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Abstract. In this paper, we introduce a Multimodal Large Language
Model-based Generation Assistant (LLMGA), leveraging the vast reser-
voir of knowledge and proficiency in reasoning, comprehension, and re-
sponse inherent in Large Language Models (LLMs) to assist users in
image generation and editing. Diverging from existing approaches where
Multimodal Large Language Models (MLLMs) generate fixed-size em-
beddings to control Stable Diffusion (SD), our LLMGA provides a de-
tailed language generation prompt for precise control over SD. This not
only augments LLM context understanding but also reduces noise in
generation prompts, yields images with more intricate and precise con-
tent, and elevates the interpretability of the network. To this end, we
curate a comprehensive dataset comprising prompt refinement, similar
image generation, inpainting & outpainting, and instruction-based edit-
ing. Moreover, we propose a two-stage training scheme. In the first stage,
we train the MLLM to grasp the properties of image generation and
editing, enabling it to generate detailed prompts. In the second stage,
we optimize SD to align with the MLLM’s generation prompts. Addi-
tionally, we propose a reference-based restoration network to alleviate
texture, brightness, and contrast disparities between generated and pre-
served regions during inpainting and outpainting. Extensive results show
that LLMGA has promising generation and editing capabilities and can
enable more flexible and expansive applications in an interactive manner.
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1 Introduction

Artificial Intelligence Generated Content (AIGC) has witnessed remarkable ad-
vancements, particularly propelled by the evolution of large language models
(LLMs) [8,|10L/54] for text generation and diffusion models (DMs) [21}/42] for
image generation. LLMs, in particular, have received considerable acclaim for
their exceptional ability to comprehend, reason, make decisions, possess exten-
sive knowledge, and generate text with unparalleled accuracy and fluency.
Recent studies have begun delving deeper into Multimodal Large Language
Models (MLLMs) [1,/69] built upon LLMs, aiming to empower LLMs to compre-
hend inputs extending beyond text. For example, BLIP-2 [30] and LLaVA [33]
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Fig. 1: Some examples of LLMGA for assisting in image generation and editing. (1)
T2I generation. LLMGA can refine the user’s generation prompt to produce more vivid
and vibrant images. (2) Similar image generation. LLMGA can understand the com-
ponent and layout of the input images and generate a similar image. (3) Inpainting &
Outpainting. LLMGA can provide detailed generation prompts based on user prefer-
ences and input images. (4) Instruction based editing. LLMGA can understand user
instructions and realize accurate editing. (5) Interactive image generation and editing
exemplify the comprehensive capabilities of LLMGA. Users can design satisfactory im-
ages by engaging in interactions with LLMGA, leveraging its vast knowledge.

employ visual encoders to transform images into input embeddings, enabling
them to be used as prompts alongside text input for the LLM, thus achieving
LLMs with the visual modality. Furthermore, recent works focused on extending
the capabilities of LLMs to generate multimodal outputs. For example, GILL
involves instructing LLMs to predict fixed-size visual embeddings aligned with
CLIP space to control the Stable Diffusion (SD) for image generation.

However, existing works merely focus on enabling LLM to output
images but do not aim to assist users in generating or editing images to en-
hance quality. In this paper, we aim to develop a Multimodal Large Language
Model-based Generation Assistant (LLMGA) to better assist image generation
models, making them more user-friendly and capable of producing high-quality
images. In contrast to certain methods that leverage MLLMs to predict
fixed-size visual embeddings for implicit SD control, our approach is straight-
forward. We guide the generation of SD using detailed language prompts from
MLLM based on five reasons. (1) The embeddings predicted by the MLLM are
often filled with noise. This can be filtered out by mapping them to a fixed lan-
guage domain, enabling precise control of SD. (2) Detailed language prompts
can make the network more transparent and interactive, allowing users to under-
stand MLLM’s thoughts for generating images. (3) MLLM is pre-trained on vast
textual datasets. Explicit language prompts rather than implicit embeddings are
more advantageous for MLLM to generate prompts and comprehend context. (4)
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Dynamic-sized language prompt facilitates the addition of generation requests
during interactions. (5) Training is more simple and efficient.

However, we face several challenges: (1) MLLM may reject the execution of
generation instructions due to its nature as a language assistant. (2) MLLM
lacks a comprehensive understanding of image generation and editing, and can-
not provide an accurate and detailed generation prompt. (3) Determining which
part of texts generated by MLLM to guide SD generation. (4) SD’s CLIP en-
code only 75 tokens. Additionally, SD is trained on short captions, whereas our
LLMGA typically generates detailed prompts exceeding 150 tokens. This dis-
crepancy poses a challenge for SD in following the detailed prompt of LLMGA.

To this end, we have devised a two-stage training scheme. First, we construct
a training dataset: prompt refinement, similar image generation, inpainting &
outpainting, and visual question answering. We then train LLMGA on these
four datasets to cultivate four fundamental capabilities: (1) For concise user
prompts, LLMGA can refine the generation of intricate details, encompassing
attire, background, and characters. (2) LLMGA can precisely regenerate an
image it observes. (3) LLMGA can generate or refine prompts for inpainting &
outpainting based on its understanding of the image. (4) LLMGA can generate
accurate prompts for instruction-based editing according to users’ requirements
and given images. Additionally, we make LLMGA use special symbols <gen_img>
and </gen_img> to distinguish generation prompts and responses. In the second
stage, we freeze the parameters of LLMGA’s MLLM and initiate joint training
with the SD. This process enables the SD to acclimate to the detailed prompt
produced by the MLLM. Notably, when the input token count exceeds 75, we
iteratively apply the CLIP [40] encoder to the surplus tokens.

Moreover, we have identified noticeable disparities in texture, contrast, and
brightness between the newly generated and preserved sections in inpainting &
outpainting. Therefore, we propose a Diffusion-based Reference Restoration Net-
work (DiffRIR). Specifically, aside from images generated by SD, we add masked
images as reference inputs into DiffRIR. This enables the DiffRIR to refer to the
texture, contrast, and brightness of the preserved regions for restoration. Addi-
tionally, we introduce perturbations to contrast and brightness during training,
enabling DiffRIR to correct contrast and brightness disparities in the images.

As shown in Fig. |1} LLMGA is a unified and interactive framework for image
generation and editing, endowed with a wide array of capabilities: (1) LLMGA
leverages its extensive world knowledge and powerful reasoning abilities to assist
image generation and editing and significantly improve results. (2) LLMGA
can be integrated with external plugins, like ControlNet. (3) Most importantly,
users can interact with LLMGA to design satisfying images in a more convenient,
flexible, and enjoyable way. In summary, our contributions are as follows:

— We proposed LLMGA, a simple yet powerful interactive generation and edit-
ing framework. Experiments affirm the efficacy of LLMGA in enhancing
generation and editing thanks to its vast knowledge and interactive features.
Plus, LLMGA can integrate with external plugins for wider applications.
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— We construct a training dataset, including four parts: prompt refinement,
similar image generation, inpainting & outpainting, and instruction-based
editing. This enhances LLMGA’s comprehension of generation and editing
tasks while standardizing response formats.

— We proposed a restoration network DiffRIR, which introduces reference im-
ages and training perturbations to contrast and brightness. DiffRIR can
alleviate texture, contrast, and brightness discrepancies between newly gen-
erated and preserved regions for edited images.

— Open-source. The following assets are released: the generated data, the code-
base for model training, the model checkpoint, and a demo.

2 Related Work

Diffusion Model. Diffusion Models (DMs) |2.{4}/7}/13,/19;,21L[22}/28/35}38.{49}/51]
have achieved remarkable results in image generation. DMs adopt a parame-
terized Markov chain to optimize the lower variational bound on the likelihood
function. In this way, it can generate realistic images from Gaussian noise. After
that, several DM methods [31/5,/6}(12L{16}/17}/26}27}[34139}/44}/45}[55.59./60,/62] have
been tailored to enhance the text-to-image (T2I) generation and editing. No-
tably, GLIDE [36] pioneered the incorporation of text features into transformer
blocks during the denoising process. Subsequently, DALL-E [41], Imagen [46],
and Stable Diffusion [42] have made substantial strides in improving T2I gen-
eration. Subsequently, some works [43}/66,/67] introduced conditioning controls
to the DMs to facilitate a more convenient and precise manipulation of the gen-
eration process. Overall, enhancing the user-friendliness of DMs is a key focus
within the community. In this paper, we introduce LLMGA, leveraging the ex-
tensive knowledge and powerful reasoning capabilities of LLM to facilitate users
in achieving more easily attainable and satisfactory image designs.
Multimodal Large Language Models. Recently, LLMs have undeniably
made profound impacts and revolutions within the entire Al community and
beyond. For example, exemplary LLMs, such as ChatGPT and GPT4 |[37],
have showcased remarkable abilities in comprehension, reasoning, responses, and
knowledge reservoirs. Subsequently, a range of LLMs [11], including Vicuna [9],
LLaMA [54], and Alpaca [53] have been released as open-source models, sub-
stantially propelling advancements of the community.

Afterward, the community began focusing on the development of the Mul-
timodal Large Language Model [14L(15]|18}23,/63,/64,/69]. They aim to enable
LLMs to comprehend both images and text and provide textual responses. For
instance, Flamingo [1] encodes images and feeds them into the LLM’s atten-
tion layer. BLIP-2 [30] employs Q-Former to encode input images into queries.
Additionally, LLaVA [33] leverages CLIP [40] to encode images into visual em-
beddings, which are then concatenated with text embeddings.

Recent concurrent works, such as Next-GPT [58|, have extended the capabil-
ities to encompass audio and video modalities. Moreover, Visual-ChatGPT [57]
and HuggingGPT [48] make LLMs act as agents capable of invoking various pre-
trained visual models to achieve MLLM. However, these works focus on making
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Fig. 2: The overview of LLMGA. (a) In the first training stage, we train the MLLM to
produce generation prompts based on provided instructions. Moreover, we construct a
training dataset including four categories: prompt refinement, similar image generation,
inpainting & outpainting, and instruction-based editing. (b) In the second training
stage, we optimize SD to adapt to the detailed generation prompts from MLLM. (c)
In the inference stage, LLMGA can respond to user queries and assist in various tasks,
such as image generation, inpainting & outpainting, and editing.

LLM determine the combined invocation of modules (such as detection, recog-
nition, and generation) to fulfill user requirements. However, these methods are
not tailored for generation and editing and use concise prompts that lack the
capability to enhance results. Thus, we propose LLMGA, which is designed to
assist with various image generation and editing tasks. It can achieve satisfactory
results by strong reasoning capability and flexible interaction with users.

3 Methodology

3.1 Overview of LLMGA

In this paper, we aim to design a MLLM-based Generation Assistant (LLMGA).
Our LLMGA produces detailed language-based generation prompts to control
SD rather than predicting fixed-sized visual embeddings [29,[52] to govern SD.
This has five advantages: (1) Visual embeddings contain noise, and mapping
them to the language domain can filter out this noise, enabling precise SD con-
trol. (2) Language-based generation prompts facilitate users in understanding
the LLMGA’s thoughts, enhancing interaction. (3) Dynamic-sized language-
based generation prompt enables the addition of generation requests. (4) MLLM
is pre-trained on textual datasets. Language prompts rather than implicit visual
embeddings are more advantageous for MLLM to generate accurate prompts and
comprehend context. (5) Training is simpler and more efficient.

However, we need to address several issues: (1) As a language assistant,
MLLM may decline the execution of generation instructions. (2) MLLM lacks
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a nuanced understanding of image generation and editing, and cannot produce
precise and detailed generation prompts. (3) MLLM needs to decide which part
of the output text serves as generation prompts to guide generation. (4) SD’s
CLIP encode only 75 tokens. Moreover, SD is primarily trained on short cap-
tions, while detailed prompts generated by LLMGA may exceed 150 tokens. This
disparity makes it hard for SD to understand the instructions from LLMGA. To
address the aforementioned challenges, we construct a training dataset and de-
sign two-stage training schemes to train the MLLM (Sec. and SD (Sec. .

The network structure and pipeline of LLMGA are illustrated in Fig. [2]
Specifically, as shown in Fig. 2] (a) and (c), the images Iy, are encoded into
image embeddings by CLIP vision encoder and a projection layer. Subsequently,
the image embedding is concatenated with the text embedding and fed into the
LLM to obtain text output T,yipus- This process can be formulated as:

Toutput = ]:MLLM(Tinpuh Iinput)7 (1)

where Tp,pyt indicates the input text instructions from users. It is notable that
Furom can process only Typpy: as input.

The text output Touspu: can comprise two components: text response Tr
and generation prompt T p. To distinguish between Tr and T p, we adopt new
special tokens, i.e., <gen_img> and </gen_img>, to encompass Tp.

We present Tg as the immediate text response to users. Concurrently, Tp is
further fed into the subsequent SD to guide T2I generation (Eq. [2]), inpainting
& outpainting (Eq. , and instruction-based image editing (Eq.

Ig = Frar (TPa Z)a (2>
Ip - fPaint (Iinput7 Imaska TPv Z)v (3)
Ie = ]:Edit (Iinputa TP)7 (4)

Where Z denotes the random Gaussian noise. Furthermore, to ensure the encod-
ing of all Tp for SD, we iteratively run the CLIP text encoder until all prompts
are encoded. For inpainting & outpainting, except the input image Ijppyut, an
additional mask I,,,sx are essential inputs for the inpainting SD to specify the
region requiring generation. For instruction-based image editing, Fgq;; performs
inversion |25/50] and prompt-to-prompt [20] based on T2I SD.

3.2 MLLM Training

As described in Sec. original MLLMs are specifically designed and trained as
language assistants, but they lack the proficiency to assist in image generation,
and editing. Notably, considering the input of images and the performance of
open-sourced MLLMs, employing few-shot learning to guide the model to achieve
the desired results proves challenging and inefficient. Therefore, it is crucial to
train the MLLM to serve as proficient assistants in image generation and editing
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tasks, understanding the expected response formats and enhancing their com-
prehension of image generation and editing properties. To this end, as depicted
in Fig. 2| (a), we construct a training dataset consisting of four categories:

(1) Prompt Refinement. We establish this dataset to cultivate the prompt
refinement ability of the MLLM. Specifically, we utilize GPT4-V to furnish de-
tailed descriptions of images in MSCOCO [31]. These detailed descriptions, along
with the original MSCOCO brief descriptions, constitute a training text pair.
During training, we input the brief MSCOCO captions and randomly select and
append a generation instruction. When a generation instruction is included in
the prompt, we add <gen_img> and </gen_img> on the later description.

(2) Similar Image Generation. We select images from the MSCOCO dataset
along with corresponding detailed descriptions generated by GPT4-V to create
the Similar Image Generation dataset. During training, we input the images
along with a generation instruction. In cases where a generation instruction is
provided, we add <gen_img> and </gen_img> on the subsequent description.

(3) Inpainting & Outpainting. We use pairs of detailed descriptions and
images from the Similar Image Generation dataset. During training, we input
masked images with inpainting or outpainting instructions. Besides, we include
<gen_img> and </gen_img> on the subsequent description.

(4) Instruction-based editing. We fine-tune Mixtral-8x7B [24] to enable it
to generate editing data based on detailed descriptions from MSCOCO. Subse-
quently, we clean the generated data. During training, we can input images or
original captions and provide corresponding editing instructions, aiming to train
LLMGA to output the target caption. Additionally, we include <gen_img> and
</gen_img> tags on the target caption during training.

During training, alongside the above data, we integrated the image design-
ing and Alpaca [53] dataset, to enhance LLMGA'’s question-answering (QA). No-
tably, we excluded certain visual multimodal incompatible question-answer pairs
from it. Furthermore, we incorporated the LLaVA v1.5 mix665k dataset [32] to
endow LLMGA with Visual Question Answering (VQA) capabilities. We provide
more details in the supplementary material.

As illustrated in Fig. [2] (a), we freeze the CLIP vision encoder and optimize
the projection layer and LLM. The model is trained end-to-end using the auto-
regressive cross-entropy loss (Larrra) for text generation. Given the ground-
truth targets Tqr, this loss can be formulated as:

Lyriv = CE(Touput, Tar) - (5)

3.3 Stable Diffusion Training

As described in Sec. 3.1} the original SD’s CLIP text encoder only encodes 75
tokens, which cannot handle the entire MLLM’s generation prompt. Moreover,
the original SD is trained on brief captions, which cannot fully understand the
generation prompts. Thus, we repeatedly use the CLIP text encoder to encode all
instances of Tp for SD. Besides, we train the T2I SD model and the inpainting
SD model, respectively. For both generation and inpainting & outpainting tasks,
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the generation prompts of MLLM are detailed descriptions of images. Therefore,
during training, we can instruct MLLM to provide a detailed description T p for
images from the LATION-Aesthetics [47] and MSCOCO datasets. Subsequently,
Tp is fed into T2I SD or inpainting SD for joint training. Notably, we only opti-
mize the SD unet while freezing the parameters of other networks. To accelerate
the training, we record the prompt Tp of MLLM to avoid redundant calcula-
tions. The model is trained using SD loss (Eq. @ For instruction-based editing,
we directly adopt the pre-trained T2I SD model.

Lsp =Ez, cet (||6 — €9 (Zy, C)Hé) , (6)

where Z; = v/a;Zo + /1 — aie represents the noised feature map at timestep
t. Ground truth images are encoded into latent space to derive Zg. Here, € €
N(0,1I) represents Gaussian noise, and €y refers to the SD unet. C indicates
the conditional information. For T2I generation, C is Tp. For inpainting and
outpainting, C contains T p, the mask, and the VAE-encoded masked image.

3.4 Restoration Network Training

For SD inpainting & outpainting, we observed noticeable disparities between
the preserved and newly generated regions in the edited images. To enhance
the consistency between the newly generated and the preserved regions, we in-
troduce a reference-based restoration scheme. Specifically, existing restoration
methods [56,/60,/61] take low-quality (LQ) images as input and produce high-
quality (HQ) images, but they often do not leverage the preserved information
from the given masked image. Different from them, we concatenate the LQ im-
age Iro and the masked image, i.e., (1 — Lyqesk)Igr, as inputs and feed them
into the restoration model Fg. This process can be formulated as:

Ing = Fr(concat(Ing, (1 — Lnask)Iar)). (7)

To further mitigate the brightness and contrast disparities, we introduced
additional color degradation (i.e., random brightness and contrast disturbance)
into the training process of the restoration model, which is formulated as:

Do(x) = c1x + ¢9, (8)

I.g =D2(Di(IeT)), 9)

where D indicates contrast and brightness disturbance, x denotes the input
image. ¢1 is the contrast gain, randomly varied within the range of [0.94, 1.06],
while ¢z is the brightness bias, randomly varied within the range of [—0.05, 0.05].
D, represents the real-world degradation process used in restoration model |56,
60,61]. Igr is ground truth image, and Irq is LQ image. Here, we adopt the net-
work structure of the SOTA restoration model DiffIR [60] and apply our schemes
to it to obtain our Diffusion-based Reference Restoration Network (DiffRIR).
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4 Experiments

4.1 Implementation Details

For the first stage of training, we train the MLLM (including projection and
LLM) on 8xA100. The batch size is set to 128. Besides, the training datasets
include VQA (LLaVA v1.5 mix665k), QA, prompt refinement, similar image
generation, inpainting & outpainting, and instruction-based editing.

For the second stage of training, we adopt the Stable Diffusion 1.5 (SD1.5) as
the initial image generation or inpainting & outpainting model. We train these
models on 8x A100. The batch size is set to 32.

For the restoration network, we train DiffRIR on 8xV100. The batch size is
set to 64. Please check more details in the supplementary material.

4.2 Experimental Results

Evaluation on T2I Generation. Table 1: Quantitative comparison on T21
The results are shown in Tab. [[I No- generation on the MSCOCO [31] dataset.
tably, SD1.5 is the original Stable Dif-  pethod FID| ISt
fusion 1.5 while SD1.5-ft indicates the

SD1.5 24.0081 35.99
finetuned SD1.5 in LLMGA. We also _
compare our LLMGA with the re- GILL [29] 25.1123 34.20
cently proposed multimodal genera- LLMGA-7b(SD1.5) 23.5946 37.12
tive model GILL [29]. (1) Compar- LLMGA-7b(SD1.5-ft, Ours) 18.5234 41.04
ing SD1.5, our LLMGA-7B achieves = LLMGA-13b(SDL1.5) 23.5828 37.58

notable 5.4847 FID and 5.05 IS im- LLMGA-13b(SD1.5-ft, Ours) 18.4063 41.16
provements, underscoring the effec-

tiveness of LLMGA. (2) Moreover,

our LLMGA-T7B significantly outperforms GILL. (3) In the 3rd and 4th rows
of Tab. [} we use LLMGA-7B to refine the short MSCOCO caption to the de-
tailed generation prompt and send it to the SD1.5 and SD1.5-ft, respectively.
Our LLMGA-7B with SD1.5-ft achieves significant 5.0712 FID and 3.92 IS im-
provements, respectively. This demonstrates our second-stage training can help
SD1.5-ft to better follow detailed prompts from MLLM. (4) Comparing the 4th
and 6th rows of Tab.[I} LLMGA-13B exhibits better performance than LLMGA-
7B due to its superior reasoning ability.

The qualitative results are shown in Fig. [3| (1) LLMGA excels in refining
prompts by incorporating details to generate visually rich and pleasing images.
For example, in the first row, LLMGA crafts a battle attire for the husky, depict-
ing engaging scenarios of battling monsters. This makes user usage more con-
venient, eliminating the need for them to think about generating image details
themselves. (2) LLMGA can leverage its extensive knowledge base to generate
images, even for concepts users may not be familiar with, like a space elevator.
Evaluation on Instruction-based Editing. For instruction-based editing, we
utilize LLMGA to provide a detailed description of the edited image based on the
input image and user editing instructions. We then employ Direct Inversion [25]
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A city in the
sky

A cartoon husky
dog is fighting
with a Monster

Space elevator

LLMGA-7B LLMGA-7B LLMGA-13B

Prompt SDL.5 GILL (SD1.5) (Ours) (Ours)

Fig. 3: T2I visual comparison. LLMGA can produce accurate and high-quality results.

Table 2: Quantitative comparison for image editing on MagicBrush test set .

Methods | L1, L2| CLIP-It DINOt CLIP-T}

InstructPix2Pix| 0.1197 0.0416 0.8442 0.7252  0.2909
MagicBrush |0.0647 0.0224 0.9293 0.8913 0.2979

LLMGA (Ours)‘0.0814 0.0218 0.8936 0.8768 0.3137

and prompt-to-prompt methods to obtain the edited image. (1) The quan-
titative results are presented in Tab. 2] Notably, our LLMGA did not train SD
for image editing like InstructPix2Pix [7] and MagicBrush . However, our
zero-shot performance on the MagicBrush test set surpassed that of Instruct-
Pix2Pix, achieving performance similar to that of MagicBrush. (2) Additionally,
our LLMGA offers a superior user experience in interactive editing, allowing im-
age modifications to be carried out conversationally. In contrast, InstructPix2Pix
only supports input via instructions and output as images. Visualized results are
shown in Fig. [d] by leveraging the powerful reasoning capabilities of LLM, our
LLMGA can provide more accurate and reasonable editing results.

Evaluation on Inpainting and Outpainting. The results are shown in Tab.[3]
(1) Comparing the 1st and 3rd rows of Tab. [3] our LLMGA-7B achieves sig-
nificant improvements of 2.5681 FID over the SD1.5 in outpainting under wide
masks. (2) In the 2nd and 3rd rows of Tab. |3] we make LLMGA imagine the
complete generation prompts for the given masked images, which are then in-
put into the later SD. Notably, our LLMGA-7B (with SD1.5-ft) demonstrates a
significant FID improvement over LLMGA-7B (with SD1.5) in both outpainting
and inpainting. This demonstrates the second stage of training makes SD bet-
ter follow the prompts from MLLM. (3) Comparing the 3rd and 5th rows, our
LLMGA-13B outperforms LLMGA-7B due to its superior reasoning capabilities.
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Add a givatfe
tn the field

Remove the candles fg
from the cake. |

replace the laptop
with a microwave

Instructions InstructPix2Pix MagicBrush LLMGA (Ours)

Fig. 4: Visual comparison on instruction-based editing.

Table 3: Quantitative comparison for outpainting & inpainting on Places .

‘ Outpainting ‘ Inpainting
Method ‘Narrow Masks Wide Masks ‘ Narrow Masks Wide Masks
‘FIDL LPIPS| FID| LPIPSH FID| LPIPS| FID| LPIPS|
SD1.5 ‘2.0167 0.2283 5.0090 0.3734 ‘ 1.0795 0.1236 1.2855 0.1434

LLMGA-7b (SD1.5 )
LLMGA-7b (SD1.5-ft, Ours)

LLMGA-13b (SD1.5)
LLMGA-13b (SD1.5-ft, Ours)

1.2973 0.2215 2.4409 0.3616 | 0.8027 0.1171 0.9807 0.1405
1.5631 0.2263 3.0845 0.3679‘1.0326 0.1228 1.0978 0.1426

1.5530 0.2263 3.2630 0.3688‘1‘0692 0.1233 1.0983 0.1427

1.2160 0.2210 2.3663 0.3609 |0.7992 0.1166 0.9780 0.1400

The qualitative results are shown in Fig. ol We can see that LLMGA can
deduce and imagine complete images based on masked input images. For exam-
ple, in the 3rd row of Fig. [} LLMGA can infer the presence of wind turbines
on the mountain based on the given environment. Overall, LLMGA’s powerful
reasoning capability and extensive knowledge can assist users in conveniently
making accurate and visually pleasing inpainting and outpainting.

Evaluation on ControlNet. Our LLMGA demonstrates exceptional scalabil-
ity, enabling integration with external plugins like ControlNet . Here, we
utilize LLMGA to create detailed prompts derived from input images and user
requirements, working alongside ControlNet to guide image generation. As de-
picted in Fig. [ our LLMGA significantly enhances the diversity and richness of
outcomes in picture reference-guided image generation. Furthermore, more ex-
ternal plugins can also be integrated into the interactive framework of LLMGA,
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LLMGA-7B LLMGA-7B LLMGA-13B

GT Masked
asked Image SDL.5 (SD1.5) (Ours) (Ours)

Fig. 5: Visual comparison on inpainting and outpainting.

N

Input image ControlNet Input image ControlNet

I*".r‘ L ‘m!\ |

= — el S—
Reference image LLMGA+ControlNet| Reference image LLMGA+ControlNet| Reference image LLMGA+ControlNet

Fig. 6: Visualization of LLMGA plus ControlNet. Our LLMGA can enhance the details
in generated images, producing visually pleasing images.

combining with LLMGA’s reasoning design capabilities and all previous func-
tions to allow for a broader range of creative and engaging applications.
Evaluation on Image Restoration. The results are shown in Tab. [d] For
comparisons, we validate DiffIR and our DiffRIR on the outpainting image
generated by LLMGA. (1) Comparing the 2nd and 3rd rows of Tab. |4} it is ev-
ident that introducing a reference scheme can significantly improve restoration
performance. (2) When comparing the 3rd and 4th rows of Tab. @ it can be ob-
served that introducing color degradation helps alleviate the bright and contrast
distortion caused by SD. (3) Comparing the 1st and 4th rows of Tab. [4] our
DiffRIR yields significant improvement, validating the effectiveness of DiffRIR.
As shown in Fig. [7 our DiffRIR (i.e., DiffRIR; in Tab. [4]) can alleviate the
texture, brightness, and contrast discrepancies, and generate realistic details.
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Table 4: Quantitative comparison on image restoration for Places outpainting.

Color
Method Reference Degradation| FID| LPIPS|
LLMGA-7B X X 2.4409 0.3616
LLMGA | DiffIR X X 2.3587 0.3612
LLMGA +DiffRIR, v X 2.2993 0.3609
LLMGA+DiffRIRs (Ours) v v 2.2687 0.3607
Masked Image LLMGA

DiffIR DiffRIR (Ours) DiffIR

DiffRIR (Ours) DiffRIR (Ours)

Fig. 7: Visual comparison of image restoration methods. DiffRIR can alleviate the
texture, contrast, and brightness disparities in inpainting & outpainting results.

Control SD using detailed lan-
guage prompt or embedding?
The results are shown in Fig. [5l We
compare two approaches: GILL ,
which makes LLM estimate a fix-
sized embedding to control SD gen-
eration, and LLMGA Embedding, a
variant of LLMGA where the lan-
guage prompt is replaced with em-
bedding, undergoing the same train-
ing process as LLMGA. The evalu-
ation is conducted on MSCOCO by
instructing these methods to gener-
ate images with the same prompts in
multiple times in conversation form.
(1) The quality of generated images
(Fig. p) in embedding-based methods

341 4 GlLL
LLMGA Embedding
—8— LLMGA (Ours)

324

301

281

FID !

26

244

224

1 2 3 4 5 6 7 8
Generation Index

Table 5: T2I performance comparison of
SD control schemes based on detailed lan-
guage prompt and embedding.

(i.e., GILL and LLMGA Embedding) deteriorate rapidly as the number of con-
versation turns increases. In contrast, our LLMGA remains unaffected. This
discrepancy arises from the inherent noise present in the embeddings predicted
by LLM. As the number of conversation turns rises, these generated embeddings
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Table 6: Datasets comparison. We conducted comparisons of FID on T2I and outpaint-
ing. The v signifies the utilization of the complete dataset during training. Conversely,
the absence of the v/indicates a reduction to only 10% of the original datasets.

Prompt Inpainting Similar Instruction-based
Method Refinement &Outpainting Image Generation Editing T2I Outpainting
LLMGA, v v v 21.4460  2.6533
LLMGA, v v v 19.1914  3.1054
LLMGAs v v v 19.5698  2.6612
LLMGA4 v v v 19.0642  2.8047
LLMGAs (Ours) v v v v 18.5234  2.4409

integrate with the preceding conversations, introducing even more noise. This
poses challenges for the precise control of SD-generated content. Our LLMGA
addresses this issue by mapping the embedding to the fixed language domain,
effectively eliminating such noise. (2) Additionally, LLMGA Embedding also
outperforms GILL, indicating that the prompt size used to guide SD generation
should be adaptive in content, rather than a fixed size.

Contribution of Training Data. To assess the impact of training data, we
downsized one of the four training datasets in LLMGAj5 to 10% of its original
magnitude, ensuring that LLMGA remains capable of furnishing responses in the
prescribed format. The results are shown in Tab. [6] It is evident that prompt
refinement, inpainting & outpainting, and instruction-based editing datasets en-
hance LLMGA’s comprehension of image generation and editing properties, re-
sulting in superior images. Moreover, comparing LLMGA3 and LLMGAj5, we
can see that engaging in similar image generation training further improves the
performance of LLMGA in both generation and editing.

5 Conclusion

LLM possesses an extensive reservoir of knowledge and powerful comprehension
and reasoning capabilities. In this paper, we introduce a MLLM-based genera-
tion assistant (LLMGA), aiming to exploit LLM’s capabilities in an interactive
manner to facilitate more efficient and convenient image generation and editing.
Compared to relying on LLM to predict a fixed-size embedding to control SD, we
employ detailed generation prompts. These prompts prove to be more favorable
for enhancing LLM’s contextual comprehension and generating more accurate
and rich content. To this end, we develop a two-stage training scheme and curate
a dataset, including four parts: prompt refinement, similar image generation, in-
painting & outpainting, and instruction-based editing. For the first stage, we
train MLLM to understand the properties of image generation and editing, en-
abling it to give fitting responses. For the second stage, we optimize the SD unet
to adapt to the generation prompt. Moreover, we propose a DM-based reference
restoration network (DiffRIR) to mitigate disparities in texture, contrast, and
brightness for image editing. Consequently, LLMGA can offer design suggestions
and enhance results based on user’s requests during interactions.
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