in the optimization along with the inter-frame pose gt when minimizing
the reprojection error ℓ in (3).

Note that the reprojection error [5, 19–21] could be minimized with respect
to w, which is shared among all images and yields a depth map through zt =
ϕw(xt|Dz), or directly with respect to zt in (4), which does not require any
induction. Since the goal of pre-training is to capture the inductive bias we
adopt the former and discuss it in detail in Sect. 5.

B.2 Training and Evaluation Details on KITTI

Pre-training for unsupervised depth estimation. Monodepth2 is trained
by optimizing a linear combination of photometric reprojection error and an
edge-aware local smoothness prior

L(w′) = wphℓph + wsmℓsm, (5)

where

ℓph =
∑
i,j,n,t

(1− SSIM(xn
t+1(i, j), x̂

n
t (i, j))) +

α|xn
t+1(i, j)− x̂n

t (i, j)|1 (6)

x̂t is the warped image (3) and ℓsm is the edge-aware smoothness prior

ℓsm =
∑
i,j,n,t

|∂Xznt (i, j)|e−|∂Xxn
t (i,j)| +

|∂Y znt (i, j)|e−|∂Y xn
t (i,j)|, (7)

wph and wsm are hyper-parameter weights.

Semantic segmentation fine-tuning. Following the notation in Sect. 3 in the
main paper, we denote with ϕw′′ : x 7→ ŷ the semantic segmentation network
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to be fine-tuned, which maps an image x to a semantic label y. Note that ϕw′

(classification network) is parameterized by weights w′ of the ‘encoder’ network,
and ϕw (depth network) is parameterized by weights w of both the ‘encoder’ and
a ‘decoder’. When pre-trained for classification, we initialize the encoder part of
w′′ by w′ and the decoder part by random weights; when pre-trained for depth,
we initialize both encoder and decoder in w′′ using w, except for the last layer,
where we change to a randomly initialized fully-connected layer with soft-max.
During semantic segmentation fine-tuning, we update w′′ (see equation (11) and
(12) in the main paper) by minimizing the cross entropy loss

L(w′′|•) =
∑

i,j,n,k

− log(ŷn(i, j)))1(yn(i, j) = k) (8)

where i, j are the pixel coordinates, n is the number of images in the training set,
k is the class label, ŷ = ϕw′′(xn) is the network output. This is implemented via
the Negative Log Likelihood (NLL) loss in Pytorch. Under different experimental
settings, we either update all parameters in w′′ or only the decoder part of w′′

to minimize (8).
KITTI contains 21 semantic classes, and we fine-tune on all of them. How-

ever, since we do not use a separate dataset with segmentation labels, many of
the semantic classes are seldom seen (e.g., ‘train’, ‘motorcycle’), especially with
just 16 training images. In such cases, these classes always receive zero IoU,
which downweights the mIOU metric (but still yields high P.Acc). Therefore, we
compute mIoU on a subset of 7 representative classes unless stated otherwise.
The results of 21 classes exhibit the same trends.

Image normalization. In fine-tuning, we apply the same image normalization
that is consistent with the pre-training step. If the network is pre-trained by
ImageNet classification, we normalize the image values by mean=[0.485, 0.456,
0.406], std=[0.229, 0.224, 0.225]; if pre-trained by Monodepth2, we normalize
the image values to [0,1]; we also normalize to [0,1] when training from random
initialization.

Optimizer. After a grid search, we choose 1× 10−5 as the initial learning rate
for the ADAM optimizer. The learning rate is updated by a standard cosine
learning rate decay schedule in every iteration.

B.3 Details for training optical flow

To train a neural network fθ parameterized by θ to estimate optical flow for a
pair of images (xt, xt+1) from time step t to t+ 1, we leverage the photometric
reconstruction loss [12, 14] by minimizing a color consistency term and a struc-
tural consistency term (SSIM) between an image xt+1and its reconstruction x̂t

given by the warping xt with the estimated flow fθ(xt, xt+1):
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ℓph =
∑
n,i,j,t

λco

(
|xn

t+1(i, j)− x̂n
t (i, j)|

)
+

λst

(
1− SSIM(xn

t+1(i, j), x̂
n
t (i, j))

)
, (9)

where x̂t = xt ◦ fθ(xt, xt+1), fθ(·) ∈ R2HW and λco = 0.15, λst = 0.15 are the
weights for color consistency and SSIM terms for Lph, respectively.

Additionally, we minimize an edge-aware local smoothness regularizer:

ℓsm = λsm

∑
n,i,j

λX(i, j)|∂Xfθ(x
n
t , x

n
t+1)(i, j)|+

λY (i, j)|∂Y fθ(xn
t , x

n
t+1)(i, j)| (10)

where λsm = 5 is the weight of the smoothness loss, ∂X , ∂Y are gradients along
the x and y directions, and the loss for each direction is weighted by λX :=
e−|∂Xxn

t | and λY := e−|∂Y xn
t | respectively.

We trained fθ using Adam optimizer with β1 = 0.9 and β2 = 0.999. We set
the initial learning rate to be 5 × 10−4 for the first 25 epochs and decreased it
to 5× 10−5 another 25 epochs. We used a batch size of 8 and resized each image
to 640 × 192. Because KITTI has two video streams from left and right stereo
camera, we randomly sample batches from each stream with a 50% probability.
Training takes ≈ 10 hours for ResNet18 backbone and ≈ 20 hours for ResNet50.

B.4 Details for training on Cityscapes

Different from KITTI, we perform pre-training for depth on a modified DeepLabV3
architecture. We change the prediction head to output a single depth channel in-
stead of 19 classification channels. We follow the standard image normalization of
ImageNet training. We use ADAM optimizer with an initial learning rate of 1e-4
and linear learning rate decay. Data augmentations include brightness, contrast,
saturation and random horizontal flips. Each model is trained on a single Nvidia
GeForce GTX 1080 Ti GPU with a batch size of 8 for 15000 iterations, which
takes approximately 6.5 hours. During fine-tuning, we re-initialize the prediction
head for segmentation. Each model is trained on two Nvidia GeForce GTX 1080
Ti GPUs. We use SGD optimizer with polynomial learning rate decay. We did
a learning rate search and report the best performing settings. We find using
0.1 as the initial learning rate yields optimal results when pre-trained by depth,
while 0.01 works the best with ImageNet pre-training. All other settings follow
the original DeepLabV3 implementation. Limited by the GPU memory we crop
training images to 512×512 patches and set the batch size to be 8. Each model is
trained for 60000 iterations (30000 iterations under ‘controlled’ settings), taking
1̃5 hours, and we report the accuracy after the final epoch.
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Fig. 1: Training ResNet with high resolution images. Similar to low resolution
images, pre-training on depth also improves semantic segmentation accuracy on high
resolution images.

B.5 Details for training on NYU-V2

Because NYU-V2 provide image and depth map pairs, similar to Cityscapes, we
directly train Monodepth2 ϕw by minimizing an L1 loss:

ℓL1 =
∑
n,i,j

1(zn(i, j) > 0)
(
|ϕw(x

n)(i, j)− zn(i, j)|
)
, (11)

where ϕw(x) is the predicted depth for an image x and z is the ground truth
depth from a Microsoft Kinect. Because the ground truth is only semi-dense, this
loss is only computed where there is valid depth measurements i.e., z(i, j) > 0.

We trained Monodepth2 using the ADAM optimizer with β1 = 0.9 and β2 =
0.999. We set the initial learning rate to be 1× 10−4 for 5 epochs and decreased
it to 5×10−5 another 5 epochs for a total of 10 epochs. We used a batch size of 8
and resized each image to 448×384. For data augmentation, we perform random
brightness, contrast and saturation adjustments within the range of [0.80, 1.20]
with a 50% probability. Pre-training the depth network takes ≈ 19 hours for
ResNet18 backbone and ≈ 30 hours for ResNet50. After pre-training, we do
semantic segmentation fine-tuning on the training set. As with KITTI, we apply
the ADAM optimizer with 1×10−5 initial learning rate and cosine learning rate
decay, and restrict data augmentation to horizontal flipping. Limited by GPU
memory, for ResNet18 we use batch size 32, and for ResNet50 we use batch size
16. All models are trained for 20000 iterations. Each experiment is repeated by
four independent trials.

C Experimental Results (Continued)

C.1 Result on high-resolution images (KITTI)

In Fig. 1 we show results trained with full resolution (1024×320) and full dataset
(200 images), in which case we train for an extended number of iterations
(50000). Pre-training by depth still outperforms ImageNet pre-training and ran-
dom initialization. Note that in this case using random initialization is unstable
and training diverges after 30000 iterations.

We also conduct experiments on high-resolution images. Results are consis-
tent with low-resolution experiments. Although both ImageNet and depth ini-
tialization converged to the same level of accuracy, the depth pre-trained model



6 D Lao et al.

D
ee

pl
ab

Fig. 2: Training Deeplab on high resolution images. Compared to lower resolu-
tions, performance improves for different initializations. Training loss (left) is similar
between ImageNet and depth initialization, but mIOU (center) and pixel accuracy
(right) are higher for depth initialization for similar loss values.

Fig. 3: mIoU v.s. pixel accuracy during training DeepLab. At each same level
of mIoU, model pre-trained by depth has a higher pixel accuracy. This validates our
conjecture that the depth-pre-trained model learns ‘bigger’ classes faster.

shows a high accuracy in earlier iterations. This is interesting given that training
loss of both ImageNet and depth pre-train are almost the same. We conjecture
that the features learned by single-image depth estimation are more conducive
to segmenting ‘bigger’ classes (e.g. ‘road’, ‘building’) which are mostly rigid and
take up larger portions of the image.

To further investigate this behavior, in Figure 3 we plot the mIoU curve on
all (21 classes), and a scatter plot of mIoU versus pixel accuracy in the training
process. While mIoU on all 21 classes follows the trend observed on 7 classes, the
scatter plot shows that at each same level of mIoU, models pre-trained by depth
have higher pixel accuracy. This validates our conjecture that the depth-pre-
trained model learns ‘bigger’ classes faster, since higher performance on these
classes will result in high pixel accuracy as they have more pixels.

C.2 Training loss on Cityscapes

In Fig. 4 we show training loss of early iterations on Cityscapes shows that train-
ing on small crops of the image improves convergence. We revisit the question
we posed in Table 4 in the main text regarding this phenomenon below.

C.3 Visualizations of Segmentation

Fig. 5 shows head-to-head comparisons of representative outputs from semantic
segmentation models that have been pre-trained with ImageNet classification,
and pre-trained with monocular depth estimation. As discussed in Sect. 4.1 Neu-
ral Activations, pre-training on ImageNet biases the model towards capturing
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Fig. 4: Training loss of early iterations on Cityscapes. In early training itera-
tions, the loss of Depth-cropped decreases significantly faster than other initializations.

generic textures exhibited in the image rather than that object shape (see Fig. 6).
This results in a loss of details when fine-tuning for the downstream segmenta-
tion task where the goal is precisely to capture object boundaries. We illustrate
the drawback of pre-training on ImageNet in Fig. 5-left where the model over-
predicts the street sign in the center (highlighted in yellow) and under-predicts
the pedestrians on the right (highlighted in red) with spurious predictions of the
vehicle class alongside them. This is in contrast to pre-training with monocular
depth estimation, where the downstream segmentation model is able to capture
the edge between the street sign and building regions in the middle as well as the
small pedestrian regions in the far distance on the right. Additionally, we show
in Fig. 5-right that an ImageNet pre-trained model has difficulty outputting the
same class for a consistent surface like the sidewalk on the left, which is unlike a
model pre-trained on depth. This is also supported by our results in Appendix C
and Sect. 4.1 in the main text where the “larger” object classes tend to be more
easily learned (higher general P.Acc) by a model pre-trained on depth than one
trained on ImageNet.

While classification is a semantic task, training for it requires discarding nui-
sances including objects (other than one that is front and center, see neural
activations in Fig. 6 and results with a frozen pre-trained encoder in Fig. 4)
that may exist in the background of an image. Pre-training for depth, on the
other hand, involves solving correspondence problems, which naturally requires
estimating the boundaries of objects and consistent locally-connected, piecewise
smooth surfaces. Thus, one may hypothesize that pre-training to predict depth
or geometry process makes it more straightforward to assign these surfaces with
a semantic class or label i.e. road, pedestrian, building. We conjecture that this
may play a role in sample complexity as illustrated by the performance improve-
ments observed over ImageNet pre-training when training with fewer samples
(Fig. 3).

C.4 Additional Results on Object Detection

To demonstrate the versatility of depth pretraining, we extend our experiments
to object detection. Using DepthAnything as the depth pre-training method, we
conducted a comparison with DINO-V2. The results are shown in Tab. 1. Our
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Fig. 5: Head-to-head comparison between ImageNet and monocular depth
estimation pre-training for semantic segmentation on Cityscapes. We visual-
ize the representative outputs of segmentation models pre-trained on monocular depth
(row 3) and ImageNet (row 4). Pre-training with depth enables sharper object bound-
aries, i.e. street sign highlighted in yellow, pedestrians highlighted in red, and more
consistent class predictions on large objects like the sidewalk on the left in the right
column. We note that pre-training on ImageNet also yields spurious predictions like
the vehicle class next to the pedestrians (highlighted in red) and the street sign class
on the street light in the middle of the left image. Better viewed zoomed-in and in
color.

findings reveal that depth as pre-training outperforms DINO-V2 on the ADE20K
and Cityscapes datasets, while yielding comparable performance on COCO.
This outcome is anticipated because DINO-V2’s pre-training dataset is object-
centric, aligning closely with COCO’s characteristics. In contrast, ADE20K and
Cityscapes datasets exhibit a bigger domain gap, suggesting that depth pre-
training may generalize to diverse data domains. We note that this experiment
only marks the tip of the iceberg; related tasks include moving object detec-
tion [11,13], which we leave for future work.

D Extended Discussion

D.1 Cropping Size During Pre-training

One may object that once a depth map has been estimated, a semantic map is
just a matter of aligning labels. However, depth is not necessarily a piecewise
constant function, although it is generally piecewise smooth. So, for instance,
the road at the bottom center of KITTI images is a slanted plan that does not
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Table 1: Quantitative results of object detection. We initialize a Vit-L for
MaskRCNN using DINOv2 and DepthAnything pretrained weights on three object
detection datasets. Depth pretraining improves on ADE20K and Cityscapes while be-
ing comparable on COCO.

ADE20K Cityscapes COCO

Pretraining mAP↑ mAP@50↑ mAP@75↑ mAP↑ mAP@50↑ mAP@75↑ mAP↑ mAP@50↑ mAP@75↑

DinoV2 0.326 0.509 0.354 0.321 0.540 0.310 0.499 0.719 0.540

Depth 0.334 0.521 0.355 0.327 0.548 0.332 0.499 0.720 0.539

correspond well to any constant value, yet the model converts it into a consistent
class.

One may also object that slanted planes at the bottom center of the visual
field have a strong bias towards being labeled “road” given the data on which
the model is trained.

For this reason, we conducted the experiments shown in Tab. 5, whereby we
select random crops of 3% of the size of the image, and use those for pre-training
rather than the full image. This way, there is no knowledge of the location of
the patch of the slanted plane relative to the image frame. We were expecting a
degradation in performance, but instead observing an improvement.

While in theory full consideration of the visual field is more informative,
provided sufficient training data, due to the limited volume of the training set and
the strong biases in the training data, breaking the image into smaller patches
and discarding their relation (position on the image plane) may help break the
spurious dataset-dependent correlations and lead to better generalization after
fine-tuning.

This conclusion is speculative, and we leave full testing to future work. The
important aspect of this experiment is to verify that fine-tuning semantic seg-
mentation after depth pre-training is not just a matter of renaming a piecewise
smooth depth field into a piecewise constant labeled field.

D.2 Relation to Prior Arts

The primary objective of this study is to conduct an exhaustive examination
of the adoption of monocular depth as a pre-training technique for semantic
segmentation and to compare it with classification (which has been the de-facto
approach for weight initialization). It is acknowledged that prior research [6–8]
has also recommended the use of depth as a pre-training method. While we
are not claiming originality in using depth, our study stands out as the first
to systematically investigate this issue under different setups including network
architecture, resolution, and supervision. Nevertheless, there are also distinctions
between our study and these methods.

[8] performs pre-training by estimating relative depth on images, while we
focus on estimating absolute depth either through supervised or unsupervised
pre-training. We present results that contradict those of [8]. While [8] claim that
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Fig. 6: Image classification introduces uncontrolled biases when used to pre-train se-
mantic segmentation networks, where one requires an additional decoder. Depth esti-
mation, on the other hand, is not subject to semantic bias in the pre-training dataset,
and eliminates the need for human annotation, and can easily adapt the pre-training
dataset to the domain of interest. The question is whether such a process can improve
performance and reduce dependency of annotated pre-training datasets in fine-tuning
for semantic segmentation.

ImageNet is the better pre-training approach, our findings show better perfor-
mance when using our depth pretraining as compared to ImageNet initialization
alone. The difference in findings is suprising as we observe consistent perfor-
mance boost across our experiments; one possible reason may be that camera
calibration is available to us (also a valid assumption for real-world scenarios
that require semantic segmentation, such as self-driving), and it is well-known
that un-calibrated depth estimation is a more difficult problem than the cali-
brated case. Another difference (and the possible reason for the contradicting
results) is that [8] synthesizes relative depth from optical flow estimation net-
work, and train a depth prediction network by minimizing L1 difference between
predictions and relative depth. The authors also state that potential errors in
optical flow will impact (and compound the error in) the downstream depth.

[6, 7] use self-supervised depth prediction as a proxy task for semantic seg-
mentation, where the features are regularized to stay close to ImageNet features.
However, our experiments demonstrate that in some cases, ImageNet features
may not support the task of semantic segmentation as observed in Fig. 6, and
also empirically validated in Fig. 5. Even when we train the depth model with
ImageNet initialization, we do not assume that the features should remain largely
unchanged. Nonetheless, we are not against using ImageNet, as it is off-the-shelf
and can be useful to expedite training depth estimation networks, likely due to
the formation of generic filter banks in the early layers.

We would emphasize that our paper validates the findings in prior works
[6–8], yet provides a more comprehensive longitudinal study (across different
architectures, datasets, supervision, etc.) towards using monocular depth as pre-
training for semantic segmentation.

D.3 Insights On the Intuitions and Feasibility of Using Monocular
Depth as Pre-training

ImageNet classification is widely regarded as the primary task for pre-training
in the context of semantic segmentation. The dataset comprises more than 14
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million annotated images, collected through crowd-sourcing with the assistance
of around 15,000 paid annotators. Empirical studies have consistently confirmed
the advantages of using ImageNet for initial model training, resulting in sub-
stantial enhancements in the performance of semantic segmentation tasks. This
outcome is unsurprising, as both image classification and semantic segmenta-
tion involve understanding the meaning of objects in images. It’s important to
note that obtaining detailed pixel-level annotations for semantic segmentation is
a costly and resource-intensive process. Consequently, datasets specifically tai-
lored for semantic segmentation are considerably smaller in scale compared to
ImageNet, often differing by several orders of magnitude in terms of data size.

In contrast, the KITTI dataset, which is widely recognized for its use for
depth estimation for driving scenarios, consists of approximately 86,000 training
images. These images are captured at a rate of 10 frames per second, resulting in
less than three hours of driving video. Collecting this type of driving video data
is relatively straightforward and requires only a driver and a dashboard camera.
In addition to continuous video data, collecting training data for monocular
depth estimation can also utilize hardware, such as multi-view stereo systems
or depth sensors like Time-of-Flight (ToF) and Lidar. What is common among
these data sources is that they demand minimal labor and resources compared
to the extensive efforts needed for ImageNet data collection. This affordability
allows for the scaling up of initial model training directly within the domain of
interest.

From an intuitive perspective, it is more natural to transfer knowledge be-
tween tasks that share semantic similarities, such as between different semantic
tasks, than to transfer between tasks with distinct characteristics, like transition-
ing from a geometric task to a semantic task. The main problem is that image
classification is defined by induction and therefore does not only entail, but re-
quires a strong inductive bias, which opens the door to potentially pernicious
side-effects. Induction is required because, continuing the example of the image
labeled as “cow”, there is nothing in the image of a scene that would enable one
to infer the three-letter word “cow.” The only reason we can do so is because
the present image resembles, in some way implicitly defined by the training pro-
cess, different images, of different scenes, that some human has tagged with the
word “cow.” However, since images, no matter how many, are infinitely simpler
than even a single scene, say the present one, this process is not forced to learn
that the extant world even exists. Rather, it learns regularities in images, each
of a different scene since current models are trained with data aiming to be as
independent as possible, agnostic of the underlying scene.

Now, one may object that monocular depth estimation is itself undecidable.
This is why monocular depth estimators are trained with either multiple views
(motion or stereo), or with some form of supervision or partial backing from
additional modalities, such as sparse depth from lidar [10] or other range sensor
[16]. Then, a depth estimate is just a statistic of the learned prior. As a result,
depth estimation networks should never produce one depth estimate for each
image, but rather a distribution over depth maps, conditioned on the given
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image [23, 24]. Given an image, every depth map is possible, but they are not
equally likely. The posterior over depth given an image then acts as a prior in
depth inference using another modality, e.g., unsupervised depth completion.
The mode of this conditional prior can then be used as a depth estimate if one
so desires, but with the proviso that whatever confidence one may place in that
point estimate comes from inductive biases that cannot be validated

One additional objection is that, since depth requires optimization to be
inferred, and the choice of the loss function is a form of transductive bias, that is
no less arbitrary than inductive bias. But this is fundamentally not the case, for
the optimization residual in transductive inference refers to the data here and
now, and not to data of different images in different scenes. In other words, the
optimization residual is informative of the confidence of our estimate, unlike the
discriminant from an inductively-trained classifier [4].

In some cases, one enriches (augments) the predictive loss with manually en-
gineered transformation, calling the result “self-supervised learning.” Engineered
transformations include small planar group transformations like translation, ro-
tation, scaling, reflections, and range transformations such as contrast trans-
formation or colorization. But for such group transformations, learning is not
necessary since we know the general form of the maximal invariant with respect
to the entire (infinite-dimensional) diffeomorphic closure of image transforma-
tions [17]. One exception is occlusion and scale changes, which are not groups
once one introduced domain quantization. So, pre-training using masking, ubiq-
uitous in language models, does learn a preudo-invariant to occlusion, but rather
than simulating occlusions, one can simply observe them in the data (a video).
The only supervision is then one bit, provided temporal continuity: The fact
that temporally adjacent images portray the same scene. While one would as-
sume that video prediction as a pretraining task [9, 15, 18, 22] would then yield
representations with the same set of invariances to support semantics, surpris-
ingly it does not as evident by our findings in training with videos on optical
flow.

In this paper, we aim to bypass the artificial constraints imposed both by
supervised classification, and self-supervision. Instead, we simply use videos to
pre-train a model for depth estimation, without supervision. Then, one can use
supervision to fine-tune the model for semantic segmentation. These two tasks
are seemingly antipodal, yet depth estimation outperforms image classification
when used as pre-training for semantic segmentation.

This also addresses one last objection that one can move to our thesis, which
is that, since ImageNet data is available, it makes sense to use it. What we
argue here is that, actually, it does not. The argument is corroborated by ev-
idence: Pre-training on a geometric task improves fine-tuning a semantic task,
even when compared with pre-training with a different semantic task. Nonethe-
less, ImageNet pre-training can be useful to expedite training depth estimation
networks, likely due to the formation of generic filter banks in the early layers.
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