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Abstract. The question of whether pre-training on geometric tasks is
viable for downstream transfer to semantic tasks is important for two
reasons, one practical and the other scientific. If the answer is positive,
we may be able to reduce pre-training costs and bias from human an-
notators significantly. If the answer is negative, it may shed light on the
role of embodiment in the emergence of language and other cognitive
functions in evolutionary history. To frame the question in a way that is
testable with current means, we pre-train a model on a geometric task,
and test whether that can be used to prime a notion of “object” that
enables inference of semantics as soon as symbols (labels) are assigned.
We choose monocular depth prediction as the geometric task, and se-
mantic segmentation as the downstream semantic task, and design a
collection of empirical tests by exploring different forms of supervision,
training pipelines, and data sources for both depth pre-training and se-
mantic fine-tuning. We find that monocular depth is a viable form of
pre-training for semantic segmentation, validated by improvements over
common baselines. Based on the findings, we propose several possible
mechanisms behind the improvements, including their relation to dataset
size, resolution, architecture, in/out-of-domain source data, and validate
them through a wide range of ablation studies. We also find that optical
flow, which at first glance may seem as good as depth prediction since it
optimizes the same photometric reprojection error, is considerably less
effective, as it does not explicitly aim to infer the latent structure of the
scene, but rather the raw phenomenology of temporally adjacent images.
Code: https://github.com/donglao/DepthToSemantic.
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1 Introduction

We probe the following seemingly counter-intuitive hypothesis:
Can pre-training on a geometric task benefit a downstream semantic task?

Geometric inference is often viewed as a low-level vision task requiring little
abstraction that is needed for semantics [26]. For example, depth can be ac-
quired through minimizing reprojection error, i.e. from multi-view or videos, or
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directly from range sensors. Both can be performed procedurally, without in-
ductive learning, rendering depth a meaningless task for pre-training. However,
induction is needed to infer one 3D scene among infinitely many compatible
with the same 2D image. Therefore, if a model could solve this ill-posed prob-
lem, it would provide evidence of the viability of pre-training with little to no
human intervention, which is important in specialized data domains for which
little annotated data is publicly available.

In this paper, we focus on testing monocular depth as the pre-training geo-
metric task, and semantic segmentation as the downstream semantic task. They
are purposefully chosen: Training deep neural networks for semantic segmenta-
tion requires labor-intensive pixel-level annotation, so the choice of pre-training is
essential to its performance. Existing studies have shown mixed results about the
relationship between the two tasks. Taskonomy [57], a framework for measuring
relationships between visual tasks, suggests that depth estimation is “far” from
semantic segmentation, while recent work [17] shows that depth pre-training can
beat “closer” tasks like image classification. Prior work [19, 23, 40, 42] has also
shown improvement in semantic segmentation when incorporating depth. This
mixed evidence motivates us to take a closer look at the underlying mechanism
of how monocular depth may benefit semantic segmentation.

Another more subtle reason for exploring this hypothesis is that pre-training
is often performed on heavily human-biased datasets [11,38], where the photog-
rapher who framed the picture meant to convey a particular concept (say, a cup),
and therefore took care to make sure that the manifestation of the concept (the
image) prominently features the object by choice of vantage point, illumination,
and (lack of) occlusion. This bias is mitigated if data is not purposefully orga-
nized into “shots.” Unfortunately, existing datasets are mostly composed of pur-
posefully framed shots which could obfuscate the analysis. We note that depth
can be inferred without any semantic interpretation [26] regardless of whether
the data is captured purposefully or randomly. With monocular depth as the
pre-training task, there are two ways of reducing the aforementioned human se-
lective bias: The first involves directly pre-training within the specific domain of
interest, leveraging the simplicity of data gathering; The second way is scaling
up pre-training by incorporating diverse sources of data, which is made possible
by recent developments [33,41,54] on relative depth estimation.
Methods. We formalize the main hypothesis in Sect. 3. Since it cannot be tested
analytically without knowledge of the joint distribution of test images and labels,
we propose an empirical testing protocol. We test on monocular depth models
trained under multiple forms of supervision, including structure-from-motion,
binocular stereo, and depth sensors. We then change the prediction head of the
resulting network, either the final layer or the whole decoder, and fine-tune it
for semantic segmentation (Fig. 1). We consider depth estimation as a viable
pre-training option if it yields comparable improvements to downstream seman-
tic segmentation tasks as other common pre-training practices, e.g . ImageNet
classification. To this end, we design a series of controlled experiments to test the
effect of choice of initialization (Tab. 1, Fig. 2), training with various datasets
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sizes (Fig. 3), choice of network component to be frozen and fine-tuned (Fig. 4),
effect of resolution of training images (Fig. 5). Conclusions are drawn from both
quantitative and qualitative (Fig. 6) results.
Findings. Pre-training for depth estimation improves the performance of down-
stream semantic segmentation across different experimental settings. Particu-
larly, we show that depth estimation is indeed a viable pre-training option as
compared to existing methods (Tab. 4). For example, compared to classification,
using depth on average improves by 5.8% mIoU and 5.2% pixel accuracy on
KITTI. As a sanity check, we test both a depth network pre-trained from scratch
and one trained after ImageNet initialization, and both outperform classification-
based pre-training in downstream semantic segmentation. To control the effect
of our choice of architecture, we used our pre-trained encoder to initialize a
standard semantic segmentation network [5]. We observed similar findings on
Cityscapes and NYU-V2 regardless of how depth training is supervised. Inferring
depth without explicit supervision typically involves minimizing the prediction
error, just like optical flow. Somewhat surprisingly, not only does pre-training
for depth outperform optical flow, but the latter is often worse than random
initialization (Fig. 7). One may also argue that observed improvements mainly
come from the availability of in-domain pre-training data for depth. To test this
conjecture, we fine-tune a depth model [55] trained on large-scale out-of-domain
data. Improvements in semantic segmentation reveal that when trained at scale,
depth models show strong transferability to unseen downstream data domains.

2 Related Work

Pre-training aims to learn a representation (function) of the test data that is max-
imally informative (sufficient), while providing some kind of complexity advan-
tage. In our case, we measure complexity by the validation error after fine-tuning
on limited amount of labeled data, which measures the inductive value of pre-
training. The recent literature comprises a large variety of “self-supervised” meth-
ods that are purportedly task-agnostic. In reality, the task is specified indirectly
by the choice of hand-designed nuisance transformations that leave the outcome
of inference unchanged. Such transformations are sampled through data augmen-
tation while the image identity holds constant (Contrastive Learning) [4,8,9,38],
or reconstruction [3]. Group transformations organize the dataset into orbits,
which contrastive learning tries to collapse onto its quotient, which is a maxi-
mal invariant. Such a maximal invariant is transferable to all and only tasks for
which the chosen transformation is uninformative. For group transformation, the
maximal invariant can, in theory, be computed in closed form [44]. In practice,
contrastive learning are extended to non-group transformations, e.g . occlusions,
as seen in language [2] and images [7]. All self-supervised methods boil down
to hand-designed and quantized subsets of planar domain diffeomorphisms (dis-
crete rotations, translations, scaling, reflections, etc.), range homeomorphisms
(contrast, colormap transformations) and occlusion masks.
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Fig. 1: Diagram for different pre-training and fine-tuning setups. (a) Common
practice: pre-train the encoder, e.g . on ImageNet, attach a decoder, and fine-tune
the network. (b) Our best practice: pre-train the network by monocular depth, and
fine-tune for semantic segmentation. (c) Cross architecture: for fair comparisons with
common practice, we pre-train by depth, replace the decoder, and fine-tune. (d) To test
the quality of pre-trained encoders, we fix the encoders and fine-tune decoders only.

In our case, rather than hand-designing the nuisance transformations as-
sumed to be shared among pre-training and fine-tuning tasks, we let the scene
itself provide the needed supervision: images portend the same scene, either from
the same timestamp (stereo) or adjacent in the temporal domain (video frames),
so their variability defines the union of nuisance factors. These include domain
deformations due to ego- and scene motion, range transformations due to changes
in illumination, and occlusions. In addition to sharing nuisance variability, pre-
training and fine-tuning tasks should ideally also share the hypothesis space. It
may seem odd to choose a geometric task, where the hypothesis space is depth,
to pre-train for a semantic task, where the hypothesis space is a discrete set of la-
bels. However, due to the statistics of range images [21] and their similarity to the
statistics of natural images [22], this is actually quite natural: A range map is a
piecewise smooth function defined on the image domain, whereas a segmentation
map is a piecewise constant function where the levels are mapped to arbitrary
labels. As a result, the decoder for depth estimation can be easily modified for
semantic segmentation. A discussion of this choice, specifically on the represen-
tational power of deterministic predictors, in Sect. 5. [19, 23] also utilize depth
for semantic segmentation. [23] proposes pre-training on relative depth predic-
tion, and [19, 20] utilizes self-supervised depth estimation on video sequences.
Our experiments validate their findings. We further investigate whether features
obtained purely from monocular depth improve semantic segmentation.

Monocular depth [16,50] may use different supervision, either through addi-
tional sensors [14, 51, 52], or synthetic data [36, 47, 56], but none require human
annotation. Some use regularizers with sparse seeds [35, 48, 49], or adopt pre-
trainings [41]. We design experiments agnostic to how depth models are trained,
but also make comparisons across different forms of depth supervision (Tab. 2).

3 Formalization

Let x : D � R2 ! f0; : : : ; 255g3 be an image, where the domain D is quantized
into a lattice, z : D ! f1; : : : ; Zg a depth map with Z depth or disparity levels,
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and y : D ! f1; : : : ;Kg a semantic segmentation map. In coordinates, each pixel
in the lattice, (i; j) 2 f1; : : : ; Ng � f1; : : : ;Mg is mapped to RGB intensities by
x(i; j), a depth by z(i; j), and a label by y(i; j). Despite the discrete nature of the
data and the hypothesis space, we relax them to the continuum by considering
the vectors x 2 RNM3, y 2 RNMK and z 2 RNM . With a slight abuse of notation,
y 2 f1; : : : ;Kg denotes a single label and �y 2 RK its embedding, often restricted
to a one-hot encoding.

Now, consider a dataset Dz = fxi
t; z

i
tg

V;Ti

i;t=1 comprised of V image sequences
each of length Ti. For the simplicity of the notations, in the case of multi-view
stereo, we also consider multiple 2D image inputs as a “sequence” without loss
of generality. In the case of supervised depth estimation, synchronized depth
maps zi

t’s are measured by a range sensor. Typical datasets supporting depth
estimation may include just image sequences or both modalities.

Training for monocular depth estimation yields a mapping �w : x 7! z,
parametrized by weights w in a neural network, via

w = arg min
w;gt

∑
i;j;n;t

‘(xn
t+1(i; j); x̂n

t (i; j)) + �
∑

i;j;n;t

‘(zn
t (i; j); ẑn

t (i; j)) (1)

where x̂t is the warping of an image x from t to t+1 based on camera pose gt. Here
we consider a generic formulation for different modalities of depth estimation.
The first term in Eq. (1) measures reprojection error across frames, and the
second term measures the distance between estimated depth values and the
ground-truth from the range sensor. In the case of unsupervised depth estimation
from videos, e.g . [16], only the reprojection loss is considered; while in the case
of supervised depth estimation from single images, e.g . [37], Ti = 1 for all i’s, so
only the second term is minimized.

The goal is to use these representations as encodings of the data to then
learn a semantic segmentation map. In practice, the representations above are
implemented by deep neural networks, that can be truncated at intermediate
layers thus providing embedding spaces larger than the respective hypothesis
spaces. We refer to the parts before and after this intermediate layer encoder and
decoder, respectively. We overload the notation and refer to the encoding as h =
�w(x) for both depth estimation and other pre-training methods, presumably
with weights w0, assuming they have the same encoder architecture. The goal of
semantic segmentation is then to learn a parametrized map  w′′ : h 7! y using
a small but fully supervised dataset Ds = fxn;yngN

n=1, by minimizing some loss
function or (pseudo-)distance in the hypothesis space d(y; ŷ), where

w00 = arg min
w

N∑
n=1

d(yn;  w(hn)) (2)

plus customary regularizers. In the aggregate, we have a Markov chain: x �!
h = �w(x) �! y =  w′′(h) =  w′′ � �w(x) for depth estimation, and x �! ĥ =
�w′(x) �! y =  w′′ � �w′(x) for other pre-training methods. A representation
obtained through a Markov chain is optimal (minimal sufficient) only if the
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Table 1: Semantic segmentation accuracy on KITTI. Unsupervised depth as
pre-training improves semantic segmentation accuracy under all settings. Our best
practice (in blue ) improves common practice (in purple ) by 7.53% mIoU and 4.68%
pixel accuracy. Freezing the encoder with ImageNet pre-training (in red ) is worse than
no pre-training (random initialization). DeepLabV3 y : with ResNet50 encoder.

Fine-tune All Freeze Encoder
ResNet18 ResNet50 DeepLabV3y ResNet18 ResNet50

Pre-training mIoU P.Acc mIoU P.Acc mIoU P.Acc mIoU P.Acc mIoU P.Acc
None 41.35 70.75 44.66 73.37 21.93 52.32 41.24 70.52 37.72 67.38
ImageNet 45.15 72.39 44.65 73.06 43.39 72.66 33.33 65.34 32.03 62.53
Depth-Rand 46.00 72.43 49.90 76.28 43.43 71.34 43.02 72.38 45.79 74.71
Depth 50.20 76.39 50.92 77.34 43.77 72.68 46.53 74.42 46.55 74.48

intermediate variable h or ĥ reduces the Information Bottleneck [45] to zero.
In general, there is information loss, so weformalize the key question as
whether the two Information Bottleneck Lagrangians satisfy the following:

H (y jh) + �I (h; x)
?
� H (y jĥ) + � 0I (ĥ; x) (3)

where� and � 0 are hyperparameters that can be optimized as part of the training
process, andI; H denotes the (Shannon) Mutual Information and cross-entropy
respectively. If the above is satis�ed, then pre-training for depth estimation is a
viable option, or even better than pre-training with another method. It would
be ideal if this question could be settled analytically. Unfortunately, this is not
possible, but the formalization above suggests a protocol to settle it empirically.

To test this empirically, we use the validation error on a supervised dataset
Ds as a proxy for residual information. We conduct �ne-tuning under several
con�gurations (Fig. 1): with respect to w00using Ds, i.e. yielding a comparison
of the raw pre-trained back-bones (encoders,w; w0), or with respect to both w00

and w (for depth estimation) or w0 (for other pre-training methods). Finally,
all four resulting models can be compared with one obtained by training from
scratch by optimizing a generic architecture with respect tow00alone.

4 Experiments

4.1 Controlled Experiments with Few-shot Fine-tuning

We �rst cover an extensive collection of controlled experiments and ablations
to gain insights into the main hypothesis. We speci�cally conduct experiments
under the few-shot setting, where only a small amount of labels are available for
�ne-tuning, to highlight the role of pre-training.

KITTI [15] contains 93000 video frames for depth training with 200 densely
annotated images for semantic segmentation. Segmentation results are evaluated
by mean IoU (mIoU) and pixel-level accuracy (P.Acc). We randomly choose
a small training set of 16 images and limit data augmentation to horizontal
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Fig. 2: Comparison between di�erent network initializations. Models initial-
ized by depth pre-training (unsupervised) train faster and achieve higher �nal accuracy.

Fig. 3: Final accuracy vs di�erent train-
ing set size. Under all training set sizes,
our best practice constantly outperforms Im-
ageNet pre-trained. Encoder: ResNet 18.

Depth Sup. mIoU P.Acc
Video 46.00 72.43
Stereo 49.11 74.58
Lidar 52.78 77.17

Table 2: Forms of depth supervi-
sion matter. Direct supervision with
Lidar works the best, followed by stereo
(with known camera pose), and monoc-
ular video (camera pose unknown).

�ips to highlight the impact of pre-training, except for Fig. 3 where we test on
di�erent training set partitions. We use Monodepth2 [16] for depth pre-training.
For semantic segmentation, we replace the last layer of the decoder with a fully
connected layer, using the �nest scale of the multi-scale output. We test on
ResNet18 and ResNet50 encoders due to their compatibility with various network
architectures and widely public-available pre-trained models. Fig. 1 summarizes
our experimental setup and Tab. 1 summarizes the outcomes. In all cases, depth
pre-training improves segmentation accuracy.

Full model. Fig. 2 shows the evolution of training loss and model accuracy.
Depth pre-training outperforms ImageNet and random initialization. ImageNet
pre-training slightly improves over random initialization on ResNet18, but shows
almost identical performance to random initialization on ResNet50. Depth also
speeds up training, taking � 5000 iterations to converge, while ImageNet takes
15000 to 20000. Similar results on full-resolution are deferred to the Supp. Mat.

Di�erent training set size. Fig. 3 shows that depth pre-training improves
�nal segmentation scores over all dataset partitions (with ResNet 18). When
training samples increase (e.g. 128), ImageNet and depth pre-training (from
random initialization) are comparable to random initialization, but depth pre-
training initialized with ImageNet yields the best results.
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Fig. 4: Frozen encoder results. Using an encoder pre-trained by depth signi�cantly
outperforms one with random weights and one for ImageNet classi�cation. Note that
in this experiment, ImageNet pre-training performs worse than random initialization.

Di�erent forms of depth supervision. Pre-training quality depends on
the source of supervision. Training on monocular videos involves minimizing
reprojection error, which requires joint estimation of depth and pose. Since
pose estimation relies on su�ciently distinctive textures (large eigenvalues of
the structure tensor of image gradients), the supervision signal is sparse. Con-
versely, with stereo images, one may omit the pose network when training. With
depth sensors, training losses minimize error w.r.t. dense or semi-dense measured
depth, o�ering stronger supervision. Tab. 2 shows that supervising with Lidar is
the best, followed by stereo, and monocular video � all improving over ImageNet.

Frozen encoder. We freeze pre-trained encoders, and �ne-tune the decoder
only, testing the ability of features from pre-trained encoders to capture seman-
tics. With both ResNet18 and ResNet50, encoder pre-trained for depth signi�-
cantly outperforms random initialization and ImageNet pre-trained (Fig. 4). It
is surprising that ImageNet pre-training is detrimental in this case (after a grid
search over learning rates): worse than �xed random weights. This suggests that
while classi�cation is a semantic task, it removes semantic information about
the scenedue to the object-centric bias in datasets. ImageNet pre-training tends
to favor image-level features, that may not capture object shape, making �ne-
tuning the decoder di�cult for segmentation. We conjecture that these uncon-
trolled biases in ImageNet pre-training cause di�culties in directly predicting
segmentation without �ne-tuning the encoder.

Initializing with a pre-trained encoder only. To eliminate the e�ect of
the depth-initialized decoder and only test the encoder, we replace the decoder
by `fresh' randomly initialized weights and �ne-tune the whole network. Tab. 3
shows that depth pre-training outperforms ImageNet when the e�ect of pre-
training is isolate to the encoder. This is also supported by neural activations
in Fig. 6 where the regions activated after depth pre-training align well with
semantic boundaries. Nonetheless, the decoder does play a role in segmentation
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