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Overview

The goal of this supplementary material is to provide additional technical details
of the proposed meshing and integration pipeline and to present further evalua-
tion results. To simplify navigation, we follow the structure of the manuscript.

The implementation can be found under moritzheep.github.io/adaptive-screen-
meshing.
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1 Fundamental Forms in the Perspective Case

In the perspective case, the surface tangents are given by

∂ux =

(
∂ur − n · ∂ur

n · r
· r
)
· z , ∂vx =

(
∂vr − n · ∂vr

n · r
· r
)
· z , (1)

i.e. they scale linearly with depth. As the fundamental forms are given by

Iij = ∂ix · ∂jx , IIij = −∂ix · ∂jn , (2)

we get I ∝ z2 and II ∝ z. From the scaling behaviour of the first fundamental
form, it follows that all lengths we measure on screen are proportional to the
depth z. This is simply the well-known relationship that the screen-size of an
object is inversely proportional to the distance to the camera.

For the generalized eigenvalue problem

κi · I vi = II vi , (3)

this means that the two eigenvalues κi are proportional to z−1.
Finally, if we look at the error estimate

L =

√
6ϵ

|κ|
− ϵ2 (4)

we can choose the approximation ϵ = λ·z in relation to depth. Then, the optimal
length L will be proportional to z. Since the actual lengths we measure on screen,
are also proportional to z, the ratio of optimal length and actual length is not
dependant on z. In practice, we can set z = 1 and treat ϵ as the relative error
compared to z.

2 Mesh-Based Integration - Full Derivation

In the unified integration framework, the perspective case reads

EInt =

∫
Ω

(n · r ∂uz + nx)
2
+ (n · r ∂vz + ny)

2
du dv . (5)

where r is the ray given by the camera matrix and z is logarithmic depth.
In mesh-based integration, we want to obtain depth values z1, ..., z|V| for each
vertex. Depth for any point on a given triangle is defined by linear interpolation
using barycentric coordinates. We start by rewriting the integrand in vector
form:

EInt =

∫
Ω

∥∥∥∥n · r∇z +∇ut ·
(
nx

ny

)∥∥∥∥2 du dv . (6)
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As we use linear interpolation, the gradients are constant within each face. From
this, it follows that∫

f

∇g · ∇h dΩ =
1

2

∑
(i,j)∈Ef

cot(αk)(gj − gi)(hj − hi) (7)

where the integral runs over the area of the face and αk is the angle opposite to
edge ij. This is a generalization of [8, Lemma 5]. Applying the polynomial the-
orem to the integration functional, we can discretize each addend using Eq. (7).

Quadratic Term

We start with the term that is quadratic in ∇z. Applying Eq. (7) gives∫
f

(n · r)2 · ∥∇z∥2 dΩ =

(
1

Af

∫
f

(n · r)2 dΩ
) ∑

(i,j)∈Ef

cot(αk)

2
· (zj − zi)

2 . (8)

Assuming constant face normals nf , we can perform the remaining integral
using [9, Theorem 2.2] to get

2mf :=
1

Af

∫
f

(n · r)2 dΩ =
1

6

∑
i,j∈Vf

i≤j

(nf · ri)(nf · rj) (9)

Linear Term

Applying the same strategy to the linear term, we get∫
f

(n · r) ·
((

nx

ny

)
· ∇u

)
· ∇z dΩ (10)

=

(
1

Af

∫
f

n · r dΩ
) ∑

(i,j)∈Ef

cot(αk)

2
· (zj − zi)

(
nf,x

nf,y

)
· (uj − ui) . (11)

Again, the remaining integral can be evaluated to be

bf :=
1

Af

∫
f

n · r dΩ =
1

3

∑
i∈Vf

nf · ri

Constant Term

Finally, we get∫
f

∥∥∥∥∇ut ·
(
nx

ny

)∥∥∥∥2 du dv =
∑

(i,j)∈Ef

cot(αk)

2
·
((

nf,x

nf,y

)
· (uj − ui)

)2

(12)

for the constant term.
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Discretized Integration Energy

Putting all three terms together, each triangle contributes∑
(i,j)∈Ef

cot(αk)

(
mf · δz2ij + bf ·

(
nf,x

nf,y

)
· δuij · δzij +

1

2

((
nf,x

nf,y

)
· δuij

)2
)
(13)

to the integration energy where we use the short hand notation δxij = xj − xi.
Hence, the total integration energy is the sum over all triangle contributions.

To obtain the optimality condition reported in the main work, we need to take
the derivative with regard to a single zk. As the discretized integration energy
EInt only contains differences between adjacent vertices, ∂EInt

∂zk
may only depend

on zk and its neighbours zi, i ∈ Vk. Collecting the terms for each neighbour, we
arrive at the condition that was reported in the main work.

In the perspective case, solving the linear system gives one logarithmic depth
value per vertex and we get the actual depth by taking the exponential. In the
orthographic case, we replace r → e3 and the solution of the linear system is
depth, no exponentiation needed.

3 Gibbs Phenomenon

To further investigate the actual cause of the Gibbs phenomenon in normal
integration, we analyze two methods [4, 5]. For simplicity, we focus on the or-
thographic case. Dourou and Courteille [4] start from the discretized functional
over pairs (i, j) of adjacent pixels

EDC =
∑

(i,j)∈N

((zj − zi)− gij)
2
. (14)

where gij is the expected gradient along the edge (i, j). It is derived from photo-
metric normals. The discretized functional in Heep and Zell [5] (adapted to the
orthographic case) is

EHZ =
∑

(i,j)∈N

(
(ez · nij) · (zj − zi)− (eij · nij)

)2 (15)

(a) Gradient Formulation [4] (b) Normal Formulation [5] (c) Normal Formulation (Ours)

Fig. 1: Integration results for the pixel-based integration methods by [4] (a) and [5]
(b) as well as ours (c). The gradient-based version exhibits the distortions known as
the Gibbs phenomenon around the base of the sphere. These distortions are absent in
the two normal-based approaches.
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where ez is the unit vector in the z direction, eij = (uj − ui, vj − vi, 0)
t is the

direction of the edge and nij is the average normal of pixels i and j. The latter,
normal-based formulation can be seen as the pixel version of our mesh-based
approach. Due to the relation

gij ≈
eij · nij

ez · nij
, (16)

the difference between the two approaches [4, 5] is essentially different edge
weights. These edge weights put a big emphasis on regions where nz ≈ 0 in
the gradient-based formulation. It is exactly these highly slanted regions, where
the Gibbs phenomenon occurs, see the distortions around the sphere in Fig. 1.
These distortions are completely absent in normal-based formulations.
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4 Evaluation

Meshing First vs Pixel-based

In line with Fig. 2 from the main paper, we provide additional examples compar-
ing the reconstruction accuracy where we roughly match the number of vertices
of our meshing-first approaches to previous pixel-based integration methods. The
female, male and dragon in Fig. 2 were used to create Fig. 6 in the main work.
The human characters were purchased from 3D Scan Store, the Dragon is part
of the Stanford 3D Scanning Repository [2].

In Fig. 3, we compare the integration error of pixel-based integration to our
meshing-first approach when roughly matching the number of free variables, i.e.
pixels or vertices respectively. The "Joint" is part of the dataset in [7]. The
"SICILY. Syracuse. Second Democracy" coin by Frank McMains was licensed
under CC BY 4.0. The "leaf1" was purchased from 3Dexport.

H
ee

p2
2

98 k Vertices 107 k Vertices 52 k Vertices

O
ur

s

71 k Vertices 106 k Vertices 45 k Vertices

Fig. 2: Comparison between the results of our adaptive mesh integration and the pixel-
based integration in [5]. We compare results with approximately the same number of
vertices or pixels respectively. Flat shading was applied to visualize the structural
differences between the regular pixel grid and our adaptive triangle mesh.

https://skfb.ly/oPPOP
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Pixel-Based

45 k Pixels

7.42mm

Ours

44 k Vertices

6.59mm

Pixel-Based

40 k Pixels

0.273mm

Ours

40 k Vertices

0.269mm

Pixel-Based

146 k Pixels

0.746mm

Ours

145 k Vertices

0.735mm

Fig. 3: Comparison of pixel-based integration [5] against our proposed meshing-first
approach, where we roughly match the number of vertices to the number of pixels. Val-
ues in mm are the RMSEs of the test object. Our adaptive vertex placement can better
capture the overall shape of the object and leads to better results both qualitatively
and quantitatively.

4.1 Compression and Runtime

In Table 1, we reported the average compressions of our method for the low
(1mm), mid (0.3mm) and high (0.1mm) quality settings. We reported com-
pressions for ground truth as well as computed normals [5,6]. In this section, we
complement these numbers with visualizations of the created meshes, see Fig. 4
to Fig. 9.
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Orthographic Projection, Ground Truth Normals
Bear Buddha Cow Pot2 Reading

In
pu

t
L
ow

529 Vertices 1924 Vertices 330 Vertices 781 Vertices 568 Vertices

M
id

1118 Vertices 3758 Vertices 782 Vertices 1565 Vertices 1253 Vertices

H
ig

h

2523 Vertices 8819 Vertices 1738 Vertices 3590 Vertices 2927 Vertices

Fig. 4: Results for different quality settings of our adaptive screen-space meshing using
ground truth normals and the orthographic projection. Wireframes are rendered as
vector graphics for better examination.
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Orthographic Projection, Normals Computed by [6]
Bear Buddha Cow Pot2 Reading

In
pu

t
L
ow

422 Vertices 1238 Vertices 326 Vertices 593 Vertices 522 Vertices

M
id

954 Vertices 2608 Vertices 699 Vertices 1303 Vertices 1160 Vertices

H
ig

h

2270 Vertices 6144 Vertices 1615 Vertices 2905 Vertices 2740 Vertices

Fig. 5: Results for different quality settings of our adaptive screen-space meshing using
normals calculated with [6] and the orthographic projection. Wireframes are rendered
as vector graphics for better examination.
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Orthographic Projection, Normals Computed by [5]
Bear Buddha Cow Pot2 Reading

In
pu

t
L
ow

445 Vertices 1418 Vertices 681 Vertices 733 Vertices 1468 Vertices

M
id

960 Vertices 2947 Vertices 1452 Vertices 1533 Vertices 3186 Vertices

H
ig

h

2170 Vertices 6830 Vertices 3323 Vertices 3392 Vertices 7005 Vertices

Fig. 6: Results for different quality settings of our adaptive screen-space meshing using
normals calculated with [5] and the orthographic projection. The method [5] operates
on the Lambertian surface assumption and clearly struggles with some of the more
complex materials in DiliGenT-MV, e.g . the specular ’Reading’ dataset. While incor-
rect normals affect meshing results, it does not break our meshing pipeline. Wireframes
are rendered as vector graphics for better examination.
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Perspective Projection, Ground Truth Normals
Bear Buddha Cow Pot2 Reading

In
pu

t
L
ow

609 Vertices 2109 Vertices 367 Vertices 824 Vertices 605 Vertices

M
id

1218 Vertices 4126 Vertices 832 Vertices 1692 Vertices 1393 Vertices

H
ig

h

2759 Vertices 9589 Vertices 1953 Vertices 3911 Vertices 3280 Vertices

Fig. 7: Results for different quality settings of our adaptive screen-space meshing using
ground truth normals and the perspective projection. Wireframes are rendered as vector
graphics for better examination.



12 M. Heep and E. Zell

Perspective Projection, Normals Computed by [6]
Bear Buddha Cow Pot2 Reading

In
pu

t
L
ow

460 Vertices 1330 Vertices 346 Vertices 640 Vertices 580 Vertices

M
id

1062 Vertices 2893 Vertices 768 Vertices 1380 Vertices 1266 Vertices

H
ig

h

2525 Vertices 6760 Vertices 1783 Vertices 3193 Vertices 3059 Vertices

Fig. 8: Results for different quality settings of our adaptive screen-space meshing using
normals calculated with [6] and the perspective projection. Wireframes are rendered
as vector graphics for better examination.
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Perspective Projection, Normals Computed by [5]
Bear Buddha Cow Pot2 Reading

In
pu

t
L
ow

505 Vertices 1522 Vertices 746 Vertices 817 Vertices 1653 Vertices

M
id

1084 Vertices 3158 Vertices 1556 Vertices 1632 Vertices 3377 Vertices

H
ig

h

2372 Vertices 7463 Vertices 3547 Vertices 3686 Vertices 7506 Vertices

Fig. 9: Results for different quality settings of our adaptive screen-space meshing using
normals calculated with [5] and the perspective projection. The method [5] operates
on the Lambertian surface assumption and clearly struggles with some of the more
complex materials in DiliGenT-MV, e.g . the specular ’Reading’ dataset. While affecting
meshing results, it does not break our meshing pipeline. Wireframes are rendered as
vector graphics for better examination.
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4.2 Benchmark Evaluation

In Table 2, we reported the RMSE after integration of our method compared
to a range of previous works [1, 3, 5, 10]. In this section, we complement these
numbers with absolute error maps (Figs. 10 and 11) and rotated views of the
integrated surfaces (Figs. 12 and 13).
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Orthographic Projection
Bear Buddha Cow Pot2 Reading
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1.49mm 5.01mm 1.46mm 1.54mm 9.27mm

Fig. 10: RMSE and absolute error maps for the first view of the DiLiGenT-MV dataset
in the orthographic projection.
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Perspective Projection
Bear Buddha Cow Pot2 Reading
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1.53mm 5.20mm 1.55mm 1.71mm 9.29mm
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1.42mm 5.11mm 1.77mm 1.70mm 9.15mm

Fig. 11: RMSE and absolute error maps for the first view of the DiLiGenT-MV dataset
in the perspective projection.
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Orthographic Projection
Bear Buddha Cow Pot2 Reading
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Fig. 12: Integrated surfaces for the first view of the DiLiGenT-MV dataset for the
orthographic projection.
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Perspective Projection
Bear Buddha Cow Pot2 Reading
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Fig. 13: Integrated surfaces for the first view of the DiLiGenT-MV dataset for the
perspective projection.
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4.3 Robustness towards Noise

To evaluate the impact of imperfect normals on the performance of our mesh-
based integration, we added different levels of Gaussian noise to the ground truth
normals maps, see Fig. 14. Our method can handle noise reliably. As expected,
lower-quality input generates lower-quality output and diminishes surface de-
tails. High curvature regions with their small triangles are more affected while
random perturbations tend to average out for bigger triangles in low curvature
regions.

Orthographic Projection with varying levels of Noise
Bear Buddha Cow Pot2 Reading

1
◦

1.60mm 5.08mm 1.47mm 1.52mm 9.20mm

5
◦

2.29mm 5.12mm 1.65mm 1.56mm 9.22mm

1
0
◦

3.17mm 5.28mm 1.75mm 1.82mm 9.70mm

Fig. 14: Integrated surfaces for the first view of the DiLiGenT-MV dataset for three
different levels of noise.

4.4 Ablation Study

For the investigation of the influence of the single user-parameter ϵ, we showed
in the paper the remaining RMSE as a function of ϵ after fitting non-rigidly to
ground truth. For completeness, we show the equivalent diagram for integrated
meshes in Fig. 15. The linear connection between RMSE and ϵ still holds up
after integration. However, additional errors that occur during integration lead
to a bigger offset than the non-rigid fit to ground truth.
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Fig. 15: Impact analysis of the user-parameter: RMSE after integration as a function
of the user-parameter ϵ. The RMSE grows linearly with ϵ.
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