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Watch Your Steps: Local Image and Scene
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Supplementary Material

A Mask threshold effect

Figure 12 provides a quantitative comparison of our image editing method with
different mask thresholds against IP2P [6]. Our method produces outputs that
closely reflect the desired edits (x-axis), while remaining consistent with the
inputs (y-axis) by confining the edits in the relevant region. However, while
increasing the mask threshold results in higher fidelity to the input, overly in-
creasing it can prevent the model from editing the parts that actually matter:
the lines in Figure 12 cover a smaller text-image direction similarity region as
the mask threshold, 7, is increased. Based on this experiment, we set 7 within
[0.4,0.5] throughout the paper.

We further provide a qualitative example to showcase the effect of the mask
threshold on the generation of the edited image (Figure 13). Setting the mask
threshold, 7, to 0 results in every pixel being masked. As a result, our model
with 7 = 0 is equivalent to IP2P [6]. For each 7, we provide results with different
image guidance scales, S;. As evident in the results, in IP2P, simply increasing
the image guidance scale is not enough to localize the edits; with S; = 1.0, the
background and the clothes are drastically changed. When setting S; = 3.0 in
IP2P, the woman’s collar and the man’s shirt are still changed to yellow, while
the faces no longer look like Simpsons characters; increasing S; has an adverse
effect on the text-image similarity, which is consistent with our quantitative
findings in Figures 6 (main paper) and 12. Alternatively, changing 7 provides a
different guidance knob to the user, and allows them to control the region to be
edited, with minimal damage to the regions that actually need to be modified.

B Additional qualitative comparisons

In Figure 14, we provide additional examples to compare our localized image
editing method with IP2P. In all of these examples, Sy is between [0.8,1.0],
and St is always 7.5. Mask thresholds are either 0.4 or 0.5. For each of the
examples, we further provide the relevance map predicted by our method. Our
results are more consistent with the input image by only locally changing the
inputs in the regions with high relevance values. Meanwhile, our method follows
the instructions closely, and yields images with similar or better edit qualities
compared to IP2P.

C Sample relevance field renderings

In Figure 15, we visualize sample relevance fields trained on different scenes and
different edit instructions. Each relevance field is trained via 2D supervision from
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Fig. 12: Quantitative comparison of our image editing method with different mask
threshold values, 7, against IP2P [6]. The text-guidance is set to 7.5 for both methods.
For IP2P and our method, St is changed between [1.2,2.2] and [1.0, 2.2], respectively.

relevance maps of the training views. As shown in the results, the relevance fields
are mainly activated around the intended region to be edited. To edit a NeRF, we
use the rendered views from the relevance field as relevance-guidance for editing
training views. As a result, the updates of training views during the iterative
update process are only locally changed, and the changed region is consistent
across different views.

Note that the density of the relevance field (i.e., its geometry) is always
queried from the main NeRF model that is being edited. This is to ensure that
potential inconsistencies between 2D relevance maps of different views do not
impair the main NeRF, and to enforce 2D relevance maps to be projected to
the actual geometry of the scene and thus become 3D-consistent; otherwise, the
relevance field’s geometry might converge to a degenerate solution to justify the
inconsistencies. As the main NeRF is being updated towards the desired edited
NeRF, its geometry might change. In that case, since the relevance field shares
the same geometry, its 2D maps will be projected to the updated NeRF. Thus,
during each update, the relevance field localizes the edits on the current version
of the main NeRF. This allows slow changes in the geometry of the scene when
necessary, while only locally updating the views at each step (e.g., consider
the addition of the mustache or the sunglasses, which require changes to the
densities).
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Fig. 13: Qualitative comparison of the effects of the mask threshold, 7, and the image
guidance scale, St. Increasing the image guidance scale improves the similarity of the
output and the input image, but significantly decreases the intensity of the edit, re-
sulting in a failed edit. In contrast, 7 provides a knob to the user to control the region
of the edit, without changing the strength of the edit.

D Additional Details

For Figure 8 (main paper), we set St and Sy to 7.5 and 1, respectively, while
selecting a suitable 7 to each edit. In Figure 7 (main paper), for our method,
we set S = 7.5, St = 0.8, and 7 = 0.4. For the other methods we use their
default set of hyperparameters. In Figures 11 and 14 (both in the main paper),
we set St = 7.5, St = 0.8 for both methods and 7 = 0.4 for our method. For
NeRF editing experiments, 7 is always set to 0.5, and the guidance scales are as
follows:

— Bear: St =6.5,51 =1.5
— Face: St =75,5=1.5
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Fig. 14: Additional qualitative comparison of our image editing results against
IP2P [6]. For each image, we show the instruction, outputs of IP2P and our model,
and the relevance map predicted by our model. Our model follows the instruction,
while maintaining more consistency with the input image. This is due to the relevance-
guidance, as only pixels with high relevance values can be modified.

— Farm: S =12.5,5; = 1.5
— Fangzhou: S =6.5,5; =1.5

E Expanded interpretation of the relevance map

In this section, we begin by modeling the image editing task as an optimiza-
tion problem, closely related to score distillation sampling (SDS) [55]. We then
show that the relevance map naturally appears in the formulation of updating
an initial image towards the edited one based on an SDS-like [55] update scheme.
In particular, the relevance map (in its unnormalized signed form) appears as
a coefficient in the gradient of a consistency loss, which demands that the dis-
tribution induced by the forward diffusion process matches that of the reverse
one, in the text-conditioned context. Such a loss can be interpreted in the sense
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of variational inference (e.g., [59]), and is closely related to techniques designed
to generate 3D textured shapes from 2D diffusion models (e.g., [55, 78]). Intu-
itively, SDS-based approaches perturb an image with noise and then move along
the score function to a higher density area. In contrast, as we show next, in
this theoretical SDS-like optimization, the relevance map instead follows a mod-
ified score estimate, which effectively subtracts out the component of the score
direction that is not “edit-specific” (i.e., based on the input text instruction).
In practice, this difference highlights areas of high vs. low importance to the
semantically aware editor.

Suppose we want to edit an image, I, with a text instruction, C, to generate
an output image, O. We denote the optimal edited image as O*. Motivated by
DreamFusion [55] and ProlificDreamer [78], we consider the following optimiza-
tion problem to align the edited image, O, with the editing knowledge packed in
a pretrained IP2P [6]:

o* = alfgominDKL (qoo(zo\f, Cr)llpo(z01,Cr))

= argOmin Dkw (48 (z0l1)|Ipo(20|1,Cr)), (7)

where {¢®} and {p;} are the forward (diffusion) and reverse (denoising) models
in IP2P, respectively, zo = £(0) is the encoded output, and Dgp, is the KL-
divergence. As shown in ProlificDreamer [78], for each t > 0, we have

D (gf (ze/1) || pe(=|1,Cr)) =0
= ¢ (20lI) = po(20|1, Cr). (8)

By setting t to t..1, we approximate the solution to the optimization problem in
Eq. 7 with
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By taking the gradient of the objective, £, with respect to O we get
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The approximation in the third line of Eq. 12, where the parameter score is
dropped, is motivated by DreamFusion [55], Sticking-the-Landing [59], and Score
Jacobian Chaining [76]. Now, using Eq. 11 and Eq. 12, we can rewrite the gra-
dient of the objective with respect to O in Eq. 10 as
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Having the gradient of the objective of the edit with respect of the output,
one can start with an initial output, Oy = I, and iteratively update it to get
O~ = O*. According to Eq. 13, the magnitude of each update step is directly
proportional to the absolute value of the relevance map; if the relevance map has
a low value, the pixel would not be updated, and if the relevance map is higher,
the corresponding pixel will change more significantly. In this paper, we explicitly
limit the denoising process to only change the pixels with high relevance values,
which is closely aligned with the theoretical procedure derived in this section.

We remark that our approach, which modifies the diffusion process rather
than attempting an SDS-like optimization, is both more efficient and simpler
(in that the optimization requires designing); further, the SDS-based approach
entails certain approximations, such as the assumption on the parameter score,
which may reduce performance. Empirically, we tested an implementation of the
SDS-like optimization above, but found it produced images of worse quality. In
theory, it may be possible to utilize this optimization-based approach instead;
we leave additional investigations to future work.

F Relevance field ablation

We include here an ablation where 2D relevance maps are used without the 3D
radiance field. By design, using the 3D radiance field has significantly better
preservation of the original scene in edit-irrelevant areas, as measured by Image
Sim. (1), which increases from 0.83 to 0.89, and Edit PSNR (1), which improves
1.6 dB (from 29.4 to 31). Importantly, however, the radiance field obtains this
advantage with the semantic (e.g., Txt-Img Sim.) and image quality (NIQE)
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metrics remaining unchanged. In Fig. 16 (rows 4-5; text “give him sunglasses”),
the reason for these results can be seen in the noisier 2D maps, which highlight
a greater proportion of irrelevant areas, compared to the highly localized and
cleaner 3D radiance field renders. In other words, the radiance field improves
localization without sacrificing performance along other dimensions, essentially
by forcing the relevances to be consistent across views.

G Off-the-shelf segmentation ablation

Using a separate segmentation algorithm could be useful and/or perform sim-
ilarly in certain cases. However, using the editing model itself to produce the
mask has significant advantages. To this end, we also compare to a state-of-the-
art segmentor, SAM-Track [10], capable of handling multiview inputs, with pub-
lic models and code. The fundamental problem with this approach is that SAM
struggles to segment content that does not yet exist or is ambiguous, i.e., SAM is
not “edit-aware”. For instance, in Fig. 16, we use SAM to extract masks for “the
area around the eyes that sunglasses would cover”. However, this corresponds
to an ill-defined image area, which covers the eyes and some surrounding areas,
depending on the generated sunglasses. In Fig. 16, row two, we tried to isolate
that region manually with points, but encounter difficulty since the sunglasses’
boundaries do not exist in the unedited image. Similarly, text-based inputs (row
three) oversegment. Our tests required non-trivial manual effort to fine-tune the
points and text. In contrast, the 2D relevance maps are “edit-aware” and eas-
ily demarcate the target area; the 3D RF then combines these across views, to
obtain cleaner localizations (see Fig. 16 and Fig. 10). Further, Fig. 17 shows
SAM-Track outputs on two text prompts (upper row): since the hat does not
yet exist in the image, SAM cannot localize it. We also show (bottom row) the
results of NeRF editing with the SAM masks: we find it cannot add the hat, and
instead only blurs his hair.

H Social impact

Since our “Watch Your Steps” is a generative model, it incurs the social issues
of such models (e.g., data bias). Generative models, whether used for images,
videos, 3D content, or other modalities, can perpetuate and even amplify ex-
isting biases present in the training data. This can lead to the reinforcement
of harmful stereotypes and the exclusion of underrepresented groups. Addition-
ally, the realistic outputs of these models can be misused to create deepfakes,
which pose ethical concerns regarding privacy, consent, and misinformation. The
potential for generative models to produce and disseminate misleading or harm-
ful content necessitates careful consideration of their societal impact and the
implementation of robust ethical guidelines and mitigation strategies.
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Fig. 15: Sample rendered relevances from relevance fields trained on different scenes
and different edit instructions. Each relevance field is visualized from multiple views,
in addition to the corresponding views from the original NeRF model of the scene.
Notice how each relevance field is mostly predominately around the region that is
highly relevant to the edit. For example, in the face scene and with the instruction
“Give him blonde hair”, only the hair is given high values in the field. This field allows
localizing edits of the training views during each iterative update in a 3D consistent
manner.
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Fig. 16: Illustration of the rendered relevance maps from our relevance field, compared
to independent 2D relevance maps and masks obtained using SAM-Track [10]. As visible
in the results, the relevance field reduces the noise in the 2D relevance maps by enforcing
a smoothness prior over the averaged-out values across different views. On the other
hand, interactive/text-guided segmentation methods struggle to delineate regions that
don’t exist, such as the sunglasses in this scene.
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Fig. 17: SAM-Track [10] fails to produce masks for regions that do not exist (e.g., the
“cowboy hat” in this case). This leads to the failure of the downstream editing task,
where the hat was not successfully added to the scene.
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