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A Additional Implementation Details

In this section, we provide additional details of the mask decoding and training
pipeline.
Mask decoding. Inspired by recent query-based segmentation methods [1–
4], we utilize a lightweight query-based mask decoder to effectively map the
in-context enhanced image features and object query to an output mask. We
employ a learnable object query that will be used for the decoder’s output.
The workflow of SegIC is concisely summarized in Pytorch-style pseudocode, as
presented in Algorithm 1. Initially, the image feature and in-context instructions
are projected into the same feature space for mask decoding. Subsequently, the
projected in-context features are leveraged to enhance the image feature and
object feature. The mask decoder then executes a multi-layered decoding process,
structured as a four-step procedure within each layer, including (1) self-attention
for the concatenated object query; (2) cross-attention from the image feature to
the object query; (3) cross-attention from the query back to the image; and (4)
calculating the mask. The mask calculation is performed using the image feature
and the first element of the concatenated object feature, which corresponds to
the position of the initial object query.
Training pipeline. In our main experiments, we adopt a mixed training scheme
using both semantic segmentation datasets (COCO and ADE20k) and instance
segmentation datasets (COCO and LVIS), as presented in Algorithm 2. We do
not focus intensively on adjusting the dataset ratios, instead opting for uniform
dataset-level sampling. For the segmentation datasets, we employ large-scale
jittering (ranging from 0.1 to 2.0) for both the target image and in-context ex-
amples. These in-context examples are constructed based on the semantic class
label of the target image, sampling one class per image during training. In the
case of instance segmentation datasets, in-context examples are generated by
applying two separate data augmentations to the same image. The instances
from these differently augmented views then serve as mutual in-context exam-
ples. Our standard data augmentation techniques for this task include random
resizing cropping (ranging from 0.3 to 1.0), random color jittering (with a 0.2
probability), and random horizontal flipping (with a 0.1 probability).



2 L. Meng et al.

B Additional Visualization

In this section, we provide more visualizations of the middle output and the
predictions of SegIC.

Propagated mask. As outlined in Section 3.2, the propagated mask a is de-
rived from a weighted mean of dense correspondences according to the ground-
truth mask of in-context samples. To facilitate visualization, we first apply the
sigmoid function to map a into (0, 1). Subsequently, this range is transformed
into RGB space using the JET color map. As depicted in Figure 1, this process
demonstrates that the propagated masks predominantly concentrate on the ob-
jects referenced in the in-context examples, providing strong guidance for the
subsequent mask decoding process. This observation further demonstrates the
emerging potential of pre-trained vision foundation models in the realm of seg-
mentation tasks.
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Fig. 1: Visualization of propagated masks. We propagate labels from the in-
context examples to the targets to obtain propagated masks by exploring the dense
correspondences. We employ DINO-v2-large [5] for the visualization.

More qualitative results on VOS. We further provide more qualitative re-
sults on video object segmentation tasks (VOS). Note that SegIC is never
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Algorithm 1: Pseudo code for SegIC Mask Decoding.
# Inputs: Image Embedding f; In-context Instructions c = {a,p,v,m}
# Variables: Learnable Object Queries q
# Functions: Conv4ImgFeature(), Conv4ProgatedLabel(); Proj4Pos(), Proj4Vis(),

Porj4Meta(); QuerySelfAttn(), Query2ImgAttn(), Image2QueryAttn(), output()
1 def InContext_Enhancement(f , a,p,v,m):

# Project image feature and in-context propagated mask into the hidden space for
mask decoding.

2 f ′, a′=Conv4ImgFeature(f), Conv4ProgatedLabel(a);
# Enhance image feature with in-context propagated mask.

3 f ′=f ′+a′;
# Project other in-context instructions into the hidden space for mask decoding.

4 qp,qv,qm=Proj4Pos(p),Proj4Vis(v),Proj4Meta(m)
# Enhance the object query by contacting with the hidden features of in-context

instructions.
5 q′=Concat(q,qp,qv,qm)

6 def Mask_Decoder(F, Q):
7 Q′ = QuerySelfAttn(Q) # Query self-attention
8 Qo = Img2QueryAttn(Q′, F) # Image-to-query cross-attention
9 F o = Query2ImgAttn(F, Qo) # Query-to-image cross-attention

10 O = output(F o, Qo[0]) # Compute mask

11 def forward(f , a,p,v,m)):
12 f ′, q′ = InContext_Enhancement(f , a,p,v,m) # Enhance image feature and object

query with in-context instructions.
13 Qo,F o = q′, f ′ # Initialize variables for mask decoding
14 for i in range(max_iter):
15 O, Qo,F o = Mask_Decoder(Qo,F o)

Algorithm 2: Pseudo code for training pipeline.
# training set: mixed dataset D = Dinst ∪ Dsem

1 def ICL_Preprocess(data):
2 It, yt, category = data
3 if task_type(data) == ’semantic’:
4 Ir, yr = CategoryAwareSample(Dsem, category)
5 meta = ’a photo of a {category}.’

6 if task_type(data) == ’instance’:
7 Ir, yr = DataAug(It, yt) # Individual data aug to build a different view as

reference
8 meta = ’please segment the instances.’

9 def train_epoch(model, D):
10 for data in D:
11 It, yt, Ir, yr, meta = ICL_Preprocess(data)
12 loss = model(It, yt, Ir, yr, meta)

trained on video datasets and just treats VOS as in-context segmentation using
the first frame as in-context examples. As shown in Figure 2, SegIC well handles
challenging scenarios, including (a) occlusions, (b) interwoven objects, and (c)
small objects.
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(a)

(b)

(c)

in-context example (frame#1)

Fig. 2: Qualitative results on VOS. SegIC perform well on challenging scenarios
in video object segmentation, including (a) occlusions, (b) interwoven objects, and (c)
small objects.
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