
Watch Your Steps: Local Image and Scene
Editing by Text Instructions

Ashkan Mirzaei1,2 Tristan Aumentado-Armstrong1,3,4

Marcus A. Brubaker1,3,4 Jonathan Kelly2 Alex Levinshtein1

Konstantinos G. Derpanis1,3,4 Igor Gilitschenski2

1Samsung AI Centre Toronto 2University of Toronto 3York University
4Vector Institute for AI

Abstract. The success of denoising diffusion models in generating and
editing images has sparked interest in using diffusion models for edit-
ing 3D scenes represented via neural radiance fields (NeRFs). However,
current 3D editing methods lack a way to both pinpoint the edit loca-
tion and limit changes to the desired volumetric region. Consequently,
these methods often over-edit, altering irrelevant parts of the scene. We
introduce a new task, 3D edit localization, to automatically identify the
relevant region for an editing task and restrict the edit accordingly. To
achieve this goal, we initially tackle 2D edit localization, and then lift it
to multiple views to address the 3D localization challenge. For 2D local-
ization, we leverage InstructPix2Pix (IP2P) and identify the discrepancy
between IP2P predictions with and without the instruction. We refer to
this discrepancy as the relevance map. The relevance map conveys the
importance of changing each pixel to achieve an edit, and guides down-
stream modifications, ensuring that pixels irrelevant to the edit remain
unchanged. With the relevance maps of multiview posed images, we can
define the relevance field, defining the 3D region within which modifica-
tions should be made. This enables us to improve the quality of text-
guided 3D NeRF scene editing, by performing iterative updates on the
training views, guided by renders from the relevance field. Our method
achieves state-of-the-art performance on both NeRF and image editing
tasks. We will make the code available.

Keywords: Generative models · 3D editing · Neural radiance fields

1 Introduction

As generative models improve, automated editing of various standard media
(e.g., images [6,11,20,41,43] and videos [7,17,85]) with such models has become
increasingly important and widespread. Further, new forms of 3D media, such
as neural radiance fields [46] (NeRFs) are increasingly accessible [9, 51, 58] and
popular as an intuitive visualization modality; thus, editing NeRFs has also be-
gun receiving significant attention [15, 18, 47, 48]. However, editing with learned



2 A. Mirzaei et al.

Normalized 
Difference

Original Image Noisy Image

Relevance Map

IP2P
Unet

“Make 
the owl a 
falcon”

IP2P
Unet

“ ”

“Add cherry blossoms” “Give her sunglasses” “Make him old”

Re
le

va
nc

e-
gu

id
ed

 
Im

ag
e 

Ed
itin

g
Re

le
va

nc
e-

gu
id

ed
 

Sc
en

e 
Ed

itin
g

“Turn the bear into a Grizzly bear”“Turn the bear into a panda”

Fig. 1: Overview of the relevance map calculation (left inset), and relevance-guided
sample outputs on image (top-right inset) and neural radiance field (NeRF; bottom-
right inset) editing. Given an image or a NeRF, our goal is to change the input according
to a textual instruction. The relevance map is the disagreement between noise predic-
tions with and without the instruction. For both image and scene editing, the relevance
map confines the changes to the most relevant regions, according to the edit text.

models is often an ill-posed problem, particularly when the only given informa-
tion is textual semantics. For instance, the command “add cherry blossoms” does
not specify what kind, where in the image, or to what extent (e.g., across the
whole image vs. on one tree) the edit should occur. Assuming a viewpoint-based
editing algorithm, even greater difficulty is incurred in 3D, as the inconsistency
of the edits across views can now induce additional problems. We argue that
a notion of minimal edit can improve the controllability of such tasks. That is,
when ambiguity is present, we should prefer parsimonious edits, where the fewest
set of changes that still satisfy a desired edit are chosen.

Current diffusion-based image editors generally lack a mechanism to auto-
matically localize the edit regions. The closest methods either ask users for a
mask [41], rely on the global information kept in a noisy input as a starting
point [43], or condition the denoiser on the input [6]. Nevertheless, all of these
methods tend to over-edit, whether in 2D [6,11] or 3D [18]. Recently, DiffEdit [11]
proposed using the difference between the noise predictions conditioned on cap-
tions to localize image edits, but it is slow, due to denoising diffusion implicit
model (DDIM) [68] inversion, and it requires both input and output captions
(while DiffEdit can technically be used with only the output caption, as dis-
cussed in their paper and shown in our experiments, omitting the input caption
results in significantly worse edits). Further, its edits attempt to use a standard
generative model to perform image translation. In contrast, the recent work
Instruct-Pix2Pix (IP2P) [6], specialized for the task, has proven easier to use
and more effective.

In this paper, we present an approach to automatic localization of an edit
based on a single instruction (cf. DiffEdit [11], which requires input and output
captions), acting as a controllable prior on its spatial extent, which we lift into
3D to perform NeRF editing. The strength of this prior is determined by a single
parameter, which can be intuitively controlled by a user. By ensuring the mod-



Watch Your Steps 3

ifications stay within the relevant region, the original input is better preserved
(i.e., avoiding extraneous changes), while still satisfying the constraint of the de-
sired edit. Our basic approach is to predict the spatial scope implicit in an input
instruction, via the discrepancy between the noise predictions conditioned on
the instruction vs. empty text, which we call the relevance map (see Figure 1).
The edit mask can then be obtained by normalizing and binarizing the relevance
map, which we use to preserve unmasked pixels in the denoising process [41].

Our interest is in the editing task of translation, where a text-conditioned
transformation of an image or 3D scene is performed. In contrast to inpainting,
for example, translation is not localized by definition, and hence methods for
it tend to over-edit (e.g., see Figs. 4 and 8). Specifically, we focus on isolating
the changes incurred in NeRF-based 3D scene translation (i.e., making minimal
edits in 3D), by building on the iterative dataset update method of Instruct-
NeRF2NeRF (IN2N) [18]. Our approach constructs a multiview-consistent 3D
relevance field by combining relevance maps across views, enabling localized 3D
scene translation. In addition, we show that our approach provides state-of-the-
art results for 2D image translation as well.

In summary, (i) we motivate and formulate the new task of localizing edits
in 3D, (ii) we present relevance maps to predict the spatial scope of an editing
instruction on an image, (iii) we use the relevance maps to localize instruction-
based image editing in a controllable manner, and (iv) we lift the maps into 3D
by relevance fields to leverage the localization in scene editing.

2 Related work

Diffusion models for image editing. Diffusion models have shown impres-
sive performance in image synthesis [14, 21, 22, 61, 63, 67, 70]. Text-to-image dif-
fusion models generate high-quality images based on captions [52, 57, 60, 62].
Motivated by this success, pre-trained diffusion models have been used to edit
images based on text descriptions [1, 20, 27, 53, 57]. SDEdit [43] adds noise to
input images and denoises them conditioned on a desired description, but lacks
a mechanism to keep the details of the original image. Recently, IP2P [6] uses
Prompt2Prompt [20] to create a dataset, and trains a denoiser conditioned on
edit instructions and the original image. IP2P [6] outperforms previous meth-
ods, but tends to over-edit images, including parts irrelevant to the instruction.
Simply increasing the image guidance scale or reducing the text guidance scale
has adverse effects on the region that actually should be edited.

The most similar work to ours in 2D, DiffEdit [11], uses the disagreement be-
tween predictions of Stable Diffusion [60] with input and output captions. It thus
considers a slightly different problem than IP2P, as it repurposes a more general
model, rather than training a new one. Nevertheless, it generally underperforms
IP2P, especially for complex cases, and is more difficult to use (requiring two
captions, one edited, rather than a single instruction). We therefore build on the
state-of-the-art method, IP2P, which does not have a localization mechanism;
regardless, however, we provide comparisons to both DiffEdit and IP2P, show-



4 A. Mirzaei et al.

D
en

oi
se

 S
te

p

IP2P

“Make 
the owl a 
falcon”

Threshold

Re
pa

lc
e 

U
nm

as
ke

d

IP2P

Input Image

Edited Image

InstructionMaskRelevance Map Original Image

(a)

Relevance Field

Relevance-guided 
Image Editor

Original Image

“Turn the 
bear into a 

panda”

InstructionRendered Image

Rendered Relevance Condition

Dataset
Update

Render

Edited Image

Relevance Map

(b)

Fig. 2: (a) Overview of a denoising step for image editing via relevance-guidance. The
relevance map is binarized to get the edit mask. After each denoising step with IP2P, the
unmasked pixels are swapped with the noisy input to ensure consistency to the input
throughout the process. (b) Overview of our relevance-guided NeRF editing method.
Iteratively, a random view is rendered using both the main NeRF and the relevance
field. The rendered relevance then guides the editing of the image render, changing
only pixels with highly relevance to the task. IP2P [6], the backbone of the editing
method, is always conditioned on the initial scene captures, to prevent drastic drifts
from the original scene in the recurrent synthesis process [18]. The relevance-guided
editing module (§ 4.2) returns an edited image and an updated relevance, which update
the corresponding training views for the NeRF and the relevance field, respectively.

ing superior results in 2D to both in their published forms. Most importantly,
DiffEdit does not consider editing 3D scenes, whereas we build on IN2N (an
extension of IP2P to NeRFs) to perform localization in 3D.
Editing neural fields. The advent of NeRFs [46] has led to the significant
popularity of neural rendering models [72]. NeRFs are getting faster [5, 8, 9, 19,
28, 31, 51, 58, 64, 82], and less data-intensive [24, 34, 35, 39, 55, 77, 79, 83], with
improved rendering quality [3, 4, 13, 36, 73]. The popularity of NeRFs naturally
introduces a desire for editing tools. Recent works [12, 25, 26, 30, 32, 33, 40, 44,
49, 69, 74, 81, 84] provide NeRF editing approaches, but are typically limited to
simple scenes or objects, or perform niche editing tasks, such as color editing.
Several works [37,47,48,80] focus on 3D inpainting to remove unwanted objects
from NeRFs while yielding a perceptually plausible model. IN2N [18] leveraged
IP2P to edit scenes based on text instructions. While IN2N shows promise, it
lacks an automated mechanism for localizing edits in 3D, leading to instances
of over-editing within scenes. In contrast, our approach includes an automatic
localization mechanism for identifying the target region to be edited, thereby
restricting modifications to the pertinent area.

In certain cases, manually annotated masks could perform similarly to our
automatic localization masks; indeed, several 3D editing methods require user-
provided masks or other information (e.g., [41, 47, 48]). However, automated
localization has several advantages: (i) our mask is continuously tunable (i.e., a
user can control its extent via a threshold); (ii) some prompts may be challenging



Watch Your Steps 5

for users to create a mask; (iii) it applies to 3D, where manually providing many
view-consistent masks is difficult, and other media (e.g., videos); and (iv) ease
of integration into learning pipelines, where manual masks are not scalable.

3 Background

Neural radiance fields. NeRFs [46] represent a 3D scene as a neural field,
f✓ : (x, d) ! (c,�), mapping a 3D coordinate, x 2 R3, and a view direction,
d 2 S2, to a colour, c 2 [0, 1]3, and a density, � 2 R+. The field parameters,
✓, are optimized to fit the field representation to posed image sets. The field is
paired with a rendering operator, implemented as the quadrature approximation
of the classical volumetric rendering integral [42]. For a ray, r, parametrized as
r = o+td, where o is the origin and d is the view-direction, rendering begins with
sampling N points, {ti}Ni=1, on r between near and far bounds. The rendered
colour is then obtained via the volumetric rendering equation, bC(r) =

P
N

i=1 wici,
where wi = Ti(1�exp(��i�i)) is the contribution of the i-th point, �i = ti+1� ti

is the adjacent point distance, and Ti = exp(�
P

i�1
j=1 �j�j) is the transmittance.

InstructPix2Pix. Given an image, I, and a text instruction, CT , describing
the edit, IP2P [6] follows CT to edit I. IP2P is trained on a dataset where,
for each I and CT , a sample edited image, Iout, is given. IP2P is based on La-
tent Diffusion [60], where a variational autoencoder (VAE) [29] with encoder, E ,
and decoder, D, is used for improved efficiency and quality. For training, noise,
✏ ⇠ N (0, 1), is added to z = E(Iout) to get the noisy latent, zt, where the ran-
dom timestep, t 2 T , determines the noise level. The denoiser, ✏✓, is initialized
with pretrained weights [60], and fine-tuned to minimize the diffusion objective,
EIout,I,✏,t

⇥
k✏ � ✏✓(zt, t, I, CT ))k22

⇤
. During training, conditions are randomly re-

moved [38] by setting I = ;I and CT = ;T to enable unconditional denoising.
Thus, the strength of the edit can be controlled by the image guidance scale, sI ,
and the text guidance scale, sT . The modified score estimate is then

e✏✓(zt, t, I, CT ) = ✏✓(zt, t, ;I , ;T )+sI�✏✓ (I, ;I ; ;I , ;T )+sT�✏✓ (I, CT ; I, ;T ), (1)

where �✏✓ (I1, CT,1; I2, CT,2) = ✏✓(zt, t, I1, CT,1) � ✏✓(zt, t, I2, CT,2). After train-
ing, the denoiser can be used to either generate edited images from pure noise,
or to iteratively denoise a noisy version of an input image to get an output.

4 Method

To construct our 3D relevance field for localized NeRF editing, we begin by
describing the calculation of the 2D relevance map in § 4.1, which we will lift
into the multiview setting. In § 4.2, we use the relevance map as a form of mask
guidance in 2D. Finally, we integrate this guidance into a neural field to perform
localized 3D edits, in § 4.3. Implementation details are in § 4.4.



6 A. Mirzaei et al.

4.1 Relevance map calculation

Given an image, I, and an edit instruction, CT , we leverage IP2P [6] to predict
the relevance of each pixel to the edit, that is, the likelihood that a given pixel
needs to be changed, based on the editing task. First, we add noise to the encoded
image, E(I), until a fixed timestep, trel, to obtain the noisy latent,

ztrel =
p
↵trelE(I) +

p
1� ↵trel ✏, (2)

where ✏ ⇠ N (0, 1), and ↵t is the noise scheduling factor at timestep t. Note that
trel is a constant noise level used in our method as a hyperparameter. We then use
IP2P’s noise predictor, ✏✓, to get two different predictions: (i) the predicted noise
conditioned on both the image and the text, ✏I,T (ztrel) = ✏✓(ztrel , trel, I, CT ), and
(ii) the predicted noise conditioned only on the image and the empty text as
the instruction, ✏I(ztrel) = ✏✓(ztrel , trel, I, “”). The difference between ✏I,T (ztrel)
and ✏I(ztrel) is that only the former is aware of the text prompt. We use the
magnitude of the mismatch between these two values as a measurement of the
relevance of each pixel to the edit. To this end, we first calculate the absolute
difference between the two values, which we call the relevance map,

Rx,I,T = |✏I,T (ztrel)� ✏I(ztrel)|. (3)

For robustness, we further clamp the outlier values using the interquartile range
(IQR) with ratio 1.5, and normalize the relevance map between 0 and 1. Figure 1
(left inset) illustrates an overview of the calculation of the relevance mask. For
3D editing, our approach obtains relevance maps of each image in the multiview
setting, and consolidates them into a separate neural relevance field.

4.2 Relevance-guided image editing

The relevance map guides the generation of the edited image, by localizing the
edited region. For a pixel, a high relevance value means that the pixel is likely to
be relevant to the edit, and we allow it to change. In contrast, a low relevance map
value signals that the pixel is unlikely to require change. We apply a single mask
threshold, ⌧ 2 [0, 1], on the relevance map to obtain the edit mask, Mx,I,T =
(Rx,I,T � ⌧), enclosing the pixels we allow to be edited. To edit an input image,

x, its encoding, E(x), is diffused to a fixed noise level, tedit, to get the starting
noisy latent, ztedit . The edit noise level, tedit, determines the strength of the
edit; setting it to 0 results in the input image being unchanged, while setting it
to the maximum diffusion timestep starts the generation from pure noise. Each
denoising stage takes a noisy latent, zt, and denoises it to get zt�1. The denoising
step begins with predicting the noise via IP2P to get e✏t = e✏✓(zt, t, I, CT ). Using
e✏t and DDIM [68], the mask-unaware prediction at timestep t� 1 is

ezt�1 =
p
↵t�1

⇣
xt �

p
1� ↵t e✏tp
↵t

⌘
+
p

1� ↵t�1 e✏t. (4)



Watch Your Steps 7

The unedited noisy latent of the input image, x, at timestep t � 1 would have
been bzt�1 =

p
↵t�1E(x) +

p
1� ↵t�1✏. To obtain zt�1, we combine the mask

unaware prediction, ezt�1, and the unedited noisy latent, bzt�1, as

zt�1 = ezt�1 �Mx,I,T + bzt�1 � (1�Mx,I,T ). (5)

This way, by replacing the unmasked pixels with the noisy version of the input
image, we constrain the generation process from changing any pixel outside of the
mask. After iterative denoising, the edited image, D(z0), is obtained. Figure 2a
presents an overview of our denoising process.
Interpretation. The relevance map is closely related to Score Distillation Sam-
pling (SDS) [55, 76], a method of flowing gradients to a model through a map-
ping to images (e.g., rendering, for 3D generation). In particular, following prior
work [78], assume we wish to generate an edited image, O, that matches the
diffusion model prior. Then, L(O) = E✏

⇥
log qO

trel
(ztrel |I) � log ptrel(ztrel |I, CT )

⇤
,

approximates our objective, where q
O is the forward diffusion process, p is the

reverse denoising process, and zt is the encoded diffused latent at time t, which
depends on the noise, ✏. Using ✏✓, among other assumptions [55,59], we have

rOL ⇡ ↵trel

�trel

E✏

⇥
✏✓(ztrel , trel, I, CT )� ✏✓(ztrel , trel, I, ;T )| {z }

signed relevance map, eRx,I,T

⇤@E(O)

@O
, (6)

where (by Eq. 3) we have Rx,I,T = | eRx,I,T |. Intuitively, since the SDS gradient
(Eq. 6) approximates an update that follows the model score [55], the relevance
map weights how much each pixel should be altered by such an update. Our
post-processing (e.g., into Mx,I,T ) amplifies this natural weighting. Hence, we
can interpret it as a controllable way to emphasize the essential parts of the edit,
while suppressing spurious changes. Please see supplement for details (including
proofs). To our knowledge, this connection has not been previously made.

There is also a relation to classifier-free guidance (CFG) [23], which linearly
combines conditional and unconditional score estimates (see Eq. 1). In contrast,
our approach takes the difference between those scores, non-linearly normalizes
it, and then uses the resulting mask to spatially localize the update (Eq. 5).

4.3 Relevance field for 3D scene editing

Our primary application is the localization of edits in 3D scenes, extending the
approach applied in 2D. Given a multiview capture, {Ii}ni=1, of a static scene and
the corresponding camera poses, the goal is to edit a NeRF fit to the scene, f✓,
according to a text prompt, CT . Motivated by IN2N [18], we perform iterative
training view updates by replacing one training view, It, at a time by its edited
counterpart, based on CT . To ensure consistency in the edit localizations across
views, we fit a 3D neural field, which we call the relevance field, to the relevance
maps of all the training views. While editing each of the views, we render the
corresponding relevance map from the relevance field to guide the edit.



8 A. Mirzaei et al.

For implementation, we extend the neral field function, f✓, to return a view-
independent relevance, r(x) 2 [0, 1], for every 3D coordinate, x 2 R3. Notice
that the geometry of the main NeRF and the relevance field is shared, and when
fitting the relevance field, we always detach the gradients of the densities to
ensure that the potential inconsistencies do not affect the geometry of the main
scene. For a ray, r, the rendered relevance, bR(r), can be simply calculated by
replacing the point-wise colours with relevance values in the volumetric rendering
equation, via bR(r) =

P
N

i=1 wiri.
During the NeRF editing process, every nedit iterations, we randomly sample

a training view, Ii. The first time we sample Ii, the relevance map, RIi,I,T ,
is calculated and added to the training data of the relevance field. From the
same view, the image, bIi, and the relevance map, bRi, are rendered using f✓. The
relevance-guided image editor from § 4.2 is used to locally edit bIi, conditioned
on the original captured image, Ii, and the text condition, CT . To this end, the
encoded render, E(bIi), is diffused until a random timestep, tedit 2 T , to obtain
ztedit . The noisy latent, ztedit , is iteratively denoised conditioned on the unedited
view, Ii, and the text, CT , guided by the rendered relevance map, bRi, to obtain
the edited training view, eIi = D(z0). Since the several-fold upsampling induced
by the decoder could lead to inconsistencies in the unedited region, we replace
the unedited RGB pixels in eIi with their counterparts from Ii using a relevance
mask rendered in the original image resolution. After editing, eIi replaces the
corresponding training view to supervise the main NeRF (the colour field).

4.4 Implementation details

In all of our experiments, we set trel = 0.8, i.e., we apply 80% of the noise to
predict the relevance map. For IP2P, we use the model available on HuggingFace,
based on the diffusers package [54]. For NeRF editing, we use the nerfacto model
from NeRFStudio [71]. During the iterative dataset updates, we perform edits
with noise levels (timesteps) randomly sampled from [0.02, 0.98]. We update a
single training view every nedit = 10 iterations. Each image is updated using
20 denoising steps for NeRF editing, and 100 denoising steps for image editing.
For the relevance field implementation, we use the same hyperparameters as
the nerfacto field [71]; however, we never use the densities from this field, and
only use the geometry from the main radiance field. The threshold, ⌧ is set
between [0.4, 0.6] in all the experiments, unless stated otherwise. Each NeRF is
first trained for 30,000 iterations on the original scene, and then edited for 3,000
or 4,000 iterations depending on the number of training views.

5 Experiments

While our focus is on automatic localization of 3D edits in the context of NeRF
scene translation, where we improve upon the unlocalized IN2N, our approach
in 2D is also state of the art, specifically building upon IP2P and DiffEdit.
Datasets. NeRF editing evaluation is done using scenes from IN2N [18] and



Watch Your Steps 9

LLFF [45]. We use 14 different NeRF editing tasks (i.e., text instructions) for
the quantitative experiments. For each, a scene is edited using an instruction, and
evaluated against a desired output caption. IN2N and LLFF provide multiview
captures of forward-facing and 360� static scenes. Colmap [65, 66] is used to
recover camera parameters. For image editing, we follow IP2P [6] and use their
dataset of diverse images and editing instructions. The test set consists of 5,000
images, paired with instructions, and input and output captions.
Metrics. For scene editing, we use CLIP text-image similarity (Txt-Img Sim.)
which is the cosine similarity of the CLIP embeddings of output views and the
output caption. In addition, CLIP frame similarity (Frame Sim.) measures the
cosine similarity of consecutive frames. CLIP edit similarity (Edit Sim.) measures
the directional agreement between the changes applied to neighbouring frames in
CLIP space, as described in IN2N [18]. CLIP image similarity (Image Sim.) and
edit PSNR measure the consistency of the edited views and the input views, in
the CLIP and RGB spaces, respectively. Finally, we use NIQE [50], a no-reference
image quality metric, to evaluate the quality and sharpness of the outputs. In
2D, following IP2P [6], we use CLIP image similarity [56] (i.e., Image Sim. in
3D) and CLIP text-image direction similarity [16].
Baselines. In 3D, we evaluate against IN2N [18] and per-frame IP2P (IP2P-PF),
which independently edits renders of the input NeRF via IP2P [6]. Note that
using IP2P in this manner is an upper-bound on image quality (as it removes
NeRF artifacts), but should have worse multiview consistency (as it has no
3D structure). We further compare our model against NeRF-Art [75], which
uses CLIP similarity of the scene and a caption to edit scenes, IN2N [18] with
stable diffusion (SD) [60] (rather than IP2P), and using the Score Distillation
Sampling (SDS) [55] loss with IP2P. For 2D image editing, we compare against
DiffEdit [11], SDEdit [43], and IP2P [6]. DiffEdit expects input and output
captions, and is evaluated with those, instead of the edit instruction. SDEdit
expects the output caption; we evaluate it with the output caption as SDEdit
(out caption) and with the edit instruction as SDEdit (instruction), separately.

5.1 Results

NeRF editing. Table 1 contains quantitative results based on 14 scene edit-
ing tasks (i.e., text instructions). All methods perform comparably in terms of
CLIP [56] text-image similarity, meaning the edited scenes match the output
captions. Since IP2P-PF directly outputs from a diffusion model, rather than a
NeRF, it (i) has no 3D-awareness and (ii) bounds image quality performance (i.e.,
since it lacks NeRF artifacts, the other methods will have worse NIQE). Never-
theless, CLIP frame similarity and CLIP edit similarity show that IN2N and our
method produce view-consistent results, whereas IP2P-PF independently edits
rendered views and is unable to maintain 3D consistency. However, since IN2N
tends to over-edit, our method is superior in CLIP image similarity and Edit
PSNR, which measure consistency with the original scene. Further, in terms
of NIQE [50], our method outperforms IN2N by producing sharper and higher
quality results. In summary, our method maintains the 3D view consistency and



10 A. Mirzaei et al.

Table 1: 3D scene editing results, compared to IN2N [18] and per-frame IP2P [6]
(IP2P-PF). Since IP2P-PF independently edits each image, (i) there are no 3D consis-
tency constraints and (ii) NeRF artifacts are not present (thus bounding image quality
performance). Hence, it is not a direct comparison. Nevertheless, due to (i), it is in-
ferior to the other methods in terms of consistency between neighbouring frames and
their edited forms. Compared to IN2N, our approach essentially matches its Txt-Img,
Frame, and Edit Similarities; however, we surpass it in (a) similarity to the original
scene (Image Sim. and Edit PSNR) and (b) overall image quality (NIQE).

Method Txt-Img
Sim."

Frame
Sim."

Edit
Sim."

Image
Sim."

Edit
PSNR" NIQE#

IP2P-PF [6] 0.28 0.97 0.81 0.91 19.4 4.02
IN2N [18] 0.27 0.99 0.88 0.86 28.7 6.43
Ours 0.27 0.99 0.88 0.89 31.0 5.53

“Turn the bear into a panda”“Turn the bear into a polar bear”“Turn the bear into a Grizzly bear”Input NeRF

“Turn him into Albert Einstein” “Give him a mustache” “Turn him into Heath Ledger’s joker”Input NeRF

“Make it look like it just snowed” “Make it stormy”Input NeRF

Fig. 3: Qualitative outputs of our NeRF editing method. For each scene and text
instruction, we provide multiview renderings of the edited NeRF to show view consis-
tency. Our method follows the text, yet keeps regions less relevant to the task intact.

semantic similarity to the desired edit of IN2N, but improves both similarity
to the original scene and overall image quality. Quantitatively, we find that our
approach closes 37.3% of the gap in NIQE between IN2N and IP2P-PF.

Qualitative examples of our scene editing results are shown in Figure 3. Our
model edits the region most relevant to the edit, while keeping the rest of the
scene unchanged. For example, while editing the bear statue and changing it to
a panda, a grizzly bear, or a polar bear, the background and the stage underneath
the statue remain intact, while the statue itself is changed to the desired animals
with sharp textures (notice the texture of the fur).

We next show qualitative comparisons to the baselines in Figure 4. We see
that IN2N has a tendency to over-edit scenes, as it is built directly on IP2P. For
instance, in the leftmost inset, it has changed the entire torso to a bronze statue,
not just the face. In the “Give him blue hair” inset, notice how it has also changed
the T-shirt, eyes, and background colours. In the bear scene, the background
in IN2N outputs is blurred. This is due in part to the ambiguity of the VAE
decoder in upsampling, resulting in minor misalignments between different views.



Watch Your Steps 11

“Turn his face into a bronze statue”“Turn his face into a bronze statue” “Give him blue hair”

Original NeRF IN2N Ours Original NeRF IN2N Ours
“Turn the bear into a panda”

Original NeRF IN2N Ours

“Turn his face into a bronze statue” “Give him blue hair”

Original NeRF IN2N Ours Original NeRF IN2N Ours
“Turn the bear into a panda”

Original NeRF IN2N Ours

“Turn his face into a bronze statue” “Give him blue hair”

Original NeRF IN2N Ours Original NeRF IN2N Ours
“Turn the bear into a panda”

Original NeRF IN2N Ours

“Give him blue hair” “Turn the bear into a panda”

Original IN2N Ours Original IN2N Ours Original IN2N Ours

Fig. 4: Comparison of our 3D scene editing results against IN2N [18]. The relevance
field enables us to localize the edit to the most significant regions. Editing a smaller
region reduces the decoder spatial ambiguity problem on unedited pixels. Moreover,
it improves the view consistency in the edited region as editing a small part is more
likely to produce consistent results across the views.

Original NeRF

“Tolkien Elf”

NeRF-Art IN2N

“Turn him into the Tolkien Elf”

Ours

(a)
IN2N w/ SD SDS w/ IP2P OursOriginal NeRF “T

ur
n 

th
e 

be
ar

 in
to

 a
 g

riz
zly

 b
ea

r”

Instruction: “Turn the bear into a grizzly bear”

(b)

Fig. 5: (a) Comparison of our 3D scene editing method against NeRF-Art [75] and
IN2N [18]. The baselines modify the background, shirt, and hair of the person, while
our model only edits the eyes and ears. The extraneous changes of the baselines can
even fail to preserve important scene semantics (in this case, the individual’s identity).
In contrast, our method applies only the minimum change required for the desired
semantic alteration. (b) Qualitative comparison of our scene editing method against
two baselines. IN2N w/ SD performs the same iterative dataset updates as IN2N [18],
but with stable diffusion [60] instead of IP2P. SDS w/ IP2P performs updates on the
NeRF based on the SDS loss [55] calculated via IP2P. Our method results in sharp
outputs, while the baselines have failed on the task.

Moreover, since IP2P fails to prevent changes to the background, some of the
edited views have an altered background. This inconsistency reduces sharpness.
It also disrupts the optimization, as network capacity and loss gradients are
allocated to background inconsistencies; hence, IN2N outputs are not as sharp
as our result. Moreover, IP2P is constrained to only edit the bear to a panda in
our case, rather than trying to edit the entire image to satisfy the instruction.
Consequently, the edited views in our method are more likely to be consistent,
especially for nearby views, which is another reason that even our edited regions
are considerably sharper (e.g., the texture of the panda’s fur).

In Figure 5a, NeRF-Art [75] follows the instruction and changes the face to
the Tolkien Elf, but the edited scene has quality artifacts associated with CLIP-
based [56] methods, and has changed irrelevant regions of the scene, including the
hair, background, and t-shirt. Figure 5b compares our method with additional
baselines. The baselines either have a high failure rate [11] or result in global
image updates and have a lack of detail preservation [43].
Image editing. While our main contribution is the 3D relevance field, our
method is also state of the art for text-guided image translation. We quantita-
tively evaluate our relevance-guided image editing method in Figure 6, based on
the IP2P [6] dataset. Each model is measured on two competing metrics: similar-



12 A. Mirzaei et al.

Fig. 6: Quantitative 2D image editing evalu-
ation. Our model achieves better text-image
direction similarity (x-axis), while maintaining
higher fidelity to the input (y-axis). We set
sT = 7.5 for every method. We pick SDEdit’s
strength from [0.1, 0.9] and DiffEdit’s encoding-
ratio from [0.5, 0.9]. For IP2P, sI 2 [1, 2.2]. For
our method, sI = 1. Notice that our method is
best for both metrics for every choice of ⌧ .

"Make it a bus instead of a car""Make it a snow globe"

"Make the fields full of daisies" "Make the castle a lighthouse"

"Swap out the Dallas Divide for the Grand Canyon" "It is a graphic novel"

"Replace the barn with a castle" “Turn it into a Hotel”

DiffEdit

(In/out captions)

SDEdit 
(instruction)Input OursDiffEdit


(out caption)
SDEdit 

(caption)
DiffEdit


(In/out captions)
SDEdit 

(instruction)Input OursDiffEdit

(out caption)

SDEdit 
(caption)"Make it a bus instead of a car""Make it a snow globe"

"Make the fields full of daisies" "Make the castle a lighthouse"

"Swap out the Dallas Divide for the Grand Canyon" "It is a graphic novel"

"Replace the barn with a castle" “Turn it into a Hotel”

DiffEdit

(In/out captions)

SDEdit 
(instruction)Input OursDiffEdit


(out caption)
SDEdit 

(caption)
DiffEdit


(In/out captions)
SDEdit 

(instruction)Input OursDiffEdit

(out caption)

SDEdit 
(caption)

Fig. 7: Comparison of our image editing method against DiffEdit [11] and SDEdit [43].
DiffEdit requires the captions of both the input and output, but still fails to perform
the edit as the captions in IP2P [6] dataset are relatively complex. SDEdit [43] performs
better when it is given the output caption. Our model follows the instructions more
closely, while maintaining coherence with the input. See also Figure 8.

ity to the input image (y-axis) and agreement with the edit (x-axis). Compared
to the baselines, our model achieves higher image consistency with similar di-
rectional similarities. Additionally, increasing the mask threshold, ⌧ , increases
the image similarity as a smaller image region is being edited. However, overly
increasing ⌧ can restrict the edit too much. Nevertheless, for these metrics, our
method is on the Pareto frontier for every value of ⌧ .

We provide qualitative comparisons in Figures 7 and 8. Compared to our
closest competitor, IP2P, we consistently obtain superior image similarity, by
avoiding over-editing. In terms of localization, the most similar method to ours,
DiffEdit [11], requires access to both input and output captions. Even with this
information, since the captions in the IP2P dataset are relatively complex (rather
than simple class names or high-level descriptions), DiffEdit fails to perform ap-
propriate edits. In particular, when DiffEdit is only given the output caption and
an empty text as the input caption, i.e., DiffEdit (out caption), it never achieves
high text-image similarities, and the inputs remain relatively unchanged. This is
due in part to DiffEdit failing to predict appropriate masks. For SDEdit [43,60],
the fidelity of the outputs to the inputs drop significantly as the strength of the
edit is increased. This drop is due to the lack of an explicit mechanism to ensure
consistency. Unlike our model, SDEdit relies on the information in the noisy
latent, however, in later diffusion stages, the noisy latent retains global informa-
tion about the input, but lacks local details. Overall, these results showcase the



Watch Your Steps 13

“What if she was from an anime?” “Put her in a suit” “Turn her to a zombie”

“Give her prescription glasses” “Turn her into a pharaoh” “Turn her face into a Disney character”

IP2P OursInput Image IP2P Ours IP2P Ours

IP2P OursInput Image IP2P Ours IP2P Ours

Fig. 8: Comparison of our image editing method against IP2P [6]. For both models,
sT = 7.5 and sI = 1. IP2P fails to isolate the specified region, and over-edits the input.
Our model explicitly predicts the scope of the edit, and limits it to a specific region.

“Make them look like 

Simpsons characters”

Input Image Relevance Map Instruction

� = 0.0 � = 0.2 � = 0.4 � = 0.6 � = 0.8

S I
=1

.0
S I

=1
.5

S I
=2

.0
S I

=2
.5

Text-guidance Scale

ST = 7.5

IP2P Ours

S I
=3

.0

“Make them look like 

Simpsons characters”

Input Image Relevance Map Instruction

� = 0.0 � = 0.2 � = 0.4 � = 0.6 � = 0.8
S I

=1
.0

S I
=1

.5
S I

=2
.0

S I
=2

.5

Text-guidance Scale

ST = 7.5

IP2P Ours

S I
=3

.0

“Make them look like 

Simpsons characters”

Input Image Relevance Map Instruction

� = 0.0 � = 0.2 � = 0.4 � = 0.6 � = 0.8

S I
=1

.0
S I

=1
.5

S I
=2

.0
S I

=2
.5

Text-guidance Scale

ST = 7.5

IP2P Ours

S I
=3

.0

“Make them look like 

Simpsons characters”

Input Image Relevance Map Instruction

� = 0.0 � = 0.2 � = 0.4 � = 0.6 � = 0.8

S I
=1

.0
S I

=1
.5

S I
=2

.0
S I

=2
.5

Text-guidance Scale

ST = 7.5

IP2P Ours

S I
=3

.0

“Make them look like 

Simpsons characters”

Input Image Relevance Map Instruction

� = 0.0 � = 0.2 � = 0.4 � = 0.6 � = 0.8

S I
=1

.0
S I

=1
.5

S I
=2

.0
S I

=2
.5

Text-guidance Scale

ST = 7.5

IP2P Ours

S I
=3

.0

Input Image Relevance Map

“Make them look like Simpsons characters”

Fig. 9: Comparison of the mask threshold, ⌧ , and the image guidance scale, sI . In-
creasing sI improves the similarity of the output and the input image, but significantly
decreases the intensity of the edit overall. In contrast, ⌧ provides a way for the user to
control the region of the edit, without changing the strength of the edit.

utility of minimal edits: by localizing edits to only the areas relevant to meeting
the desired semantics, our method produces text-image similarities on-par with
IP2P, while keeping the outputs more consistent with the inputs.
Mask Threshold. We explore how the mask threshold, ⌧ , affects the editing
process (Figure 9). Setting ⌧ = 0 results in every pixel being masked, which
is equivalent to IP2P [6]. For each ⌧ , we provide results with different image
guidance scales, sI . As evident in the results, increasing sI is insufficient to
localize the IP2P edits; instead, it merely weakens the overall edit itself (reducing
text-image similarity in Figure 6). On the other hand, changing ⌧ provides a
different form of control to the user, and allows them to control the edited
region, without negatively impacting regions that do not need modification.
Relevance noise level. The relevance noise level, trel, controls the diffusion
time used to derive our relevance map and field. Figure 10 compares maps cal-
culated using different levels. Empirically, we found trel = 0.8 to be reliable. This
way, the relevance is calculated using predictions in the higher-noise stages. As a
result, the noise estimator fixates on the global structure of the generated images,
rather than the fine details [2]. Thus, the predicted relevance masks encapsulate
the global boundaries of the relevant regions. Moreover, Figure 10 shows the



14 A. Mirzaei et al.

“Turn the bear 
into a panda”

= 0.2 = 0.4 = 0.6

= 0.99= 0.8 Relevance Field

Input View

Instruction

“Turn the bear 
into a panda”

= 0.2 = 0.4 = 0.6

= 0.99= 0.8 Relevance Field

Input View

Instruction

Instruction: “Turn the bear into a panda”

Fig. 10: Relevance maps across trel values vs. a render from the relevance field.

“Add a cat”

“Change to a rosé”

IP2P Relevance MapOursInput

“Add a cat”

“Change to a rosé”

IP2P Relevance MapOursInput

“Add a cat”

“Change to a rosé”

IP2P Relevance MapOursInput

Fig. 11: Example failure cases. Although our model outperforms IP2P, it still relies on
it for predicting the relevance. Hence, it cannot recover from IP2P’s errors.

render of the relevance field from the same view. Since the field is supervised us-
ing maps from multiple views, it acts as an ensemble over relevance predictions,
which is more accurate than each single map. In addition, the inductive bias of
the NeRF architecture limits high-frequency variations; hence, relevance renders
provide a smooth consensus over the 3D scene, with minimal noise.
Failure cases. Although our mask-guidance can alleviate the over-editing prob-
lem of IP2P [6], while reducing upsampling ambiguity, it is still unable to recover
from cases where IP2P fails. In Figure 11, we provide examples of such failures.
For instance, in the first row, the prompt is “change to a rosé”. Given the image
context, the goal is to only change the drinks. However, IP2P has changed the
background field and hair colour to pink. This failure is reflected in the predicted
relevance mask, which superfluously highlights those areas. Though our model
reduces these over-edits, it has still produced unnecessary changes. In the second
example, “add a cat”, localizing the edit with respect to the prompt is an am-
biguous problem. The relevance map has failed to localize a certain position for
the cat to be added, and instead, the person and the dog have been replaced with
cats. Our method is agnostic to the underlying instruction-conditioned diffusion
model, and can benefit from swapping IP2P with a better one in the future.

6 Conclusion

We presented a method for predicting the relevance of each image pixel to an
editing task based on a text instruction. The relevance map is defined as the
discrepancy between a conditional and an unconditional pass over a diffusion-
based image editor. The relevance is used as a mask to guide the image generation
process and force the unmasked pixels to not change, resulting in a localized
image editor. We further showed that training a relevance field on the relevance
maps of the training views of a NeRF achieves similar localizations when editing
3D scenes. Empirically, our method has superior performance compared to the
baselines in both 3D scene editing and (single) image tasks.



Watch Your Steps 15

References

1. Avrahami, O., Lischinski, D., Fried, O.: Blended diffusion for text-driven editing
of natural images. In: CVPR (2022) 3

2. Balaji, Y., Nah, S., Huang, X., Vahdat, A., Song, J., Zhang, Q., Kreis, K., Aittala,
M., Aila, T., Laine, S., Catanzaro, B., Karras, T., Liu, M.Y.: ediff-i: Text-to-image
diffusion models with ensemble of expert denoisers. arXiv (2022) 13

3. Barron, J.T., Mildenhall, B., Tancik, M., Hedman, P., Martin-Brualla, R., Srini-
vasan, P.P.: Mip-NeRF: A multiscale representation for anti-aliasing neural radi-
ance fields. ICCV (2021) 4

4. Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Mip-NeRF
360: Unbounded anti-aliased neural radiance fields. CVPR (2022) 4

5. Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Zip-NeRF:
Anti-aliased grid-based neural radiance fields. ICCV (2023) 4

6. Brooks, T., Holynski, A., Efros, A.A.: InstructPix2Pix: Learning to follow image
editing instructions. In: CVPR (2023) 1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 19, 20,
22, 23

7. Ceylan, D., Huang, C.H.P., Mitra, N.J.: Pix2Video: Video editing using image
diffusion. In: ICCV (2023) 1

8. Chen, A., Xu, Z., Geiger, A., Yu, J., Su, H.: Tensorf: Tensorial radiance fields. In:
ECCV (2022) 4

9. Chen, Z., Funkhouser, T., Hedman, P., Tagliasacchi, A.: MobileNeRF: Exploiting
the polygon rasterization pipeline for efficient neural field rendering on mobile
architectures. In: CVPR (2023) 1, 4

10. Cheng, Y., Li, L., Xu, Y., Li, X., Yang, Z., Wang, W., Yang, Y.: Segment and
track anything. arXiv preprint arXiv:2305.06558 (2023) 25, 27

11. Couairon, G., Verbeek, J., Schwenk, H., Cord, M.: Diffedit: Diffusion-based seman-
tic image editing with mask guidance. ICLR (2023) 1, 2, 3, 9, 11, 12

12. Dai, A., Siddiqui, Y., Thies, J., Valentin, J., Niessner, M.: SPSG: Self-supervised
photometric scene generation from RGB-D scans. In: CVPR (2021) 4

13. Deng, K., Liu, A., Zhu, J.Y., Ramanan, D.: Depth-supervised NeRF: Fewer views
and faster training for free. In: CVPR (2022) 4

14. Dhariwal, P., Nichol, A.: Diffusion models beat GANs on image synthesis. NeurIPS
(2021) 3

15. Dong, J., Wang, Y.X.: Vica-nerf: View-consistency-aware 3d editing of neural ra-
diance fields. In: NeurIPS (2023) 1

16. Gal, R., Patashnik, O., Maron, H., Chechik, G., Cohen-Or, D.: StyleGAN-NADA:
Clip-guided domain adaptation of image generators. TOG (2022) 9

17. Geyer, M., Bar-Tal, O., Bagon, S., Dekel, T.: TokenFlow: Consistent diffusion
features for consistent video editing. In: ICLR (2024) 1

18. Haque, A., Tancik, M., Efros, A., Holynski, A., Kanazawa, A.: Instruct-
NeRF2NeRF: Editing 3D scenes with instructions. ICCV (2023) 1, 2, 3, 4, 7,
8, 9, 10, 11

19. Hedman, P., Srinivasan, P.P., Mildenhall, B., Barron, J.T., Debevec, P.: Baking
neural radiance fields for real-time view synthesis. In: ICCV (2021) 4

20. Hertz, A., Mokady, R., Tenenbaum, J., Aberman, K., Pritch, Y., Cohen-Or, D.:
Prompt-to-prompt image editing with cross attention control. ICLR (2023) 1, 3

21. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. NeurIPS
(2020) 3



16 A. Mirzaei et al.

22. Ho, J., Saharia, C., Chan, W., Fleet, D.J., Norouzi, M., Salimans, T.: Cascaded
diffusion models for high fidelity image generation. JMLR (2022) 3

23. Ho, J., Salimans, T.: Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598 (2022) 7

24. Jain, A., Mildenhall, B., Barron, J.T., Abbeel, P., Poole, B.: Zero-shot text-guided
object generation with dream fields. CVPR (2022) 4

25. Jheng, R.F., Wu, T.H., Yeh, J.F., Hsu, W.H.: Free-form 3D scene inpainting with
dual-stream GAN. BMVC (2022) 4

26. Kania, K., Yi, K.M., Kowalski, M., Trzciński, T., Tagliasacchi, A.: CoNeRF: Con-
trollable neural radiance fields. In: CVPR (2022) 4

27. Kawar, B., Zada, S., Lang, O., Tov, O., Chang, H., Dekel, T., Mosseri, I., Irani,
M.: Imagic: Text-based real image editing with diffusion models. CVPR (2023) 3

28. Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3D Gaussian splatting for
real-time radiance field rendering. TOG (2023) 4

29. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. arXiv (2022) 5
30. Kuang, Z., Luan, F., Bi, S., Shu, Z., Wetzstein, G., Sunkavalli, K.: PaletteNeRF:

Palette-based appearance editing of neural radiance fields. In: arXiv (2022) 4
31. Kurz, A., Neff, T., Lv, Z., Zollhöfer, M., Steinberger, M.: AdaNeRF: Adaptive

sampling for real-time rendering of neural radiance fields. In: ECCV (2022) 4
32. Lazova, V., Guzov, V., Olszewski, K., Tulyakov, S., Pons-Moll, G.: Control-NeRF:

Editable feature volumes for scene rendering and manipulation. In: WACV (2023)
4

33. Li, Z., Fan, T., Li, Z., Cui, Z., Sato, Y., Pollefeys, M., Oswald, M.R.: CompNVS:
Novel view synthesis with scene completion. In: ECCV (2022) 4

34. Lin, C.H., Gao, J., Tang, L., Takikawa, T., Zeng, X., Huang, X., Kreis, K., Fidler,
S., Liu, M.Y., Lin, T.Y.: Magic3D: High-resolution text-to-3D content creation. In:
CVPR (2023) 4

35. Lin, C.H., Ma, W.C., Torralba, A., Lucey, S.: BARF: Bundle-adjusting neural
radiance fields. In: ICCV (2021) 4

36. Lindell, D.B., Van Veen, D., Park, J.J., Wetzstein, G.: BACON: Band-limited
coordinate networks for multiscale scene representation. In: CVPR (2022) 4

37. Liu, H.K., Shen, I.C., Chen, B.Y.: NeRF-In: Free-form NeRF inpainting with RGB-
D priors. In: arXiv (2022) 4

38. Liu, N., Li, S., Du, Y., Torralba, A., Tenenbaum, J.B.: Compositional visual gen-
eration with composable diffusion models. ECCV (2023) 5

39. Liu, R., Wu, R., Hoorick, B.V., Tokmakov, P., Zakharov, S., Vondrick, C.: Zero-1-
to-3: Zero-shot one image to 3D object. arXiv (2023) 4

40. Liu, S., Zhang, X., Zhang, Z., Zhang, R., Zhu, J.Y., Russell, B.: Editing conditional
radiance fields. In: ICCV (2021) 4

41. Lugmayr, A., Danelljan, M., Romero, A., Yu, F., Timofte, R., Van Gool, L.: Re-
paint: Inpainting using denoising diffusion probabilistic models. In: CVPR (2022)
1, 2, 3, 4

42. Max, N., Chen, M.: Local and global illumination in the volume rendering integral.
Tech. rep., Lawrence Livermore National Lab (LLNL), Livermore, CA (United
States) (2005) 5

43. Meng, C., He, Y., Song, Y., Song, J., Wu, J., Zhu, J.Y., Ermon, S.: SDEdit: Guided
image synthesis and editing with stochastic differential equations. ICLR (2021) 1,
2, 3, 9, 11, 12

44. Mikaeili, A., Perel, O., Safaee, M., Cohen-Or, D., Mahdavi-Amiri, A.: SKED:
Sketch-guided text-based 3D editing. arXiv (2023) 4



Watch Your Steps 17

45. Mildenhall, B., Srinivasan, P.P., Ortiz-Cayon, R., Kalantari, N.K., Ramamoorthi,
R., Ng, R., Kar, A.: Local light field fusion: Practical view synthesis with prescrip-
tive sampling guidelines. TOG (2019) 9

46. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng,
R.: NeRF: Representing scenes as neural radiance fields for view synthesis. In:
ECCV (2020) 1, 4, 5

47. Mirzaei, A., Aumentado-Armstrong, T., Brubaker, M.A., Kelly, J., Levinshtein,
A., Derpanis, K.G., Gilitschenski, I.: Reference-guided controllable inpainting of
neural radiance fields. In: ICCV (2023) 1, 4

48. Mirzaei, A., Aumentado-Armstrong, T., Derpanis, K.G., Kelly, J., Brubaker, M.A.,
Gilitschenski, I., Levinshtein, A.: SPIn-NeRF: Multiview segmentation and percep-
tual inpainting with neural radiance fields. In: CVPR (2023) 1, 4

49. Mirzaei, A., Kant, Y., Kelly, J., Gilitschenski, I.: LaTeRF: Label and text driven
object radiance fields. In: ECCV (2022) 4

50. Mittal, A., Soundararajan, R., Bovik, A.C.: Making a “completely blind” image
quality analyzer. IEEE Signal Processing Letters (2013) 9

51. Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives
with a multiresolution hash encoding. TOG (2022) 1, 4

52. Nichol, A.Q., Dhariwal, P., Ramesh, A., Shyam, P., Mishkin, P., McGrew, B.,
Sutskever, I., Chen, M.: GLIDE: Towards photorealistic image generation and edit-
ing with text-guided diffusion models. In: ICML (2022) 3

53. Parmar, G., Singh, K.K., Zhang, R., Li, Y., Lu, J., Zhu, J.Y.: Zero-shot image-to-
image translation. In: SIGGRAPH (2023) 3

54. von Platen, P., Patil, S., Lozhkov, A., Cuenca, P., Lambert, N., Rasul, K.,
Davaadorj, M., Wolf, T.: Diffusers: State-of-the-art diffusion models. https://
github.com/huggingface/diffusers (2022) 8

55. Poole, B., Jain, A., Barron, J.T., Mildenhall, B.: DreamFusion: Text-to-3D using
2D diffusion. In: ICLR (2023) 4, 7, 9, 11, 22, 23, 24

56. Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G.,
Askell, A., Mishkin, P., Clark, J., Krueger, G., Sutskever, I.: Learning transferable
visual models from natural language supervision. ICML (2021) 9, 11

57. Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., Chen, M.: Hierarchical text-
conditional image generation with CLIP latents. arXiv (2022) 3

58. Reiser, C., Szeliski, R., Verbin, D., Srinivasan, P.P., Mildenhall, B., Geiger, A.,
Barron, J.T., Hedman, P.: MERF: Memory-efficient radiance fields for real-time
view synthesis in unbounded scenes. In: arXiv (2023) 1, 4

59. Roeder, G., Wu, Y., Duvenaud, D.: Sticking the landing: Simple, lower-variance
gradient estimators for variational inference. arXiv (2017) 7, 23, 24

60. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution
image synthesis with latent diffusion models. In: CVPR (2022) 3, 5, 9, 11, 12

61. Saharia, C., Chan, W., Chang, H., Lee, C., Ho, J., Salimans, T., Fleet, D., Norouzi,
M.: Palette: Image-to-image diffusion models. In: SIGGRAPH (2022) 3

62. Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton, E., Ghasemipour,
S.K.S., Ayan, B.K., Mahdavi, S.S., Lopes, R.G., Salimans, T., Ho, J., Fleet, D.J.,
Norouzi, M.: Photorealistic text-to-image diffusion models with deep language un-
derstanding. In: NeurIPS (2022) 3

63. Saharia, C., Ho, J., Chan, W., Salimans, T., Fleet, D.J., Norouzi, M.: Image super-
resolution via iterative refinement. TPAMI (2022) 3

64. Sara Fridovich-Keil and Alex Yu, Tancik, M., Chen, Q., Recht, B., Kanazawa, A.:
Plenoxels: Radiance fields without neural networks. In: CVPR (2022) 4

https://github.com/huggingface/diffusers
https://github.com/huggingface/diffusers


18 A. Mirzaei et al.

65. Schönberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: CVPR (2016)
9

66. Schönberger, J.L., Zheng, E., Pollefeys, M., Frahm, J.M.: Pixelwise view selection
for unstructured multi-view stereo. In: ECCV (2016) 9

67. Sohl-Dickstein, J., Weiss, E.A., Maheswaranathan, N., Ganguli, S.: Deep unsuper-
vised learning using nonequilibrium thermodynamics. PMLR (2015) 3

68. Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models. ICLR (2021)
2, 6

69. Song, S., Yu, F., Zeng, A., Chang, A.X., Savva, M., Funkhouser, T.: Semantic
scene completion from a single depth image. In: CVPR (2017) 4

70. Song, Y., Ermon, S.: Generative modeling by estimating gradients of the data
distribution. NeurIPS (2020) 3

71. Tancik, M., Weber, E., Ng, E., Li, R., Yi, B., Kerr, J., Wang, T., Kristoffersen,
A., Austin, J., Salahi, K., Ahuja, A., McAllister, D., Kanazawa, A.: Nerfstudio: A
modular framework for neural radiance field development. In: SIGGRAPH (2023)
8

72. Tewari, A., Thies, J., Mildenhall, B., Srinivasan, P., Tretschk, E., Wang, Y., Lass-
ner, C., Sitzmann, V., Martin-Brualla, R., Lombardi, S., Simon, T., Theobalt, C.,
Niessner, M., Barron, J.T., Wetzstein, G., Zollhoefer, M., Golyanik, V.: Advances
in neural rendering. In: SIGGRAPH (2021) 4

73. Verbin, D., Hedman, P., Mildenhall, B., Zickler, T., Barron, J.T., Srinivasan,
P.P.: Ref-NeRF: Structured view-dependent appearance for neural radiance fields.
CVPR (2022) 4

74. Wang, C., Chai, M., He, M., Chen, D., Liao, J.: CLIP-NeRF: Text-and-image
driven manipulation of neural radiance fields. CVPR (2022) 4

75. Wang, C., Jiang, R., Chai, M., He, M., Chen, D., Liao, J.: NeRF-Art: Text-driven
neural radiance fields stylization. TVCG (2023) 9, 11

76. Wang, H., Du, X., Li, J., Yeh, R.A., Shakhnarovich, G.: Score Jacobian chaining:
Lifting pretrained 2D diffusion models for 3D generation. In: CVPR (2023) 7, 24

77. Wang, Q., Wang, Z., Genova, K., Srinivasan, P., Zhou, H., Barron, J.T., Martin-
Brualla, R., Snavely, N., Funkhouser, T.: IBRNet: Learning multi-view image-based
rendering. In: CVPR (2021) 4

78. Wang, Z., Lu, C., Wang, Y., Bao, F., Li, C., Su, H., Zhu, J.: ProlificDreamer:
High-fidelity and diverse text-to-3D generation with variational score distillation.
arXiv (2023) 7, 23

79. Wang, Z., Wu, S., Xie, W., Chen, M., Prisacariu, V.A.: NeRF--: Neural radiance
fields without known camera parameters. In: arXiv (2021) 4

80. Weder, S., Garcia-Hernando, G., Monszpart, A., Pollefeys, M., Brostow, G., Fir-
man, M., Vicente, S.: Removing objects from neural radiance fields. In: CVPR
(2023) 4

81. Yang, B., Zhang, Y., Xu, Y., Li, Y., Zhou, H., Bao, H., Zhang, G., Cui, Z.: Learning
object-compositional neural radiance field for editable scene rendering. In: ICCV
(2021) 4

82. Yu, A., Li, R., Tancik, M., Li, H., Ng, R., Kanazawa, A.: PlenOctrees for real-time
rendering of neural radiance fields. In: ICCV (2021) 4

83. Yu, A., Ye, V., Tancik, M., Kanazawa, A.: pixelNeRF: Neural radiance fields from
one or few images. In: CVPR (2021) 4

84. Yuan, Y.J., Sun, Y.T., Lai, Y.K., Ma, Y., Jia, R., Gao, L.: NeRF-editing: geometry
editing of neural radiance fields. In: CVPR (2022) 4

85. Zhang, Z., Li, B., Nie, X., Han, C., Guo, T., Liu, L.: Towards consistent video
editing with text-to-image diffusion models. NeurIPS (2024) 1


	Watch Your Steps: Local Image and Scene Editing by Text Instructions

