PointNeRF-+-+: A multi-scale, point-based
Neural Radiance Field

Weiwei Sun! ®, Eduard Trulls?®, Yang-Che Tseng', Sneha Sambandam!,
Gopal Sharma®, Andrea Tagliasacchi®*® ®, and Kwang Moo Yi!

!'University of British Columbia ?Google Research ®Google DeepMind
4Simon Fraser University 5 University of Toronto

https://pointnerfpp.github.io

Abstract. Point clouds offer an attractive source of information to com-
plement images in neural scene representations, especially when few im-
ages are available. Neural rendering methods based on point clouds do
exist, but they do not perform well when the point cloud is sparse or
incomplete, which is often the case with real-world data. We overcome
these problems with a simple representation that aggregates point clouds
at multiple scale levels with sparse voxel grids at different resolutions. To
deal with point cloud sparsity, we average across multiple scale levels—
but only among those that are valid, i.e., that have enough neighboring
points in proximity to the ray of a pixel. To help model areas without
points, we add a global voxel at the coarsest scale, thus unifying “clas-
sical” and point-based NeRF formulations. We validate our method on
the NeRF Synthetic, ScanNet and KITTI-360 datasets, outperforming
the state of the art, with a significant gap over NeRF-based methods, es-
pecially on more challenging scenes. Code: https://pointnerfpp.github.io.

Keywords: Point Cloud - Multi-Scale - Neural Radiance Field

1 Introduction

With the introduction of Neural Radiance Fields (NeRF) [30], the quality of
novel-view synthesis from a collection of images has increased dramatically. How-
ever, the problem is far from solved when field-of-view overlaps sparsely amongst
cameras [8,22,55], which makes them difficult to apply to many uncontrolled,
real-world scenarios. Researchers have attempted to solve this problem in var-
ious ways, including content-based regularization [22], patch-based regulariza-
tion [32], image features [55], or diffusion priors [12,52].

One way to address this issue is to leverage point clouds obtained from ad-
ditional sensors and/or photogrammetry [33,43,54]. The use of point clouds
(as a representation) for neural rendering was pioneered by PointNeRF [54],
which demonstrated that point clouds can indeed help achieve higher-quality
renderings. However, as we demonstrate through experiments, its benefits di-
minish when point clouds are sparse and/or incomplete. This is often the case

https://orcid.org/0000-0002-7640-0006
https://orcid.org/0000-0002-1425-7881
https://orcid.org/0000-0002-2209-7187
https://orcid.org/0000-0001-9036-3822
https://pointnerfpp.github.io
https://pointnerfpp.github.io

2 Sun et al.

Paint Cloud PointNeRF++ (Ours)

Gaussian Splatting PointNeRF

Fig. 1: We introduce a novel volume-rendering framework to effectively leverage point
clouds for Neural Radiance Fields. Our formulation aggregates points over multiple
scales—including a global scale governing the entire scene, equivalent to standard,
point-agnostic NeRF. Our solution leads to much better novel-view synthesis in chal-
lenging real-world situations with sparse/incomplete point clouds (shown: KITTI-360).

in real-world applications, such as for point clouds obtained by LiDAR scanners
in autonomous-driving datasets [4, 16—18,21,28,47]. We posit that this short-
coming is mainly due to a missing key element: the lack of multi-scale modeling
within the architecture of PointNeRF. Multi-scale modeling is helpful in point
cloud processing, as small ‘holes’ (regions without points) can often be naturally
filled-in via multi-scale aggregation. We liken this intuition to that followed by
two seminal papers in point cloud semantic understanding—PointNet [39] and
PointNet++ [40]—where the latter improved upon the former by simply intro-
ducing a multi-scale network design, and the notion of hierarchical structure.

In this paper, we introduce a simple multi-scale representation for point
cloud-based rendering. Specifically, we aggregate point clouds at various scale
levels, defined as voxel grids (Sec. 3.1), up to a scale level that encompasses
the entire scene. We then use this multi-scale representation to volume-render
as in PointNeRF (Sec. 3.2)—but instead of averaging features locally, we do so
across multiple scale levels. This allows us to naturally deal with the sparsity
of point clouds, without the need for failure-prone heuristics such as ‘pruning’
and ‘growing’ from PointNeRF [54]. To account for the large support region re-

PointNeRF 4+ 3

quired at coarser scales, we propose to replace the commonly used Multi-Layer
Perceptron (MLP) with a tri-plane representation (Sec. 3.3). We note that using
a single voxel at the coarsest scale (i.e., global) is equivalent to a ‘standard’
(i.e., not point-based) NeRF model. Therefore, in a sense, our solution unifies
classical with point cloud-based NeRF formulations (Sec. 3.1).

As illustrated in Figure 1, our approach results in novel-view synthesis of sig-
nificantly higher quality than previous methods. Compared to PointNeRF, our
approach is able to deal with regions with both high and low point cloud den-
sity, and even those without points (highlighted with red boxes). Note that 3D
Gaussian Splatting [24] similarly suffers at these regions, as Gaussians are often
initialized from point clouds. We evaluate our method on three datasets, NeRF
Synthetic [30], ScanNet [10], and KITTI-360 [28], significantly outperforming
the state of the art (Sec. 4). We summarize our main contributions:

— we introduce an effective multi-scale representation for point-based NeRF;

— we propose to incorporate a global voxel/scale, uniting “classical” and point-
based NeRF formulations;

— we propose to use a tri-plane representation for coarser scales to effectively
cover larger support regions;

— we outperform all baselines, and specifically show large improvements over
point-based NeRF, especially when the point clouds are sparse or incomplete.

2 Related work

Neural Radiance Fields [30] represented a paradigm shift for scene representation
and realistic novel-view synthesis. NeRF employs a 5D implicit function to model
a scene through a continuous volumetric approach, which estimates both density
and radiance for any given position and direction. Among many applications [15],
NeRFs have been used to reconstruct individual objects [30] and unbounded
scenes [3], in uncontrolled [9,29,53] or dynamic environments [23, 34, 35,37, 38],
in few-shot settings [8,22,32,52,55] and large urban landscapes [43,48,51].

» Accelerated training. While NeRF yields remarkable results, this comes at
the cost of long training time, owing to the need to evaluate large MLP models
hundreds of times for each pixel. The prevailing approach to tackling this issue
involves making a trade-off between compute and memory. This is achieved
by storing features within various types of grids, including dense grids [14],
sparse grids [19], multi-resolution hash grids [31], large sets of small MLPs [41],
low-rank tensor approximations of dense grids [7, 13], and hybrid planar and
volumetric representations [42].

» Neural rendering with point clouds. While the techniques above can
train efficiently, it is difficult to adapt them to model large environments. An
alternative approach is to use point clouds to model the geometric structure
of the scene [1,5, 6,24, 33,45, 54, 59]. Point clouds can have variable density,
helping allocate computational resources where needed, and conveniently (not)
represent empty space. To perform volume rendering, point cloud features are
queried in the local neighborhood of a ray to produce density and color. These

4 Sun et al.

— (ca,0q)

P
s Uy T Beesgeop [€(a| Py F) Myerr
5 .
. : () t =
T .\f° T L0200 volume rendering
NP © eeeer R(x[{P..F.})
tffs. 00) s Fs
N : e 3
----- ‘ r4 color
Ty ; \
£(q|Ps,Fs) v

Fig. 2: Overview — Given an input point cloud, we aggregate it over multi-scale voxel
grids (Sec. 3.1). For clarity, we draw the voxel grids in 2D. We then perform volume
rendering based on points, relying on feature vectors stored thereon, which we aggregate
across multiple scales (Sec. 3.2). Importantly, when aggregating across scales, we only
take into account ‘valid’ scales, i.e., those with nearby points—indicated with solid
blue lines and illustrated as the two overlaid scales in the middle—naturally dealing
with incomplete/sparse point clouds. The coarsest scale (the top row in the figure) is
a single, global voxel, equivalent to standard NeRF—i.e., it is not point-based.

approaches can be classified on the basis of their neural point representations,
e.g. per-point features [6, 54|, factorized volumetric representations [20], tetra-
hedral meshes [26], and learnable Gaussians [24].

With PointNeRF, Xu et al. [54] and Chang et al. [6] use point cloud data
to learn per-scene representations, by querying per-point features within a lo-
cal neighborhood. Kulhanek et al. [26] create tetrahedra using the points from
COLMAP [46] and use barycentric interpolation to query the features within a
tetrahedron. Gaussian splatting [24] represents a 3D scene with 3D anisotropic
Gaussians initialized by COLMAP, and optimizes their location to faithfully
represent the scene. Despite the high rendering quality, overall, Gaussian splat-
ting is limited by the heuristics that they use to grow and prune points, similar
to PointNeRF. For example, as shown in Fig. 1. In contrast to these works, our
approach builds a hierarchy of feature representation, efficiently aggregating fea-
tures in the local neighborhood at different levels; does not require optimizing
the location of the points nor heuristics to grow and prune points; and leads to
superior performance even with sparse or incomplete point clouds.

Finally, rather than using geometric proximity, one can learn a point-to-query
affinity function via transformers. Ost et al. [33] use transformers to combine
features of points along a ray to predict its color. A shortcoming of this approach
is that it does not take into account occlusions and combines all points in the
neighborhood of a ray. Similarly, Chang et al. [5] use a set-transformer to find ray-
surface intersections and use local features and blending weights to estimate ray
colors. Both of these approaches are different from ours, as we employ geometric,
rather than learned, proximity.

PointNeRF 4+ 5

3 Method

An overview of our method is shown in Fig. 2. We build a representation starting
from an input point cloud, which we then use to volume-render [30] a scene.
Specifically, given an input point cloud Pj,, we spatially aggregate the point
cloud to build a point cloud hierarchy with S levels. Denoting this operation as
A(.), we write
{Ps ;9:1 = A(Pin), (1)
and equip each point cloud level Pg with randomly initialized point features F.
We then optimize the features F by volume-rendering them along a ray (pixel)
r by R(.), so that the estimated color matches that of the ground-truth pixels
Cygt, using a photometric loss:
argﬂ?ﬂ E; [[|Cee(r) — R(x[{Ps, F,})I3] - (2)
We next detail our multi-scale aggregation strategy to define a hierarchical rep-
resentation for point clouds (Sec. 3.1), and how we use it to volume-render a
scene (Sec. 3.2). Finally, we propose to use a tri-plane-based feature representa-
tion in lieu of MLPs, in order to obtain a good trade-off between representation
capacity and speed (Sec. 3.3).

3.1 Multi-scale aggregation — A

We first detail our aggregation operation A in Eq. (1). To obtain a point cloud
that represents a desired scale level s, we cluster based on voxels. At level s,
consider a regular grid of resolution VixVyxV;, consisting of a set of voxels
{V?}. We perform voxel-wise clustering to determine one representative point
per voxel as
pPs = Epeve [p] st. pe€Pi. (3)
Importantly, note that this is performed only over non-empty voxels, hence
the resulting representation is sparse. Note also that the aggregation is built at
each scale level independently, and that while some fine-grained scales may not
have valid aggregated points, more space regions will be covered at the coarser
scales. This allows for point clouds with wvariable density, or even incomplete
ones to a certain degree, to be dealt with naturally. Finally, we set the coarsest
voxel to cover the entire scene, effectively setting pJ = Epep,, [p]. This coarsest
scale can also be understood as a global NeRF model that is independent of the
local distribution of the point cloud—providing a unified representation for both
standard and point-based NeRF.

3.2 Point-based rendering — R

We use volume rendering to render an image from the multi-scale point cloud.
Given a set of quadrature points along ray q € r, let us denote the volume
rendering integral [30] R

Cr = Rqer (an Uq)) (4)

6 Sun et al.

e valid query
e invalid query

COAISE v e > ﬁne

Fig. 3: Increasing coverage with multiple scales — We illustrate our sparse, hi-
erarchical representation at three granularity levels, including a single, global voxel
(left). We also show three query points, with their respective neighborhoods (dotted
circles) at each scale level—color-coded in blue if they have neighbouring features, and

otherwise. Our multi-scale approach naturally fills in empty regions, removing
the need for failure-prone region-growing heuristics [54]. Drawn in 2D, for clarity.

where cq is the radiance and oq is the density of a location q in space. To
obtain these values, we operate on our point cloud hierarchy, as opposed to the
raw point cloud Pj, as in PointNeRF [54]. More explicitly, we extend [54] to
multiple scales by averaging over valid scale levels, i.e., scale levels with any
points within the vicinity of q:

car7q = M(Esesia.p.p [€ (a | PoFL)]), ®)

where S(q, {P}) is the set of valid scale levels associated to query q; £ is the
feature extraction operation in PointNeRF [54] that converts the point cloud into
a feature embedding at the query location q; and M is an MLP that converts
those feature embeddings into radiance and density. We now describe S and £
in more detail.

» Valid scale levels — S(q, {P;}). Given a scale S, define AV the local neighbors
of q within distance 7Vy, where 7 is the threshold ratio:

N(q,P)={p|peP, & [[p—ql2 <7Vi}. (6)

which is then aggregated across levels to define:

S(a,{Ps}) = {s | N(q,P;) # o}, (7)

» Point cloud to feature embedding — £(q | P, F;). We aggregate the
features within the support defined by Eq. (6) using normalized inverse-distance
weights w(p, q) = (|[p—qll2+¢) ™!, where ¢ is a small number to avoid numerical
problems:

ZpEN(q,PS) w(pa q) f(fpa P q)

Y pen(ap,) W(P: Q)

g(q|Psan):) (8)

PointNeRF 4+ 7

where F is a learnable function, and fj, is the feature in F; corresponding to
p € P,. Note that this is a simplified version of PointNeRF [54], as we do
not use ‘per-point‘ weights [54, Sec. 4.1|, which we experimentally found to not
contribute to improvements in rendering quality. Rather than relying on large
MLPs to implement F at coarse levels s, we employ a tri-plane representation,
described in Sec. 3.3. This effectively increases the representation power of F
at coarse levels so that less populated regions in space can still be modeled
effectively, without incurring an excessive computational burden.

3.3 Per-point tri-plane features

As illustrated in Figure 3, points in coarser levels represent larger regions, and
thus require preserving more information into each point feature. We could solve
this by increasing either the feature dimension or the capacity of the MLPs
used to parameterize F. They both come with a hefty price, greatly increasing
the computational cost incurred to evaluate F. Instead, we build on recently-
proposed factorized representations [13], and represent local features with a local
tri-plane factorization. In more detail, we store features within three orthogonal
feature planes f, = {f°¥,)7 £X“}, which are then accessed at (local) 3D
coordinates u = (q — p)/(7V5s):

F(fp,u) = £ [u] + £577 [u] + £57“[u], (9)

where f3* [u] denotes querying the plane at position u with bilinear interpolation.
We combine tri-planes at coarser levels with the standard MLPs at finer levels,
where we find the latter are sufficient (see Sec. 4.1 for details). At first glance,
Eq. (9) may seem like a large deviation from using an MLP, since the features
seem to be independent of each other, due to the lack of a shared MLP. Note,
however, that those features are eventually processed by the shared decoder M
that converts them into radiance field values. Finally, we note that at the coarsest
scale level, i.e., the global voxel, our representation is effectively K-Planes [13].

4 Results

4.1 Experimental setup

» Datasets and metrics. We primarily use Peak Signal-to-Noise Ratio (PSNR)
as a metric, and also structural (SSIM [50]) and perceptual (LPIPS [56]) simi-
larity. We evaluate our method on three well-known datasets:

— KITTI-360 [28] is a recent benchmark of outdoor driving sequences, highly
challenging due to the sparsity of views, which have much less visual overlap
than other datasets. Each sequence consists of about 80 images. We use a random
subset of 10% for validation, and also for our ablation study, as the ground truth
for the test set is not publicly available. To obtain results on the test set, we
follow the standard practice of training with the entire training set, to roughly
the same number of iterations required for convergence, discovered with the

8 Sun et al.

validation split. We use the point clouds provided with the dataset, from LiDAR
scans that are accumulated over all views. As this accumulated point cloud is
very dense, we resample it over a grid with a cell size of 8cm, and remove points
outside the camera frustum of the training views to make it more tractable.

— ScanlNet [10] is a dataset of indoor scans. We use the point clouds provided
with the dataset, which are sampled from mesh reconstructions using RGB-D
cameras with BundleFusion [11]. Following PointNeRF [54], we evaluate on two
scenes, Scene-101 and Scene-241. The point cloud in Scene-101 has more incom-
plete regions, which makes it harder. As in PointNeRF [54], we sample 20% of
the images, i.e. 1463 images for Scene-241, and 1000 images for Scene-101, for
training, and use the rest for evaluation. We use the code provided by [54].

— NeRF Synthetic [30] is a synthetic dataset with eight objects, each with 100
training images and 200 test images. The images are purely synthetic, rendered
with Blender. We use this dataset, as in PointNeRF [54], to validate our method
when the scene is favorable to the standard NeRF setting. We take the point
clouds provided by PointNeRF [54], which are obtained with COLMAP [46].

» Implementation. We implement our method with PyTorch [36]. We use
a total of b scales, including the global scale. We use a tri-plane resolution
of 512 x 512 for the global scale level. For the largest (i.e., coarsest) two of
the remaining scale levels we use tri-planes, where each tri-plane is built as a
small two-layer pyramid with 4 x 4 and 2 x 2 grid. For all tri-planes, we store
32-dimensional feature vectors followed by a four-layer MLP with 64 neurons.
For the remaining two (i.e., finest) scales, we simply use 32-dimensional point
features and a four-layer MLP with 64 neurons. To allow the global scale to
capture details that may be beyond the capacity of its resolution, we augment
the features extracted from the global tri-plane with positional encodings with 5
frequencies, as in [54]. This is especially important when modeling large scenes,
such as for KITTI-360. For M, we use one linear layer for density prediction and
a four-layer MLP with 64 neurons for its hidden layers for color prediction.

To speed up neighborhood search, we rely on voxel-grid-based approximate
nearest neighbors, as in [54]. We use the same search radius as our neighborhood
threshold 7 in Eq. (6) after normalizing, so that the approximate search is equiv-
alent to a ball query. For speed-ups and to limit GPU memory growth, we set the
maximum number of neighboring points to 8 for ScanNet and NeRF Synthetic,
and 6 for KITTI-360, as the scenes are larger. We follow PointNeRF [54] to
sample 400 points for each ray on ScanNet and NeRF Synthetic. As KITTI-360
is larger, we sample 1,000 points for each ray, to compensate. We use the con-
traction function of [3] for regions outside the point cloud bounding box. For
KITTI-360 we model the sky with a four-layer MLP that maps ray direction to
color, as in [43]. We use a proposal network [3]| to improve sample efficiency.

We train our model with a single NVidia V100 GPU for 200k iterations. We
follow [54] and use an initial learning rate of 5e-4 for M and of 2e-3 for F, with
their exponential decay schedule. Following [54], we decay every 1000k steps
with a rate of 0.1. We open-source our code with an Apache 2.0 license.

PointNeRF 4+ 9

(a) Input point (b) Gauss. Splat. [24] (c) PointNeRF++ (d) Ground truth
cloud [10] & PointNeRF [54] (Ours)

Fig. 4: Examples on KITTI-360 — We show novel-view renderings obtained with our
method, 3D Gaussian splatting [24] (pink colored, 1-4 rows) and PointNeRF [54] (green
colored, 4-8 row) on a challenging outdoors dataset, using the same point clouds as
input. Our approach provides significantly sharper renderings with more details, and
better coverage in areas without points, where Gaussian Splatting and PointNeRF
produce highly salient artifacts highlighted with red boxes.

4.2 KITTI-360 results — Fig. 4 and Tab. 1

We first compare our method to the state of the art on KITTI-360 [28], a chal-
lenging outdoors dataset with incomplete point clouds from real LiDAR.

» Baselines. We report numbers on the hidden test set, which requires upload-
ing samples to the evaluation server to compare with methods featured on the
public leaderboard. We also report numbers on our validation split for methods
that do not have an entry in the public leaderboard. We consider methods based
on images and, optionally, semantics [2,27,30,44,49,57] as well as those that use
LiDAR [24,25,28,54]. All PointNeRF experiments in this paper we use the point
‘pruning’ and ‘growing’ heuristics introduced in their work [54, Sec. 4.2], which
improve geometry modeling and image rendering quality, and can help deal with
point cloud sparsity—our algorithm does not rely on it.

» Discussions. We show qualitative highlights in Fig. 4 and results on Tab. 1.
Our method achieves a new state of the art in the color-only category among
NeRF methods, and performs on par with methods that also use semantic super-
vision and Gaussian Splatting. Importantly, we significantly improve over other
point-based methods. Compared with PointNeRF, our approach yields better
renderings on regions where the point cloud is sparse, and the global scale al-
lows us to tackle those with no nearby points, such as structures too far away to

10 Sun et al.

Table 1: Results on KITTI-360 [28] — Our method achieves the best performance
among methods that supervise only with color. It performs on par with those that also
rely on semantics. We provide results on the (public) validation set and the (hidden)
test set as some baselines have results for one, but not the other.

Validation Test
plilsztss PSNRt SSIMt LPIPS, PSNRt SSIM{ LPIPS)
g Nerflets [57] X - - - 21.69 - -
& PNF [27] X - - - 22.07 0.820 0.221
S PLANeRF [49] X - - - 22.64 0.855 0.200
FVS [44] X - R - 20.00 0.790 0.193
. NeRF [30] X 21.18 0.779 0.343
% Mip-NeRF [2] X - - - 21.54 0.778 0.365
= PBNR [29] - - - 19.91 0.811 0.191
S PCL 28] - - - 12.81 0.576 0.549
Gauss. Splat. [24] 18.59 0.642 0.257 22.08 0.844 0.139
PointNeRF [54] 17.63 0.629 0.337 19.44 0.796 0.266
Ours 20.05 0.665 0.305 22.44 0.828 0.212

Table 2: Results on two ScanNet scenes [10] as pre-processed by [54] — Our
method outperforms all others, especially PointNeRF, the method most similar to ours,
by a large margin demonstrating the effectiveness of our multi-scale approach.

Avg. Scene-101 Scene-241
Uses poNRt SSIM 1t LPIPS| PSNRt PSNR?
points
NeRF [30] X 24.43 0.670 0.494 27.16 21.69
Gauss. Splat. [24] X 29.56 0.812 0.301 29.01 30.11
Gauss. Splat. [24] 29.93 0.818 0.275 29.55 30.31
PointNeRF [54] 25.92 0.784 0.263 21.98 29.86
Ours 30.56 0.808 0.238 30.27 30.85

be captured by LiDAR. Also of note is that while Gaussian splatting provides
improved rendering quality in terms of SSIM/LPIPS thanks to its SSIM-based
loss, it has failure modes, as seen in Fig. 4. We thus believe combining our
multi-scale strategy with Gaussian splatting could further lead to performance
improvements. Please refer to the appendix for video examples.

4.3 ScanNet results — Fig. 5 and Tab. 2

Next, we consider indoor scans, using ScanNet [10]. While less challenging than
KITTI-360, this is typical use-case for point-based neural rendering, and where
the benefit of using point clouds was strongly demonstrated in PointNeRF [54].
» Baselines. We compare our method against NeRF [30], PointNeRF [54], and
Gaussian Splatting [24]. For the latter, we consider randomly initialized point
clouds as well as those provided by the dataset.

PointNeRF++ 11

(a) Input point (b) Gauss. (c) PointNeRF [54] (d) Ours (e) Ground truth
cloud [10] Splat. [24]

Fig. 5: Examples on ScanNet — PointNeRF fails to reconstruct the scene on regions
where the point cloud is empty. Both our method and Gaussian Splatting are able to
fill them in, but our approach produces cleaner results, with fewer artifacts. This is
especially noticeable for Scene-101 (top and bottom rows), where the mesh has large
holes where PointNeRF fails to render meaningful pixels, even with their ‘growing’
heuristic that is aimed towards filling such gaps.

» Discussions. As shown in Tab. 2 and Fig. 5, our method performs best.
NeRF [30], for this dataset does not perform well as the scene is relatively tex-
tureless and smooth. PointNeRF [54] improves over it by leveraging the point
clouds. It does, however, have issues on Scene-101, because its point cloud has
large incomplete areas, which impair its performance, as shown in Fig. 5. Our
method is able to cope with these empty regions, thanks to our multi-scale frame-
work. Interestingly, Gaussian Splatting also works better than typical NeRF
while trained purely with images, even when starting from random points—
point cloud initialization can further improve its performance. This suggests
the importance of including the notion of locality introduced by points to the
representation. Our method outperforms all baselines, point-based or not. We
use point clouds from mesh inputs instead of depth images, also reported by
PointNeRF, as the latter are extremely dense (see [54, Tbl. 8]).

4.4 NeRF Synthetic results — Fig. 6 and Tab. 3

Finally, we verify the effectiveness of our method on NeRF Synthetic, to demon-
strate that it remains helpful even use-cases designed for NeRF.

» Baselines. We compare our approach against both methods that only utilize
RGB images [30], which this dataset is typically used to evaluate, and those that
use point clouds [26,54, 58], including the recent Gaussian Splatting [24].

12 Sun et al.

Table 3: PSNR?T on NeRF Synthetic [30] — Our method performs best overall,
even on object-centric data with dense point clouds.

U'ses Avg. Chair Drums Ficus Hotdog Lego Materials Mic Ship

points
NeRF [30] X 31.01 33.00 25.01 30.13 36.18 32.54 29.62 32.91 28.65
Plenoxels [14] X 31.76 33.98 25.35 31.83 36.81 34.1 29.14 33.26 29.62
InstantNGP [31] X 3318 35.00 26.02 33.51 3740 36.39 29.78 36.22 31.10
MipNeRF [2] X 33.09 35.14 25.48 33.29 37.48 35.7 30.71 36.51 30.41
Gauss. Splat. [24] X 33.32 35.83 26.15 34.87 37.72 35.78 30.00 35.36 30.80
FreqPCR [58] 31.24 33.06 25.95 32.19 35.82 31.56 29.69 33.64 27.97
TetraNeRF [26] 32.53 35.05 25.01 33.31 36.16 34.75 29.30 35.49 31.13
Gauss. Splat. [24] 33.60 36.10 26.17 34.87 37.77 36.14 30.15 36.48 31.12
PointNeRF [54] 31.77 35.09 25.01 33.24 3549 32.65 26.97 35.54 30.18
Ours 33.70 36.32 26.11 34.43 37.45 36.75 30.32 36.85 31.34

Table 4: Number of scales vs rendering Table 5: Number of points — We
quality — As expected, more levels lead to bet- show that our method remains ap-
ter PSNR?T. We always use a global scale—‘0’ plicable to sparser point clouds, with
corresponds to using only a global scale, ‘1’ the noticeable improvement over points-
finest scale plus the global scale, and later adding agnostic model even at drastic down-

coarser scale levels, up to our full model (‘4’). sampling rates (1%).
Num. of scales PSNRt SSIMt LPIPS| Ratio of pts. PSNRf{ SSIM{ LPIPS)
0 17.95 0.520 0.442 0 1795 0520 0.442
1 19.88 0.674 0.283
2 19.89 0.669 0.289 1 18'75 0:558 0.434
3 19.90 0.666 0.299 10 19.35 0621 0.370
4 20.05 0.665 0.305 full 20.05 0.665 0.305

» Discussions. We report PSNR in Tab. 3 and show qualitative examples in
Fig. 6. Our method still performs best overall, slightly ahead of Gaussian Splat-
ting. Importantly, it outperforms the point-based baselines by a larger margin.

4.5 Ablation study

We thoroughly ablate our method in this section on KITTI-360 using the vali-
dation split. We consider the number of scale levels, using a tri-plane vs an MLP
for F at the coarsest scale levels, and study the effect of adding a global scale.
We also evaluate performance at different levels of point cloud sparsity.

» Number of scale levels — Tab. 4 and Fig. 7. We ablate how the number
of scale levels affects performance, by training and evaluating models using a
different number of scales. We also illustrate what each scale level is adding,
by rendering views with a multi-scale model adding one scale level at a time,
in Fig. 7. As clearly shown in the figure, the global scale is instrumental in
rendering accurate pixels in those areas, and each successive scale adds finer
details, improving the overall quality of the rendering.

PointNeRF++ 13

Point cloud

Gaussian Splatting PointNerf Ours Ground Truth

Fig. 6: Examples on NeRF Synthetic — Our multi-scale approach consistently fills
in the holes in the input point cloud. PointNeRF relies on ‘pruning’ and ‘growing’
heuristics, which can fail where the point cloud is not sufficiently dense, as shown here.
While Gaussian Splatting also previous failed to fill in holes with their densification
heuristics (Fig. 4 and Fig. 5), for NeRF Synthetic these heuristics work well.

Table 6: Impact of the tri- Table 7: Using a global feature — We mea-
plane — We evaluate tri-planes sure PSNR7 on two datasets for different vari-
vs. MLPs. Using tri-planes for the ants of our approach. Adding a global voxel at
coarsest scales improves perfor- the coarsest scale to the hierarchical structure

mance, at a comparable computa- (right), improves performance (left), but is not
tional cost. sufficient by itself (middle).
PSNRt SSIMtT LPIPS| PSNR? SSIM? LPIPS)
w/o global 19.78 0.675 0.290
MLP 19.59 0643 0.353 global only 17.95 0.520 0.442
Triplane 20.05 0.665 0.305 full 20.05 0.665 0.305

» Tri-plane vs MLP — Tab. 6. We also provide an ablation study to evaluate
the advantages of using a tri-plane instead of a regular MLP for the parame-
terized function F. As in Sec. 3.3, we always use MLPs at the two finest scale
levels. Using a tri-plane performs slightly better at a similar computational cost.

» Using a global voxel — Tab. 7. We evaluate the importance of adding a
global voxel at the coarsest scale. We compare three variants of our method: one
using four local scales (“w/o global”); one using only the global scale (“global-
only”), i.e., a traditional point-agnostic NeRF; and one using both (“full”). The
point-based formulation outperforms point-agnostic NeRF, but combining them
with our multi-scale-plus-global approach does best.

» Number of points — Tab. 5. We measure performance while randomly
downsampling the point cloud with increasing ratios. Our approach performs
while even at downsampling rates below 1% and using as few as 10k points.

14 Sun et al.

Point cloud

Global level

Coarse level

Fine level

Fig.7: Rendering across scales — We study the behavior of our hierarchical ap-
proach by rendering an image adding one scale level at a time, from the global scale to
the finest one. As expected, the coarse scales are responsible for filling in empty regions
(highlighted with red boxes) in the point cloud, different from the well-covered regions
(highlighted with green boxes) that can be modeled via fine scales.

5 Conclusions

Neural Radiance Fields are a paradigm shift in novel-view synthesis. Despite
their promise, challenges persist, particularly when few views are available. Point
clouds provide a very attractive data stream, complementary to images, and
are often readily available in indoor and outdoor settings—but have a different
set of challenges, due to incompleteness and sparsity. We mitigate this with
a simple yet novel multi-scale representation that combines global and local
information, yielding significant performance improvements across the board.
Our work unifies point cloud-based and standard NeRF pipelines and adapts
effectively to variable point densities and empty regions, pushing novel view
synthesis on uncontrolled, real-world data closer to practice.

» Limitations/future work. While our method provides significant improve-
ments over PointNeRF by combining point-based and classic NeRF, its com-
putational cost is naturally bound by classic NeRF. On NeRF Synthetic, our
method induces a 20% in compute overhead from to the classic NeRF backbone
that we use. An interesting research direction would be to combine the strengths
of our multi-scale strategy in handling incomplete and sparse point clouds with
the high computational-efficiency of 3D Gaussian Splatting [24], especially given
the pitfalls of 3D Gaussian Splatting demonstrated in our work.

PointNeRF 4+ 15

Acknowledgements

This work was supported in part by the Natural Sciences and Engineering Re-
search Council of Canada (NSERC) Discovery Grant, NSERC Collaborative
Research and Development Grant, Google, Digital Research Alliance of Canada,
Microsoft Azure, and Advanced Research Computing at the University of British
Columbia.

References

10.

11.

12.

13.

14.

15.

16.

Aliev, K.A., Sevastopolsky, A., Kolos, M., Ulyanov, D., Lempitsky, V.: Neural
point-based graphics. In: ECCV (2020) 3

. Barron, J.T., Mildenhall, B., Tancik, M., Hedman, P., Martin-Brualla, R., Srini-

vasan, P.P.: Mip-nerf: A Multiscale Representation for Anti-aliasing Neural Radi-
ance Fields. In: ICCV (2021) 9, 10, 12

Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Mip-NeRF
360: unbounded anti-aliased neural radiance fields. CVPR (2022) 3, 8

Caesar, H., Bankiti, V., Lang, A.H., Vora, S., Liong, V.E., Xu, Q., Krishnan,
A., Pan, Y., Baldan, G., Beijbom, O.: NuScenes: A Multimodal Dataset for Au-
tonomous Driving. In: CVPR (2020) 2

Chang, J.H.R., Chen, W.Y., Ranjan, A., Yi, K.M., Tuzel, O.: Pointersect: Neural
Rendering with Cloud-Ray Intersection. In: CVPR (2023) 3, 4

Chang, M., Sharma, A., Kaess, M., Lucey, S.: Neural Radiance Field with LiDAR
maps. In: ICCV (2023) 3, 4

Chen, A., Xu, Z., Geiger, A., Yu, J., Su, H.: TensoRF: Tensorial Radiance Fields.
In: ECCV (2022) 3

Chen, A., Xu, Z., Zhao, F., Zhang, X., Xiang, F., Yu, J., Su, H.:. MVSNeRF: Fast
Generalizable Radiance Field Reconstruction from Multi-view Stereo. In: ICCV
(2021) 1, 3

Chen, X., Zhang, Q., Li, X., Chen, Y., Feng, Y., Wang, X., Wang, J.: Hallucinated
Neural Radiance Fields in the Wild. In: CVPR (2022) 3

Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nieffner, M.: Scan-
Net: Richly-annotated 3d Reconstructions of Indoor Scenes. In: CVPR. pp. 5828-
5839 (2017) 3, 8, 9, 10, 11

Dai, A., Niefner, M., Zollhofer, M., Izadi, S., Theobalt, C.: Bundlefusion: Real-
time Globally Consistent 3d Reconstruction Using on-the-fly Surface Reintegra-
tion. TOG (2017) 8

Deng, C., Jiang, C., Qi, C.R., Yan, X., Zhou, Y., Guibas, L., Anguelov, D.: NeRDi:
single-view nerf synthesis with language-guided diffusion as general image priors.
In: CVPR (2023) 1

Fridovich-Keil, S.,; Meanti, G., Warburg, F.R., Recht, B., Kanazawa, A.: K-Planes:
Explicit Radiance Fields in Space, Time, and Appearance. In: CVPR (2023) 3, 7
Fridovich-Keil and Yu, Tancik, M., Chen, Q., Recht, B., Kanazawa, A.: Plenoxels:
Radiance Fields without Neural Networks. In: CVPR (2022) 3, 12

Gao, K., Gao, Y., He, H., Lu, D., Xu, L., Li, J.: NeRF: Neural Radiance Field in
3d Vision, a Comprehensive Review. ARXIV (2022) 3

Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets Robotics: The KITTI
Dataset. IJRR (2013) 2

16

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Sun et al.

Geyer, J., Kassahun, Y., Mahmudi, M., Ricou, X., Durgesh, R., Chung, A.S.,
Hauswald, L., Pham, V.H., Miihlegg, M., Dorn, S., et al.: A2d2: Audi Autonomous
Driving Dataset. ARXIV (2020) 2

Gruber, T., Julca-Aguilar, F., Bijelic, M., Heide, F.: Gated2Depth: Real-Time
Dense Lidar From Gated Images. In: ICCV (2019) 2

Hedman, P., Srinivasan, P.P., Mildenhall, B., Barron, J.T., Debevec, P.: Baking
Neural Radiance Fields for Real-Time View Synthesis. In: ICCV (2021) 3

Hu, T., Xu, X., Chu, R., Jia, J.: TriVol: Point Cloud Rendering via Triple Volumes.
In: CVPR (2023) 4

Huang, X., Wang, P., Cheng, X., Zhou, D., Geng, Q., Yang, R.: The ApolloScape
Open Dataset for Autonomous Driving and Its Application. TPAMI (2019) 2
Jain, A.) Tancik, M., Abbeel, P.: Putting NeRF on a Diet: Semantically Consistent
Few-Shot View Synthesis. In: ICCV (2021) 1, 3

Jiang, W., Yi, K.M., Samei, G., Tuzel, O., Ranjan, A.: Neuman: Neural Human
Radiance Field from a Single Video. In: ECCV (2022) 3

Kerbl, B., Kopanas, G., Leimkiihler, T., Drettakis, G.: 3D Gaussian Splatting for
Real-Time Radiance Field Rendering. TOG (2023) 3, 4, 9, 10, 11, 12, 14
Kopanas, G., Philip, J., Leimkiihler, T., Drettakis, G.: Point-Based Neural Ren-
dering with Per-View Optimization. In: CGF (2021) 9, 10

Kulhanek, J., Sattler, T.: Tetra-NeRF: Representing Neural Radiance Fields Using
Tetrahedra. ARXIV (2023) 4, 11, 12

Kundu, A., Genova, K., Yin, X., Fathi, A., Pantofaru, C., Guibas, L.J., Tagliasac-
chi, A., Dellaert, F., Funkhouser, T.: Panoptic Neural Fields: A Semantic Object-
aware Neural Scene Representation. In: CVPR (2022) 9, 10

Liao, Y., Xie, J., Geiger, A.: KITTI-360: A Novel Dataset and Benchmarks for
Urban Scene Understanding in 2d and 3d. PAMI (2022) 2, 3, 7, 9, 10
Martin-Brualla, R., Radwan, N., Sajjadi, M.S., Barron, J.T., Dosovitskiy, A., Duck-
worth, D.: NeRF in the wild: Neural Radiance Fields for Unconstrained Photo
Collections. In: CVPR (2021) 3

Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng,
R.: NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. In:
ECCV (2020) 1, 3, 5, 8, 9, 10, 11, 12

Miiller, T., Evans, A., Schied, C., Keller, A.: Instant Neural Graphics Primitives
with a Multiresolution Hash Encoding. TOG (2020) 3, 12

Niemeyer, M., Barron, J.T., Mildenhall, B., Sajjadi, M.S.M., Geiger, A., Radwan,
N.: RegNeRF: Regularizing Neural Radiance Fields for View Synthesis from Sparse
Inputs. In: CVPR (2022) 1, 3

Ost, J., Laradji, I., Newell, A., Bahat, Y., Heide, F.: Neural Point Light Fields. In:
CVPR (2022) 1, 3, 4

Park, K., Sinha, U., Barron, J.T., Bouaziz, S., Goldman, D.B., Seitz, S.M., Martin-
Brualla, R.: Nerfies: Deformable Neural Radiance Fields. In: CVPR (2021) 3
Park, K., Sinha, U., Hedman, P., Barron, J.T., Bouaziz, S., Goldman, D.B., Martin-
Brualla, R., Seitz, S.M.: HyperNeRF: A Higher-Dimensional Representation for
Topologically Varying Neural Radiance Fields. TOG (2021) 3

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z.,
Desmaison, A., Antiga, L., Lerer, A.: Automatic Differentiation in PyTorch. In:
NIPS-W (2017) 8

Peng, S., Dong, J., Wang, Q., Zhang, S., Shuai, Q., Zhou, X., Bao, H.: Animatable
Neural Radiance Fields for Modeling Dynamic Human Bodies. In: ICCV (2021) 3
Pumarola, A., Corona, E., Pons-Moll, G., Moreno-Noguer, F.: D-NeRF: Neural
Radiance Fields for Dynamic Scenes. In: CVPR (2020) 3

39.

40.

41.

42.

43.

44.
45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

PointNeRF 4+ 17

Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: Deep Learning on Point Sets for
3D Classification and Segmentation. CVPR (2016) 2

Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: Deep Hierarchical Feature
Learning on Point Sets in a Metric Space. NIPS (2017) 2

Reiser, C., Peng, S., Liao, Y., Geiger, A.: KiloNeRF: Speeding up Neural Radiance
Fields with Thousands of Tiny MLPs. In: ICCV (2021) 3

Reiser, C., Szeliski, R., Verbin, D., Srinivasan, P.P., Mildenhall, B., Geiger, A.,
Barron, J.T., Hedman, P.. MERF: Memory-Efficient Radiance Fields for Real-time
View Synthesis in Unbounded Scenes. SIGGRAPH 2023 (2023) 3

Rematas, K., Liu, A., Srinivasan, P.P., Barron, J.T., Tagliasacchi, A., Funkhouser,
T., Ferrari, V.: Urban Radiance Fields. In: CVPR (2022) 1, 3, 8

Riegler, G., Koltun, V.: Free view synthesis. In: ECCV (2020) 9, 10

Riickert, D., Franke, L., Stamminger, M.: Adop: Approximate Differentiable One-
pixel Point Rendering. TOG (2022) 3

Schonberger, J.L., Frahm, J.M.: Structure-from-motion Revisited. In: CVPR
(2016) 4, 8

Sun, P., Kretzschmar, H., Dotiwalla, X., Chouard, A., Patnaik, V., Tsui, P., Guo,
J., Zhou, Y., Chai, Y., Caine, B., Vasudevan, V., Han, W., Ngiam, J., Zhao, H.,
Timofeev, A., Ettinger, S., Krivokon, M., Gao, A., Joshi, A., Zhang, Y., Shlens, J.,
Chen, Z., Anguelov, D.: Scalability in Perception for Autonomous Driving: Waymo
Open Dataset. In: CVPR (2020) 2

Tancik, M., Casser, V., Yan, X., Pradhan, S., Mildenhall, B., Srinivasan, P.P., Bar-
ron, J.T., Kretzschmar, H.: Block-NeRF: Scalable large scene neural view synthesis.
In: CVPR (2022) 3

Wang, F., Louys, A., Piasco, N., Bennehar, M., Roldéo, L., Tsishkou, D.: PlaN-
eRF: SVD Unsupervised 3D Plane Regularization for NeRF Large-Scale Scene
Reconstruction. 3DV (2023) 9, 10

Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image Quality Assessment:
from Error Visibility to Structural Similarity. TIP (2004) 7

Wu, X., Xu, J., Zhang, X., Bao, H., Huang, Q., Shen, Y., Tompkin, J., Xu, W.:
ScaNeRF': Scalable Bundle-Adjusting Neural Radiance Fields for Large-Scale Scene
Rendering. In: TOG (2023) 3

Wynn, J., Turmukhambetov, D.: Diffusionerf: Regularizing Neural Radiance Fields
with Denoising Diffusion Models. In: CVPR (2023) 1, 3

Xu, D., Jiang, Y., Wang, P., Fan, Z., Wang, Y., Wang, Z.: NeuralLift-360: Lifting
an In-the-Wild 2D Photo to a 3D Object With 360deg Views. In: CVPR (2023) 3
Xu, Q., Xu, Z., Philip, J., Bi, S., Shu, Z., Sunkavalli, K., Neumann, U.: Point-
NeRF: Point-based Neural Radiance Fields. In: CVPR (2022) 1, 2, 3, 4, 6, 7, 8, 9,
10, 11, 12

Yu, A., Ye, V., Tancik, M., Kanazawa, A.: pixelNeRF: Neural Radiance Fields
from One or Few Images. In: CVPR (2021) 1, 3

Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The Unreasonable
Effectiveness of Deep Features as a Perceptual Metric. In: CVPR (2018) 7
Zhang, X., Kundu, A., Funkhouser, T., Guibas, L., Su, H., Genova, K.: Nerflets:
Local Radiance Fields for Efficient Structure-aware 3d Scene Representation from
2d supervision. In: CVPR (2023) 9, 10

Zhang, Y., Huang, X., Ni, B., Li, T., Zhang, W.: Frequency-Modulated Point Cloud
Rendering with Easy Editing. In: CVPR (2023) 11, 12

Zuo, Y., Deng, J.: View Synthesis with Sculpted Neural Points. ARXIV (2022) 3

	PointNeRF++: A multi-scale, point-basedNeural Radiance Field

