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Abstract. Different from Object Detection, Visual Grounding deals
with detecting a bounding box for each text-image pair. This one box for
each text-image data provides sparse supervision signals. Although pre-
vious works achieve impressive results, their passive utilization of anno-
tation, i.e. the sole use of the box annotation as regression ground truth,
results in a suboptimal performance. In this paper, we present SegVG, a
novel method transfers the box-level annotation as Segmentation signals
to provide an additional pixel-level supervision for Visual Grounding.
Specifically, we propose the Multi-layer Multi-task Encoder-Decoder as
the target grounding stage, where we learn a regression query and mul-
tiple segmentation queries to ground the target by regression and seg-
mentation of the box in each decoding layer, respectively. This approach
allows us to iteratively exploit the annotation as signals for both box-
level regression and pixel-level segmentation. Moreover, as the backbones
are typically initialized by pretrained parameters learned from unimodal
tasks and the queries for both regression and segmentation are static
learnable embeddings, a domain discrepancy remains among these three
types of features, which impairs subsequent target grounding. To miti-
gate this discrepancy, we introduce the Triple Alignment module, where
the query, text, and vision tokens are triangularly updated to share the
same space by triple attention mechanism. Extensive experiments on five
widely used datasets validate our state-of-the-art (SOTA) performance.
Code is available at https://github.com/WeitaiKang/SegVG.
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1 Introduction

Visual grounding [14,17,26,30,52] aims to localize a target object within an im-
age based on a free-form natural language text expression. It is particularly im-
portant for numerous downstream multimodal reasoning systems, such as visual
question answering [10,35,41] and image captioning [1,4,50]. Previous works can
be broadly categorized into three distinct groups: two-stage methods [3,44,45,51],
one-stage methods [47,48], and transformer-based ones [6,15,16,31,43,49]. Both
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Fig. 1: The comparison of visual grounding frameworks. The block with a dashed bor-
der indicates that the module may not necessarily exist. (a) Previous baseline method
consists of two backbones and additional transformer layers for target grounding, where
a regression query is supervised to regress the box. Current SOTA methods further em-
ploy a text-to-visual module to align the visual features with text features. (b) Our
method incorporates segmentation queries, which utilizes the box annotation at the
pixel-level to segment the target. Additionally, we propose the Triple Alignment mod-
ule to eliminate the domain discrepancy of the query, text, and vision features.

two-stage and one-stage approaches use convolutional neural networks for can-
didate proposals and the selection of the best-matching candidate. Nonetheless,
these approaches rely on intricate modules that employ manually-crafted tech-
niques for performing language inference and multi-modal integration.

Inspired by the success of the transformer [7, 8], TransVG [6] proposes a
transformer-based pipeline. As shown in Fig. 1.(a), this pipeline extracts vision
and text features via DETR [2] and BERT [7], respectively. To ground the tar-
get, they use the transformer encoder to fuse multimodal features along with a
learnable regression query and decode the query through an MLP. To enhance
the final target grounding stage, subsequent studies continue with some text-
to-visual modules in the early stage to modulate the vision features to align
with the text features. For example, QRNet [49] proposes a query-modulated
method for extracting language-aware vision features within the vision back-
bone. VLTVG [43] introduces a verification map to activate the vision features
to align with the text features before multimodal fusion.

Despite their advancements, the suboptimal annotation utilization, i.e., only
using the box annotation as a regression annotation, limits their performance.
As discussed in [37], Visual Grounding presents unique challenges compared to
Object Detection due to its sparse supervision signals. Specifically, it provides
only one box label for each text-image pair, while necessitatng detection within
a multimodal setting. Therefore, it is essential to fully exploit the box annota-
tion, by treating it as a segmentation mask (pixels within the bounding box are
assigned a value of 1, while pixels outside the bounding box are assigned as 0).
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In this paper, we introduce SegVG (see Fig. 1.(b)), a novel method that lever-
ages the pixel-level details within the box annotation as segmentation signals to
offer additional fine-grained supervision for Visual Grounding. Specifically, we
propose the Multi-layer Multi-task Encoder-Decoder as the target grounding
stage, where we learn a regression query and multiple segmentation queries to
ground the target by regression and segmentation of the box in each decoding
layer, respectively. The confidence score derived from the segmentation can fur-
ther serve as a Focal Loss [21] scaling factor to adaptively emphasize the other
losses of challenging training samples. This approach allows us to iteratively
exploit the annotation as signals for both box-level regression and pixel-level
segmentation. Furthermore, the initial parameters for model backbones, typi-
cally derived from pretrained unimodal tasks, along with data-agnostic static
embeddings used as queries for decoding, result in a domain discrepancy among
different sources of feature, affecting the effectiveness of target grounding. To
tackle this problem, we present the Triple Alignment module, where we harmo-
nize the domain of query, text, and vision features by implementing a triangular
update process through a triple attention mechanism. As a result, we ensure
that all features adapt and integrate within the same multimodal space, thereby
enhancing subsequent target grounding. Our contributions are as follows:

– We propose the Multi-layer Multi-task Encoder-Decoder to maximize the
utilization of the box annotation, which introduces an additional segmenta-
tion format for pixel-level supervision in Visual Grounding.

– To eliminate the domain discrepancy among the query, text, and vision, we
introduce the Triple Alignment to update these three types of features into
a sharing domain, which facilitates the subsequent target grounding.

– We conduct extensive experiments on five widely used datasets to show the
performance superiority of our proposed methods compared with previous
state-of-the-art methods and further investigate the reliability benefits de-
rived from the segmentation output in real applications.

– We will release code and checkpoints for future research development.

2 Related Work

Visual grounding methods can be roughly classified into three pipelines: two-
stage methods, one-stage methods, and transformer-based methods.
Two-stage methods Two-stage approaches [3,51] treat visual grounding as first
generating candidate object proposals and then finding the best match to the
text. In the first stage, an off-the-shelf detector processes the image and proposes
regions that may contain the target. In the second stage, a ranking network
calculates the similarity between candidate regions and processed text features,
selecting the region with the highest similarity score as the final result. Training
losses include binary classification loss [29] or maximum-margin ranking loss [51].
To better understand the text and cross-modality matching, MattNet [51] focuses
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Fig. 2: SegVG: The upper figure includes the vision and text backbone. Our pro-
posed Triple Alignment module is iteratively inserted into intermediate layers to elimi-
nate domain discrepancy. The lower figure shows our Multi-layer Multi-task Encoder-
Decoder, which adopts a transformer encoder-decoder to update multimodal features
and ground the target. In this architecture, we make the best of the box annotation
as a segmentation ground truth and integrate an additional segmentation task into
Visual Grounding. Additionally, the segmentation output serves as a Focal Loss factor,
allowing adaptive emphasis on challenging cases for the regression loss. M = 6, R=6.

on decomposing the text into subject, location, and relationship components. [3]
introduces an expression-aware score for improved candidate region ranking.
One-stage methods One-stage approaches [47,48] directly concatenate vision
and text features in the channel dimension and rank confidence values for can-
didate regions proposed based on the concatenated multimodal features. For
example, FAOA [48] predicts bounding boxes using a YOLOv3 detector [32]
on the concatenated features. ReSC [47] further improves the ability to ground
complex queries by introducing a recursive sub-query construction module.
Transformer-based methods Transformer-based approach is first introduced
by TransVG [6]. Unlike previous methods, TransVG concatenates the regression
query (a learnable embedding), vision tokens, and text tokens and uses trans-
former encoders [38] to perform cross-modal fusion and target grounding. The
query is then processed through an MLP to decode the box. Benefiting from
the flexible structure of transformer modules in processing multimodal features,
recent works continue adopting this pipeline and propose novelties regarding
feature extraction. VLTVG [43] develops a visual-linguistic verification mod-
ule before the target grounding stage to modulate the vision features with the
relationship between vision and text features. QRNet [49] proposes a Query-
modulated Refinement Network to mitigate the gap between features from the
unimodal vision backbone and those needed for multi-modal reasoning.
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Multi-task Visual Grounding Multi-task learning is extensively utilized in
object detection and segmentation [2,11], often capitalizing on a shared backbone
and task-specific heads. Expanding upon this idea, several studies [19, 25, 36]
have proposed solutions to the Multi-task Visual Grounding problem. In this
problem, they jointly tackle Referring Expression Comprehension (REC, also
known as Visual Grounding) and Referring Expression Segmentation (RES),
requiring both box annotations and segmentation annotations. It is important
to note that, unlike those approaches, even though we incorporate segmentation
losses in our method, we do not need segmentation annotations but only
box annotations, focusing specifically on the Visual Grounding task.

3 Methodology

In this section, we present the components of our SegVG in the order of the data
flow: starting with the backbones, followed by our proposed Triple Alignment,
and finally our Multi-layer Multi-task Encoder-Decoder.

3.1 Backbones

As shown in Fig. 2 (upper), our vision backbone consists of ResNet and trans-
former encoder from DETR [2], with parameters pretrained on Object Detection
task using the MSCOCO dataset [22], excluding the validation and test sets of
Visual Grounding dataset. The text backbone is the base model of BERT [7].

Vision Backbone Given an input image I0 (R3×H0×W0), we employ ResNet to
generate a 2D feature map I ∈ RC×H×W (C = 2048, H = H0

32 ,W = W0

32 ). A 1x1
convolutional layer is then used to reduce the channel dimension of I to Cv = 256,
resulting in I

′
. We further flatten I

′
into Zv ∈ RCv×Nv (Nv = H ×W ). Position

embedding is then added to Zv to preserve sensitivity to the original 2D spatial
locations. Zv is then iteratively processed through DETR’s encoder layer (total
6 transformer layers) and the Triple Alignment to obtain the output Zv.

Text Backbone Given a text, we initially utilize the BERT’s embedding layer
to convert it into Nt language tokens with Ct channel dimension. In alignment
with [6], we prepend a [CLS] token and append a [SEP] token to the beginning
and end positions of the tokenized language, respectively. Following this, we
iteratively input the language tokens into BERT’s layers (total 12 transformer
layers) and the Triple Alignment, generating language embedding Zt.

3.2 Triple Alignment

Given that the text and vision backbones are pretrained from unimodal tasks
and the queries are data-agnostic, the subsequent target grounding stage faces
the challenge of aligning these three types of features into the same space before
performing multimodal fusion for target grounding. Additionally, considering
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that the backbones usually contribute the majority of the overall parameters,
solely using them for extracting unimodal features without incorporating multi-
modal alignment is sub-optimal. Therefore, an optimal solution is to address the
domain discrepancy before moving on to the subsequent target grounding stage.

Triple Alignment (Fig. 2 (upper)) utilizes an attention mechanism to per-
form triangular feature sampling, aiming to ensure domain consistency among
the query, text, and vision features. The queries, Zo, are first initialized by N
learnable embeddings, where one embedding is for the regression query and the
rest of the embeddings are for multiple segmentation queries. The data flow is:

Zi+1
v = DETRLayeri(Z

i
v), i ∈ {0, 1, .., L− 1} (1)

Zi+1
t = BERTLayer2i+1(BERTLayer2i(Z

i
t)), (2)

[Z
′

o,Z
′

t,Z
′

v] = Tri-MHA(Zo,Z
i+1
t ,Zi+1

v ), (3)

Zo = Zo + Z
′

o,Z
i+1
t = Zi+1

t + Z
′

t,Z
i+1
v = Zi+1

v + Z
′

v, (4)

where L is the number of layers, BERTLayer is the layer of BERT and DE-
TRLayer is the layer of DETR’s encoder. The vision and text features are first
encoded by Eq. 1 and Eq. 2. Subsequently, the three types of tokens (query, text,
and vision) are updated by our Triple Multi-Head Attention Layer (Tri-MHA)
using Eq. 3. The output tokens are merged back to their original branches re-
spectively by Eq. 4. Within each head of the Triple Multi-Head Attention Layer
(Tri-MHA), each type of the features simultaneously computes its updated rep-
resentation by attending to both the others and itself:

S = [ZoW
(o,S),ZtW

(t,S),ZvW
(v,S)], S ∈ {Q,K, V }

[Zo,Zt,Zv] = SoftMax(QKT /
√
dk)V,

Z
′

e = ZeW
e, e ∈ {o, t, v},

(5)

where {W (e,S),W e : e ∈ {o, t, v}, S ∈ {Q,K, V }} are trainable parameter. As a
result, each of the output features is triangular sampling from all of the three
types of features, which alleviates the domain discrepancy.

3.3 Multi-layer Multi-task Encoder-Decoder

The Multi-layer Multi-task Encoder-Decoder serves as the target grounding
stage, where we use a transformer encoder-decoder for cross-modal fusion and
target grounding to perform a box regression task and a box segmentation task.

Encoder As shown in Fig. 2 (lower left), given the aligned output text and vision
features from the backbones, the encoder fuses the two modalities into the mul-
timodal features by a stack of transformer layers. In each layer, the concatenated
text and vision tokens go through the Multi-Head Self-Attention layer (MHSA)
and the Feed Forward Network (FFN) with the residual connection.
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Decoder In each decoder layer, we aim to fully exploit the box annotation. We
propose the bbox2seg paradigm to transform the box annotation into a seg-
mentation mask, which classifies all pixels within the box as foreground (with a
value of one) and those outside the box as background (with a value of zero).
As shown in Fig. 2 (lower right), one regression query aims to regress the box,
while the remaining segmentation queries aim to segment the box. Different seg-
mentation queries are endowed with different learnable positional embeddings
to enhance the robustness of each decoder layer, since the decoder layer, when
confronted with various queries, is required to segment the same box. Following
that, the queries pass through the Multi-Head Self-Attention layer to exchange
information about the same target, prompting each other to better locate the
target. Subsequently, the queries undergo the Multi-Head Cross-Attention layer
and the Feed Forward Network, where multimodal features serve as the Key
and Value to ground the target. Finally, a shared MLP across all decoder layers
decodes the regression query into the box result, supervised by L1 loss and Giou
loss [33]. Each segmentation query is repeated Nv times and concatenated with
visual tokens along the channel dimension. Another shared MLP decodes the
concatenated feature into the segmentation mask, supervised by Focal loss [21]
and Dice loss [27]. It is noteworthy that our segmentation paradigm shares
the same semantic foundation as the regression paradigm, i.e., to dis-
tinguish bounding box, rather than instance segmentation. Therefore, in-
corporating non-object pixels in the segmented foreground does not introduce
ambiguity to the model. We provide qualitative results 4.8 to demonstrate this
feature. To alleviate multi-task optimization challenges, we freeze the backbones
for the initial k epochs to stabilize the training process.

Confidence score Since both the regression output and segmentation output
share the same aim, we can additionally obtain the confidence score for the
foreground by averaging values inside the ground truth box of the segmentation
output to reflect the confidence of the regression output. In the training process,
we can transform this confidence score as the Focal loss factor [21] to adaptively
emphasize the other losses of challenging training samples. The final loss function
of each decoder layer is formulated as follows:

L = λ1cfocalL1 + λgioucfocalLgiou+

λdicecfocalLdice + λfocalLfocal,
(6)

where λ1, λgiou, λfocal and λdice are hyperparameters. L1 is the L1 loss. Lgiou is
the GIoU loss [33]. Lfocal is the Focal loss [21]. Ldice is the Dice loss [27]. cfocal
is the above Focal loss factor averaged across all segmentation outputs.

In the real-world application perspective, the visual grounding task can be
viewed as open-vocabulary object detection [54], where target objects lack pre-
determined categories. Therefore, previous transformer-based methods directly
regress the box without confidence scores, since there is no candidate proposal
or selection stage in transformer-based pipeline. However, confidence scores are
valuable for enhancing the control or reliability of predictions by filtering out low-
confidence predictions. This feature could benefit the future integration of visual
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Table 1: Comparisons with state-of-the-art methods on widely used datasets. We
highlight the best and second best performance in red and blue, and bold our model.

Models Backbone RefCOCO RefCOCO+ RefCOCOg ReferItGame
val testA testB val testA testB val-g val-u test-u test

Two-stage:
CMN [12] VGG16 - 71.03 65.77 - 54.32 47.76 57.47 - - 28.33
VC [55] VGG16 - 73.33 67.44 - 58.40 53.18 62.30 - - 31.13

ParalAttn [57] VGG16 - 75.31 65.52 - 61.34 50.86 58.03 - - -
MAttNet [51] ResNet-101 76.65 81.14 69.99 65.33 71.62 56.02 - 66.58 67.27 29.04

Similarity Net [39] ResNet-101 - - - - - - - - - 34.54
CITE [29] ResNet-101 - - - - - - - - - 35.07
DDPN [53] ResNet-101 - - - - - - - - - 63.00

LGRANs [40] VGG16 - 76.60 66.40 - 64.00 53.40 61.78 - - -
DGA [44] VGG16 - 78.42 65.53 - 69.07 51.99 - - 63.28 -

RvG-Tree [29] ResNet-101 75.06 78.61 69.85 63.51 67.45 56.66 - 66.95 66.51 -
NMTree [23] ResNet-101 76.41 81.21 70.09 66.46 72.02 57.52 64.62 65.87 66.44 -
Ref-NMS [3] ResNet-101 80.70 84.00 76.04 68.25 73.68 59.42 - 70.55 70.62 -
One-stage:

SSG [5] DarkNet-53 - 76.51 67.50 - 62.14 49.27 47.47 58.80 - 54.24
ZSGNet [34] ResNet-50 - - - - - - - - - 58.63
FAOA [48] DarkNet-53 72.54 74.35 68.50 56.81 60.23 49.60 56.12 61.33 60.36 60.67
RCCF [20] DLA-34 - 81.06 71.85 - 70.35 56.32 - - 65.73 63.79

ReSC-Large [47] DarkNet-53 77.63 80.45 72.30 63.59 68.36 56.81 63.12 67.30 67.20 64.60
LBYL-Net [13] DarkNet-53 79.67 82.91 74.15 68.64 73.38 59.49 62.70 - - 67.47

Transformer-based:
TransVG [6] ResNet-101 81.02 82.72 78.35 64.82 70.70 56.94 67.02 68.67 67.73 70.73
QRNet [49] Swin-S 84.01 85.85 82.34 72.94 76.17 63.81 71.89 73.03 72.52 74.61
VLTVG [43] ResNet-101 84.77 87.24 80.49 74.19 78.93 65.17 72.98 76.04 74.18 71.98
SegVG (ours) ResNet-101 86.84 89.46 83.07 77.18 82.63 67.59 76.01 78.35 77.42 75.59

grounding models into downstream multimodal reasoning systems or real-world
applications. To meet the requirements of this feature, our approach incorpo-
rates a confidence score derived from the segmentation output during inference.
Specifically, we calculate the model’s confidence by averaging values greater than
or equal to 0.35 (adopted from [42]) in the segmentation output of one segmenta-
tion query. Analyses 4.7 in the Experiment section demonstrate the faithfulness
and benefits of incorporating this additional confidence score.

4 Experiments

4.1 Metric and Datasets

Metric A predicted bounding box is considered accurate if its Intersection over
Union (IoU) with the ground-truth bounding box exceeds 0.5. In accordance with
the established practices in preceding studies [6, 43], we employ top-1 accuracy
(measured in percentage) as the primary metric to assess our method.

Datasets There are five standard benchmarks: RefCOCO [52], RefCOCO+
[52], RefCOCOg-g [26], RefCOCOg-umd [26], and ReferItGame [17]. Four of
them (RefCOCO, RefCOCO+, and RefCOCOg-(g/umd)) are all derived from
MSCOCO [22]. RefCOCO consists of 19,994 images and 142,210 referring texts,
which is divided into four subsets: a training set with 120,624 texts, a valida-
tion set with 10,834 texts, and two test sets (testA and testB) containing 5,657
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and 5,095 texts, respectively. RefCOCO+ includes 19,992 images and 141,564
referring texts, which is partitioned into four subsets: a training set with 120,191
texts, a validation set with 10,758 texts, and two test sets (testA and testB) con-
taining 5,726 and 4,889 texts, respectively. RefCOCOg contains 25,799 images
and 95,010 longer texts. Two widely accepted splitting methods—RefCOCOg-
g [26] and RefCOCOg-umd [28]—are employed for this dataset, and we perform
experiments using both RefCOCOg-g (val-g) and RefCOCOg-umd (val-u and
test-u) splitting conventions. The ReferItGame dataset, featuring 20,000 images
from SAIAPR-12 [9], is divided into three segments: a training set with 54,127
texts, a validation set with 5,842 texts, and a testing set comprising 60,103 texts.

4.2 Implementation

Our approach uses an input image size of 640 x 640 and sets the maximum
expression length at 40. When resizing images, we preserve the original aspect
ratio. The longer edge is resized to 640, and the shorter edge is padded to 640
with the value of zero. Texts exceeding 38 tokens are truncated, reserving a start
position and an end position of the characters for the [CLS] and [SEP] token,
respectively. If the text is shorter, empty tokens are added after the [SEP] token
to reach an input length of 40. Paddings for the input image are not tracked by
masks, while empty tokens of text employ masks.

We use the AdamW optimizer. The initial learning rate of 1e-5 is assigned
to backbones, and 1e-4 to the rest parameters. Weight decay is set at 1e-4. The
visual backbone is initialized with the DETR’s backbone and encoder, while the
language branch uses the basic BERT model. For the final results, our model is
trained for 90 epochs, with the learning rate decreasing by a factor of 10 after 60
epochs. The k hyperparameter in Multi-layer Multi-task Encoder-Decoder is set
to 10. We use a batch size of 64. For the ablation studies presented in Table 3,
the models are trained for 60 epochs with k equal to 20, and the learning rate
drops after 40 epochs. We set λ1 = 5, λgiou = 2, λfocal = 1 and λdice = 1. We
adhere to previous practices [6, 43] for data augmentation during training.

4.3 Quantitative Results

We report the performance of our SegVG on all benchmark datasets. As pre-
sented in Table 1, our SegVG model demonstrates superiority across all of the
datasets. This indicates the effectiveness and generalizability of our approach.
It is worth noting that RefCOCO+ and RefCOCOg are relatively more chal-
lenging datasets, as RefCOCO+ does not include location terms in its language
expressions, and RefCOCOg has longer language expressions compared to other
datasets. Despite these challenges, our model exhibits significant improvements
on these two difficult datasets. Specifically, on RefCOCO+, our model outper-
forms the previous SOTA models with +2.99%, +3.7%, and +2.42% on the val,
testA, and testB subsets, respectively. On RefCOCOg, our model also surpasses
the previous SOTA models with +3.03%, +2.31%, and +3.24% on the val-g,



10 W. Kang et al.

Table 2: Compare transformer-based models on Parameter count and GFLOPS.

Backbone Parameter count (M) GFLOPS (G)
TransVG [6] ResNet101 141.55 72.61
VLTVG [43] ResNet101 141.61 69.87
QRNet [49] Swin-S 247.06 80.12

SegVG ResNet101 155.28 73.48

Table 3: Ablation study on RefCOCOg test-u. Encoder and Decoder are the encoder
and decoder of Multi-layer Multi-task Encoder-Decoder, respectively. MMDecoder rep-
resents Multi-layer and Multi-task supervision in the Decoder. N is the number of
segmentation queries. Triple means Triple Alignment. Excluding Query in Triple (g)
means using bidirectional alignment with concatenated text-vision tokens.

Id Model Acc(%)

(a) Backbones + Encoder + Decoder 66.97
(b) Backbones + Triple + Encoder + Decoder 75.75
(c) Backbones + Encoder + MMDecoder (N=1) 72.61
(d) Backbones + Encoder + MMDecoder (N=5) 76.21
(e) Backbones + Triple + Encoder + MMDecoder (N=5) 77.29

(f) (e) w/o Encoder 76.65(-0.64)
(g) (e) w/o Query in Triple 76.37(-0.92)
(h) (e) w/o Focal loss 76.83(-0.46)

val-u, and test-u subsets, respectively. These results suggest that under the re-
inforcement of Triple Alignment and Multi-layer Multi-task Encoder-Decoder,
the query, text, and vision tokens are triangularly updated to share the same
space, and the model fully exploits the bounding box as fine-grained pixel-level
supervision for comprehensive end-to-end learning.

We also conduct a comparison of the number of parameters and GFLOPS
across transformer-based models to evaluate computational costs. As depicted
in Table 2, the computational cost of SegVG falls within a reasonable range.

4.4 Ablation Study

In this section, we aim to validate the efficacy of each proposed module. We
conduct ablation studies on the RefCOCOg-umd test dataset. Specifically, we
start by evaluating a basic structure, i.e., the backbones with encoder-decoder
structure. After that, we systematically incorporate the Triple Alignment mod-
ule into the backbones and introduce the Multi-layer Multi-task supervision into
the decoder through the controlled variable approach. Meanwhile, we conduct
additional ablation experiments on specific details, including assessing the effi-
cacy of incorporating the encoder, introducing Query in the Triple Alignment,
and introducing the Focal loss from the segmentation output to the other losses.

As shown in Table 3, we can draw the following conclusions when comparing
the experimental results under controlled variables: 1) [(a) v.s. (b)]: Incorpo-
rating the Triple Alignment can effectively eliminate the domain discrepancy
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Table 4: Ablation study on RefCOCOg test-u regarding the number of segmentation
queries. ∆Hour and ∆Acc are the additional time cost and accuracy improvement
compared to ID(i) experiment, respectively.

ID num_query Acc Time Cost ∆Hour / ∆Acc (v.s. ID(i))
i N = 1 72.61 16.32h -
ii N = 3 73.02 18.97h 6.46
iii N = 5 76.21 20.10h 1.05
iv N = 7 74.38 22.24h 3.34
v N = 9 73.91 24.07h 5.96

among the query, text, and vision features, thereby facilitating subsequent tar-
get grounding. 2) [(a) v.s. (c)]: Introducing Multi-layer Multi-task supervision
can iteratively make the best of the annotations in the target grounding stage,
thereby enhancing the learning of query representations. 3) [(c) v.s. (d)]: In-
creasing the number of segmentation queries can further improve the robustness
of the decoder when provided with different queries and required to segment the
same box. 4) [(a), (b), (d), and (e)]: Combining the Triple Alignment and
Multi-layer Multi-task Encoder-Decoder can effectively enhance the overall per-
formance, achieving the optimal result. 5) [(e) v.s. (f)]: Even if we include the
Triple Alignment supporting multimodal communication, it remains necessary
for the subsequent encoder to update the unimodal features generated by the
backbones into multimodal features. 6) [(e) v.s. (g)]: It is necessary to involve
queries in Triple Alignment to transfer the data-agnostic embedding into data-
related queries. Otherwise, using only Bidirectional Alignment (BA) for text and
vision tokens, similar to approaches like Deep Fusion in GLIP [18] and Grounding
DINO [24], and WPA in CoupAlign [56], causes a noticeable decline (-0.92%). 7)
[(d), (e) and (g)]: The slight gain of (g)(76.37%) over (d)(76.21%) stems from
our MMDecoder’s pixel-level signals, which already boosts BA in the Encoder.
Thus, extra BA effort in the backbone is marginal, failing to solve the unaligned
query issue. Instead,Tri-Align (e)(77.29%) can solve this issue, showing its nov-
elty. Notably, (d)(76.21%), with a basic encoder-decoder, already achieves SOTA
performance, emphasizing our bbox2seg paradigm’s simplicity and effectiveness.
8) [(e) v.s. (h)]: The segmentation output can further derive the confidence
score of the model’s prediction, which is transformed into the Focal loss factor
to adaptively scale the other losses to focus more attention on challenging cases.

We further conduct a more detailed abaltion study about the improvement
and corresponding cost of adding more segmentation queries of Tab.3(c)-(d).
As shown in Table 4, the best performance is observed with five segmentation
queries. Adding more than that increases the burden from pixel-level constraint
without benefits, also increasing computational cost per accuracy improvement.

4.5 Triple Alignment Analysis

In additional to the improvement results in ablation study, we further deepen
our understanding of the Triple Alignment by analyzing the attention behavior.
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Table 5: Attention values from query to text-referred visual region in Triple Alignment.

Layer RefCOCO RefCOCO+ RefCOCOg ReferItGame
val testA testB val testA testB val-g val-u test-u test

layer2 17% 18% 16% 19% 21% 18% 20% 18% 17% 25%
layer4 34% 36% 33% 29% 31% 28% 27% 33% 33% 30%
layer6 61% 63% 60% 55% 58% 50% 55% 59% 59% 38%

Table 6: Comparison with alternative
method using RIS to provide pseudo seg-
mentation labels for supervision.

ReferItGame SegVG+RIS (LAVT) SegVG
val 74.91 76.85
test 73.76 75.06

Table 7: AP50 using different segmenta-
tion queries for confidence score calcula-
tion on RefCOCOg test-u.

Seg Query 1st 2nd 3rd 4th 5th

AP50 84.65 84.57 84.73 84.78 84.63

Specifically, we calculate the sum of the attention values from the query to the
text-referred visual region (target bbox) as a percentage of the total attention
(which includes attention to the query, text, and visual tokens) to illustrate the
extent of alignment across these three modalities in the second, fourth, and final
layer of Triple Alignment. We average the percentage across all the attention
heads and queries, and perform the analysis across all the datasets. As shown in
Table 5, in all the datasets, the attention values increase as the layer progresses,
indicating that Triple Alignment progressively aligns the query to comprehend
the text and then focus on the referred visual region.

4.6 Comparison with alternative method

Given the development of Referring Expression Segmentation (RES), a natural
alternative method would be using a RES method to generate pseudo segmenta-
tion labels to substitute our bbox2seg paradigm. Therefore, to mimick real-world
scenarios, we use LAVT [46] trained on RefCOCO to obtain pseudo segmentation
labels on ReferItGame. We follow the same training setting in ablation study to
conduct the comparison on ReferItGame. As shown in Table 6, our SegVG out-
performs the alternative method. This demonstrates that our bbox2seg paradigm
is more effective than using a RES model to provide pseudo segmentation labels
which might suffer from the errors from the RES model.

4.7 Confidence Score Analysis

Selection of segmentation query To show the effect of different selection of seg-
mentation query for the calculation of confidence score, we calculate AP50 on
RefCOCOg test-u. As shown in Table 7, the performance variations are slight
among them. We use the first one to calculate confidence score for simplicity.

Confidence Score Faithfulness To evaluate the faithfulness of our confidence
score, i.e., whether a higher confidence score indicates better performance, we
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Fig. 3: IoU and Accuracy of different
confidence scores on RefCOCOg test-u.

Table 8: Performance of different con-
fidence levels on RefCOCOg test-u.

Confidence IoU Acc(%) Proportion (%)

≥ 0.65 0.7067 77.41% 100.00%
≥ 0.70 0.7072 77.48% 99.89%
≥ 0.75 0.7091 77.69% 99.44%
≥ 0.80 0.7143 78.37% 97.98%
≥ 0.85 0.7226 79.29% 95.04%

stuffed teddy bear 
with a red ribbon

a woman in a pink tank top 
and khaki shorts brown dog the back profile of a giraffe

Fig. 4: Qualitative comparison between (c) (the first line) and (d) (the second line)
of Table. 3. Red boxes are ground truth. Blue boxes are model predictions.

assess the relationship of our confidence score and model performance metrics
(IoU and Accuracy) as shown in Fig 3. We sort the RefCOCOg-umd test set by
confidence score, split it into five equal parts, and calculate each part’s average
score and performance. We observe a positive correlation between the perfor-
mance metrics and our confidence score, which confirms its faithfulness.

Confidence Score Application In real applications, the confidence score can be
used to enhance the model’s reliability. Specifically, we can apply different confi-
dence thresholds to achieve different predictions, as shown in Table 8. First, we
observe that accuracy increases with higher thresholds, indicating that adjust-
ing the threshold can enhance the model’s localization ability. Furthermore, the
mean IoU also increases with the increasing threshold. Therefore, in downstream
applications, such as using the model to provide pseudo-labels, we can increase
the threshold to obtain a more accurate box. Since low-confidence outputs are
excluded, the output proportion is slightly reduced, i.e., yields fewer outputs.



14 W. Kang et al.

Layer 0 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Segmentation GT

“a young 
man 

wearing 
black 

smiling at 
the camera”

“the plate 
holding 

the fruit”

VLTVG

SegVG 
(ours)

VLTVG

SegVG 
(ours)

Fig. 5: Layer i refers to the output of the i-th layer of the decoder. The blue boxes
represent the models’ predictions, while the red boxes denote the ground truth. In
the segmentation mask shown in the second column from the right, red indicates high
confidence for the foreground. Note that VLTVG does not provide segmentation output.

4.8 Qualitative Results

We compare Tab. 3 (c) and (d) qualitatively to show the robustness enhance-
ment. As shown in Fig. 4, adding segmentation queries improves the robustness
to distinguish the target from the distractor, e.g. the case of two dogs.

As depicted in Fig. 5, we compare the box prediction quality by each decoding
layer of SegVG with VLTVG [43] which also involves multi-layer supervision.
As seen in the upper two rows of Fig. 5, VLTVG initially misses the target
“young man” but improves its prediction gradually and finally makes the correct
prediction. In contrast, due to the full exploitation of the annotations and the
domain alignment in our Triple Alignment, SegVG successfully identifies the
location of the target in the early decoding layer and consistently makes the
correct prediction in each layer. Another example can be observed in the lower
two rows of Fig. 5. In this image, due to the complex colors, VLTVG fails to locate
the target “plate” and consistently repeats the same mistake. Instead, SegVG
correctly detects the target, even in the first decoder layer. Additionally, we
visualize the segmentation mask obtained by SegVG in Fig. 5, which accurately
identifies the target box with high confidence. This behavior aligns with the box
regression, demonstrating their shared objective, i.e., to distinguish the box.

5 Conclusion

We propose SegVG, a visual grounding model, where we iteratively make the
best of box annotations to involve pixel-level supervision and address the do-
main discrepancy among queries, text, and vision by Triple Alignment module.
Experiments show the superior performance of SegVG. Furthermore, we explore
the reliability benefits of our segmentation output in real-world applications.
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