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Abstract. Reconstructing surfaces from normals is a key component of
photometric stereo. This work introduces an adaptive surface triangula-
tion in the image domain and afterwards performs the normal integration
on a triangle mesh. Our key insight is that surface curvature can be com-
puted from normals. Based on the curvature, we identify flat areas and
aggregate pixels into triangles. The approximation quality is controlled
by a single user parameter facilitating a seamless generation of low- to
high-resolution meshes. Compared to pixel grids, our triangle meshes
adapt locally to surface details and allow for a sparser representation.
Our new mesh-based formulation of the normal integration problem is
strictly derived from discrete differential geometry and leads to well-
conditioned linear systems. Results on real and synthetic data show that
10 to 100 times less vertices are required than pixels. Experiments sug-
gest that this sparsity translates into a sublinear runtime in the number
of pixels. For 64 MP normal maps, our meshing-first approach generates
and integrates meshes in minutes while pixel-based approaches require
hours just for the integration.
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Fig. 1: Our screen-space remeshing pipeline decimates smooth, featureless areas effi-
ciently before the normal integration while preserving high-frequency details. Depicted
results illustrate high, mid and low-resolution triangulations. Wireframes are rendered
as vector graphics for closer examination.
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1 Introduction

Normal integration is renowned for recovering fine and delicate surface details as
a subsequent step to photometric stereo [28] or shape from shading. Increasing
the resolution of the normal map improves the accuracy of fine structures. At the
same time, smooth, featureless regions will reveal little additional information
but increase computational costs. Real-world objects often consist of both fine
structures and featureless regions and one must choose between sufficient image
resolution and reasonable computational cost. In general, to resolve structures
half the size, both the image height and width must be doubled. This quadratic
growth in the number of variables has a significant impact on the runtime of
the normal integration and makes regular pixel grids an increasingly inefficient
geometric representation.

In practice, many 3D reconstruction pipelines operate at high resolutions
and switch to a sparser triangle mesh in the last processing step [18, 29, 30].
However, this ignores the underlying problem: all steps up to the final mesh
representation are still performed at full resolution, with obvious negative effects
on the computational performance. In contrast to previous work [15, 17], we do
not aim to speed up computations in the pixel domain. Instead, we introduce
a flexible and locally adaptive triangle mesh before the normal integration and
solve the problem at its origin, see Fig. 1.

To the best of our knowledge and despite the rich literature on normal in-
tegration over the last 30 years, we appear to be the first to propose normal
integration on general triangle meshes. Our main insight is that curvature can
be extracted from normal maps and that curvature is sufficient to refine triangle
meshes locally and in screen space. In addition, we present a novel formulation
of the normal integration for triangle meshes. It is strictly derived from discrete
differential geometry and is state-of-the-art in that it avoids the checkerboard
artefacts and the Gibbs phenomenon described in [7]. Finally, our meshing-first
approach can be easily integrated into most existing photometric stereo pipelines
and is well-suited for high-quality reconstructions where we achieve significantly
sparser representations.

2 Related Work

In this section we will focus on dedicated work on normal integration and
(re)meshing. We refer the reader to [1] for a starting point on photometric stereo
and how to obtain the normal maps, required by our method.

Most state-of-the-art normal integration methods are so-called variational
methods, which find a depth map by minimizing an L2 functional containing the
difference between the actual depth-map gradients and the observed gradients,
e.g . from photometric stereo. Broadly, there exist two types of variational meth-
ods: Either, functional analysis is used to derive a Poisson equation which is
then discretized and solved [21] or the functional itself is discretized [13]. Both
cases lead to a linear system of equations. Methods using the more robust L1
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Fig. 2: Left: Using the same number of variables, our meshing-first method achieves
higher geometric fidelity. Right: Integration of an 81922 normal map. The pixel-based
approach requires around 3 hours while our meshing-first method generates comparable
results in only 5 minutes.

norm have been proposed but are computationally more involved [11]. More re-
cently, authors have raised concerns about checkerboard artefacts [38] and the
Gibbs phenomenon [7] (Fig. 3) occurring in the discretized functional setting.
Still, these problems are not innate to the variational approach: [6] and [20]
independently proposed a functional using normals over gradients in the pixel-
based integration setting. This functional avoids the artefacts mentioned above
without resorting to larger stencils for the partial derivatives [37] or introducing
additional variables [7]. Our method starts with the same functional but dis-
cretizes it for general triangle meshes. An overview of variational methods can
be found in [28].

Regarding non-variational approaches, Xie et al . [32,34] consider the regular
pixel grid as a quad mesh. They alternate between tilting these quads to align
them with the normal directions and glueing adjacent quads into a continuous or
even discontinuous [33] surface. Although superficially mesh-based, this approach

(a) Gradient Formulation [13] (b) Normal Formulation [20]

Fig. 3: Normal integration results with (left) and without (right) the Gibbs phe-
nomenon.
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ultimately operates on a pixel-by-pixel basis. Despite being non-variational, Xie
et al .’s approach still suffers from the Gibbs phenomenon around sharp corners.
Cao et al . [7] fix the Gibbs phenomenon by optimizing pixel-wise depth values
to form a set of interlocking planes defined by the normals.

In the depth-from-stereo context, image pyramids [17] or iteratively refined
grids of deformation points [15] have been proposed to exploit locally similar
depth values in smooth regions to speed up reconstruction. While these ap-
proaches progressively refine their grid, the grid remains regular and refinement
is applied equally over the entire image. In contrast, we adaptively coarsen our
grid to allocate computational resources where they are most needed.

The triangulation and remeshing of 2D and 3D surfaces is an intensively
studied area [22] with varying objectives targeting different applications. For
rendering and computer-aided design, the overall shape should be preserved and
consist of a minimal amount of vertices [16,35,36]. However, for numerical sim-
ulations like mechanical stress, heat transfer, etc., these very sparse meshes are
usually inadequate and more regular triangulations are preferred. Here, Cen-
troidal Voronoi Tesselations (CVT) [10] as well as Optimal Delaunay Triangula-
tions (ODT) [8] are widely used. Both approaches generate uniform or isotropic
meshes where each vertex is the (weighted) centroid of some local neighbourhood.
The isotropic variants are typically controlled by an application-dependent den-
sity. Densities based on maximum absolute curvature are popular to balance
geometric faithfulness and regularity of the mesh [2, 9]. An argument for this
choice can be found in Dunyach et al . [12] where a relation between curvature
and approximation error is derived. All these approaches have in common that
they operate on an existing 3D geometry. In contrast, our approach generates
a geometry-adapted triangle mesh from the normal maps alone. We extend the
approach of Dunyach et al . [12] because it directly controls the approximation er-
ror. Furthermore, the resulting isotropic meshes increase the numerical stability
of our mesh-based normal integration.

Besides surface reconstruction, applications of triangle meshes in 2D include
image vectorization [25], although conversion to parametric curves is often pre-
ferred in this context [14, 26]. The key difference is that image vectorization is
based on colours, while our approach approximates the triangulation of a 3D
object in 2D screen space.

3 Definitions, Normals and Curvature

In this section, we will briefly summarize some fundamental concepts in differ-
ential geometry and the relation between surfaces, normals and curvatures. This
knowledge will be required to derive our solutions for screen-space meshing in
Sec. 4 and mesh-based integration in Sec. 5.

For a single view, the 3D reconstruction problem can be formulated as finding
a projection

ϕ : Ω → R3 (1)
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Fig. 4: Left: The projection ϕ maps points on the screen into three-dimensional space.
Distances on the screen appear shorter than their three-dimensional counterparts (fore-
shortening). This is captured in the Jacobian J of ϕ. Right: Illustration on the relation-
ship between the edge lengths and the user-defined approximation error ϵ as derived
in [12].

from the image foreground Ω ⊂ R2 into 3D space. We write u = (u, v)t for
screen coordinates and x = (x, y, z)t for object coordinates. The projection is
usually parametrized by a depth map h : Ω → R as

x := ϕ(u) =
(
u, v, h(u)

)t (2)

in the orthographic case and

x := ϕ(u) = r(u) · h(u) (3)

in the projective case where r := C−1 · (u, v, 1) is the ray given by the camera
matrix C. As h = z for both projections, we will use z synonymously.

3.1 Normal Integration

Given a normal map n : Ω → S2, the normal integration problem is finding the
depth map z that minimizes

EInt =

∫
Ω

⟨n, ∂ux⟩2 + ⟨n, ∂vx⟩2 du dv . (4)

This modified Dirichlet energy has only recently been proposed in the context of
discontinuity preserving normal integration [6] and depth-from-stereo [20]. Using
normals instead of depth map gradients overcomes the problem of distortions
near sharp corners. This phenomenon, also known as the Gibbs phenomenon
[7], Fig. 3, is present in traditional variational approaches and is discussed in
more depth within the supplementary material. Relying on discrete differential
geometry, we derive our novel mesh-based discretization of the modified Dirichlet
energy in Sec. 5.
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3.2 Curvature

Strong changes in the normals indicate geometric details. Mathematically speak-
ing, this is described by curvature κ. Just as normals provide a planar approxi-
mation of the surface, so does curvature provide a spherical approximation. The
radius of this approximating sphere is exactly |κ|−1. Curvatures are calculated
from the first and second fundamental forms:

Iij = ∂ix · ∂jx , IIij = −∂ix · ∂jn . (5)

where i, j ∈ {u, v}. The first fundamental form quantifies foreshortening and
measures the 3D distance between two points on the 2D screen. The second
fundamental form is virtually the gradient of the normal map. However, the
second fundamental form itself is subject to foreshortening. Instead, we consider
the two eigenvalues κi and eigenvectors vi of the generalized eigenvalue problem

κi · I vi = II vi . (6)

They are called the principal curvatures and principal directions respectively.
The addition of the first fundamental form in the generalized eigenvalue problem
exactly compensates for foreshortening.

Given a set of surface normals, we can calculate tangents since n · ∂ix = 0.
In the orthographic case, this gives

∂ux = ex − nx

nz
· ez ∂vx = ey −

ny

nz
· ez (7)

where ex, ey, ez are the unit vectors in the respective coordinate axis directions.
As no knowledge about the depth map z is required, one can perform all these
calculations using normal maps alone. This is the foundation for our screen-space
triangulation.

In the projective case, we get

∂ux =

(
∂ur − n · ∂ur

n · r
· r

)
· z ∂vx =

(
∂vr − n · ∂vr

n · r
· r

)
· z (8)

where the ray r is again given by the camera matrix. Unlike the orthographic
case, the tangents depend on the depth map z. However, if distances within the
object are small compared to the camera-to-object distance, we can adopt the
weak perspective setting and set z to the average camera-to-object distance. In
the supplementary material, we go into detail on how to handle objects very
close to the camera.

4 Screen-Space Meshing

To create a feature-adaptive mesh before the actual surface integration, we must
reliably predict detailed surface areas and adjust the density of the triangle mesh
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Fig. 5: The meshing pipeline: We start by calculating curvature from the normal maps.
This curvature is used to derive an optimal edge length. Then, an initial mesh is
iteratively refined to move its edge lengths closer to the calculated optimum. The
result is a sparse, isotropic mesh.

accordingly. While mesh simplification algorithms like [16] achieve an impressive
reduction in vertex number, their sole focus on geometric faithfulness often leads
to skinny triangles. As we will see in 5, small angles decrease the numerical
stability of the mesh-based integration. In contrast, remeshing algorithms also
take mesh quality into account and are much more suited for our use-case. That
being said, existing remeshing methods operate on 3D surfaces and are not
directly applicable to our case. Searching for a fast and robust method with only
a few parameters, we identified the work by Dunyach et al . [12] as the most
suitable candidate. In their algorithm, all edge lengths are optimized towards an
optimal edge length

L =

√
6ϵ

|κ|
− ϵ2 (9)

that is based on curvature and a user-defined approximation error ϵ, see Fig. 4b.
However, there are two obstacles: The first issue is the edge length; lengths on
screen are subject to foreshortening, while the optimal edge length is not. They
cannot be simply compared without compensation (Sec. 4.1). The second issue is
that we require a vertex-based curvature measure to obtain the optimal lengths.
In Sec. 3.2, we discussed how to compute pixel-wise curvatures from normal
maps and we will present a solution for computing vertex-based curvatures in
screen space in Sec. 4.2. Finally, we will discuss the optimization of vertex posi-
tions (Sec. 4.3). For all these steps, we assume that the screen is already covered
by a triangle mesh. In Sec. 4.4, we show how we obtain the initial triangula-
tion of the screen and summarize our screen-space algorithm to obtain the final
triangulation. An overview of our approach is given in Fig. 5.

4.1 Measuring Lengths

Edges in screen-space are subject to foreshortening, i.e. appear shorter on screen
than in 3D, see Fig. 4a. This foreshortening is exactly described by the first
fundamental form I, Eq. (5). We have shown in Sec. 3.2, how to derive the first
fundamental form from normals. To apply this to the mesh setting, we use the
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pixel-wise normal map to obtain face normals

nf := normalize
(∑

p∈Pf
np

)
(10)

where Pf contains all pixels in the image that are covered by triangle f . As
large triangles occur only in regions with low curvature, where normals vary
slowly, the variance of nf is small. Plugging this normal into Eqs. (7) and (8)
respectively, we obtain fundamental forms for each face. With these fundamental
forms, the length of an edge (i, j) ∈ E is

lij =

√
1

2
·
(
(ui − uj)t · If ·(ui − uj) + (ui − uj)t · If ′ ·(ui − uj)

)
(11)

where f, f ′ are the two faces adjacent to the edge and ui,uj are the screen coor-
dinates of the edge’s endpoints. For boundary edges, there is only one adjacent
face and we omit the factor 1/2.

4.2 Calculating Curvatures

To obtain vertex curvatures, we start by calculating maximum absolute curva-
ture κ

(max)
p for each pixel by solving the eigenvalue problem in Eq. (6). For this,

we require the first and second fundamental forms, Eq. (5). Depending on the
projections, we use Eqs. (7) and (8) respectively for the surface gradients and fi-
nite difference for gradients of the normal maps. We lift the pixel-wise curvatures
to the mesh setting via

κv := max

({
κ(max)
p

∣∣p ∈ PSv

})
. (12)

where Sv is the star of v, i.e. the union of all triangles touching v. Taking
the maximum ensures small triangles at sharp corners. Sticking to the work of
Dunyach et al ., we use Eq. (9) to obtain optimal lengths Lv which are nominally
vertex properties. The optimal length for an edge is simply the mean of these
vertex properties.

4.3 Tangential Smoothing

To obtain an optimal Delaunay triangulation [8] and avoid triangles with small
angles, we move each vertex to the centroid of its star, i.e. the union of its
adjacent faces. In this case, we have to address foreshortening twice. First, the
centroid is affected by the triangle size which is typically smaller after projection.
Second, the centroid of the star is a weighted sum over the centroids of the faces
in the star. The position of the central vertex relative to these face centroids is
foreshortened too. Considering both aspects yields a linear system ∑

f∈Fv

Af ·
√
det If

L2
f

· If

 · u(k+1)
v =

 ∑
f∈Fv

Af ·
√

det If

L2
f

· If c
(k)
f

 (13)
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where the areas Af and centroids cf are measured as they appear on-screen and
foreshortening is compensated by the inclusion of the face’s first fundamental
forms If . Lf is simply the average of optimal lengths for the three vertices in f .

4.4 Iterative Mesh Refinement

After deriving all measurements for curvature and edge lengths in screen-space,
we formulate our screen-based remeshing. We start with a uniform triangulation
of the pixel grid, where each foreground pixel is split into two triangles. Following
previous remeshing methods [3, 12], which are visualized in Fig. 5, the mesh is
iteratively refined by performing the following steps:

1. Collapse short edges and split long edges.
2. Flip non-Delaunay edges.
3. Shift vertices (tangential smoothing).

To determine whether an edge is too long or too short, we use the optimal edge
lengths and the heuristic constants derived in [3].

5 Mesh-Based Integration

For normal integration, previous authors [6,28] have noted that a unified treat-
ment of the orthographic and perspective case can be achieved by using the
functional

EInt =

∫
Ω

(n · r ∂uz + nx)
2
+ (n · r ∂vz + ny)

2
du dv (14)

where r = ez and z the depth map in the orthographic case. In the perspective
case, z is the logarithmic depth and r is the camera ray given by the intrinsics.
Using this unified formulation, we do not differentiate between the orthographic
and perspective cases for the rest of this section. The full derivation of the mesh-
based normal integration contains a lot of details and the interested reader is
referred to the supplementary material. In this section, we will summarize only
the main results.

In the mesh-based normal integration, we have one unknown depth value per
vertex. Depth values within the triangle are obtained through linear interpola-
tion using barycentric coordinates. By linearity, the derivatives in Eq. (14) are
constant within each face [4] and so are the normals. The integral can then be
split into a sum of integrals over faces which can be carried out explicitly. The
result is a discretized energy that is quadratic in the vertex depths. Taking the
derivative, the optimality condition is∑

i∈Vj

∑
f∈Fij

cot(αf,ij) ·
(
2mf · (zj − zi) + bf ·

(
nx

ny

)
· (uj − ui)

)
= 0 (15)
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Table 1: Compression rates at three different quality settings for the five objects in
the DiLiGenT-MV dataset. Compression rates are averaged over all 20 views for each
object. Results are computed from ground truth normals as well as normals obtained
from photometric stereo using [24] and [20].

GT Normals Li [24] Heep [20]

Dataset Low Mid High Low Mid High Low Mid High

Bear 98.8% 97.5% 94.4% 99.0% 97.7% 94.7% 99.0% 97.8% 95.1%
Buddha 96.1% 92.4% 82.4% 97.2% 94.1% 86.2% 97.0% 93.7% 85.4%
Cow 98.9% 97.6% 94.3% 99.0% 97.7% 94.5% 97.9% 95.4% 89.3%
Pot2 98.1% 96.1% 91.2% 98.4% 96.6% 92.1% 98.2% 96.2% 91.6%
Reading 98.2% 96.0% 90.7% 98.4% 96.4% 91.4% 95.8% 91.2% 79.7%

for each vertex i. Vi are the vertices adjacent to i and αf,ij is the angle in
face f opposite to the edge (i, j) which is calculated in screen-space without
foreshortening using the first fundamental form. The two constants are

mf :=
1

12

∑
i,j∈Vf

i≤j

(nf · ri)(nf · rj) bf :=
1

3

∑
i∈Vf

(nf · ri) (16)

where Vf are the three vertices of a face f . Analogous to the pixel-based case,
the linear system is underdetermined as Eq. (15) only contains depth differences,
i.e. adding a constant offset does not change EInt.

Readers familiar with the topic of mesh processing will notice the similarity to
the seminal cotangent weights for the vertex Laplacian [27]. These weights ensure
that our integration energy is independent of the triangulation. Generally, the
cotan may diverge but as angles in isotropic meshes are close to 60◦, the cotans
are well-behaved and yield numerically stable linear systems [4]. To our surprise
and to the best of our knowledge, this discretized version of Eq. (14) and its
derivation for triangle meshes, has not been published yet.

6 Implementation Details

Our meshing and integration algorithms rely on the SurfaceMesh [31] data
structure and are written in C++. To translate between pixels and triangles we
rely on the nvdiffrast renderer [23]. Before calculating pixel-curvatures, the
normal maps are low-pass filtered with a Gaussian blur (σ =

√
2) in OpenCV

[5]. The sparse linear systems of the normal integration part are solved with
Eigen [19]. In all tests, we run ten iterations of mesh refinement with five
iterations of tangential smoothing. The optimal edge lengths are clamped to
lie within 1 and 100 pixels. A reference implementation can be found under
moritzheep.github.io/adaptive-screen-meshing.

https://moritzheep.github.io/adaptive-screen-meshing/
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7 Evaluation

Unlike previous work, our method is not bound to the image resolution. Instead,
the mesh resolution is controlled by a user parameter ϵ. Therefore, we conduct
all experiments at three quality settings: ’high’ (0.1mm), ’medium’ (0.3mm)
and ’low’ (1mm), see Figs. 1 and 8. With the ’high’ setting, we aim for ac-
curate reconstructions, ideally matching pixel-level methods. The ’low’ setting
focuses on high compression rates, while the ’medium’ setting balances quality
and compression.

Our evaluation consists of three parts: First, we analyze the compression rates
and runtime advantages of our meshing-first approach over pixel-based methods
in Sec. 7.1. We continue by comparing the reconstruction error on samples of
the DiLiGenT-MV dataset [24] in Sec. 7.2. Finally, we discuss various design
decisions of our algorithm in an ablation study and investigate the reliability of
our single user-parameter, see Sec. 7.3. The DiLiGenT-MV dataset contains 5
objects with 20 different views, leading to 100 normal maps of real data for the
evaluation. It is an extensive and recent dataset but lacks high-resolution normal
maps. We compensate for that by testing rendered normal maps of virtual objects
with resolutions of up to 81922. Additional results are found in the supplemental
material.

7.1 Compression and Runtime

The core motivation for our meshing-first approach is to substantially reduce the
number of free variables prior to the integration step. We test all three quality
settings of our screen-space meshing algorithm on all 20 views of the DiLiGenT-
MV dataset (Tab. 1) with ground truth normals as well as estimated normals
from the photometric stereo methods in [24] and [20]. Despite the relatively
small image size of the DiLiGenT-MV dataset, our mesh representation requires
only 6-18% of free variables for high-resolution meshes. For some low-resolution
meshes, our method requires only 1% the number of vertices compared to fore-
ground pixels. The results are consistent across all test cases and robust even
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Fig. 6: Runtime and compression comparison between our meshing-first and pixel-
based integration for increasing image resolutions. Left: The number of free variables
(pixels or vertices) as a function of foreground pixels. Right: Pixel-based integration
compared to mesh first, i.e. meshing and integration. Please note the log-log scale.
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Table 2: Average RMSE over all 20 views of the DiLiGenT-MV dataset for pixel-based
integration [7], [34], [20], a combination of pixel-based integration [7] and subsequent
remeshing [12] as well as mesh integration of uniform and our adaptive meshes. Errors
are reported in mm.

Pixel-based Combined [7, 12] Uniform Ours

[7] [34] [20] Low Mid High Low Mid High Low Mid High

O
rt

ho

Bear 2.97 3.36 n/a 3.12 2.99 2.98 4.39 4.07 3.74 3.95 3.65 3.37
Buddha 6.74 6.85 n/a 6.78 6.76 6.75 7.79 7.62 7.41 7.74 7.54 7.33
Cow 2.45 2.51 n/a 2.67 2.55 2.53 3.59 3.39 3.10 3.42 3.12 2.96
Pot2 5.15 5.02 n/a 5.18 5.15 5.15 5.99 5.84 5.73 5.89 5.77 5.65
Reading 6.34 6.05 n/a 6.37 6.35 6.34 7.18 7.00 6.87 7.08 6.93 6.83

P
er

sp

Bear 2.91 n/a 3.05 3.09 2.94 2.92 4.62 4.17 3.84 3.94 3.72 3.47
Buddha 6.75 n/a 6.60 6.80 6.77 6.76 7.85 7.64 7.43 7.74 7.53 7.40
Cow 2.35 n/a 2.51 2.59 2.46 2.43 3.71 3.47 3.21 3.49 3.24 3.07
Pot2 4.99 n/a 5.23 5.04 4.99 4.99 6.08 5.97 5.81 6.04 5.86 5.76
Reading 6.28 n/a 6.29 6.33 6.29 6.29 7.20 7.03 6.89 7.19 6.94 6.85

for less accurate normals. The image resolutions of the DiLiGenT-MV dataset
are comparatively low (less than 1MP). To obtain resolutions ranging from 5122

to 81922 pixels, we render normal maps from three highly detailed meshes in
Blender. In this application, we only use the high-resolution mesh setting. The
resulting plots in Fig. 6 suggest that the number of vertices grows sublinearly
with the number of pixels, meaning that our compression factor increases at
higher resolutions. For the female face, we obtain an impressive reduction by
about 200 at 81922 pixels and maintain runtimes of a few minutes instead of
hours.

7.2 Benchmark Evaluation

We compare the reconstruction error of our adaptive mesh integration against
different pixel-based approaches [7,20,34]. Even at the highest mesh resolution,
we require on average less than 10% of free variables. Given this level of com-
pression, it is not surprising that pixel-based approaches perform slightly better,
see Tab. 2. Still, discontinuities remain the main source of integration errors.

7.3 Ablation Study

Our mesh refinement algorithm consists of three iterative steps, all described
and evaluated in previous work or textbooks [3,4]. The remaining design choice
of the algorithm is our locally adaptive over a uniform triangulation, see Fig. 7.
We create uniform meshes as a baseline by directly setting a constant optimal
edge length such that the resulting mesh roughly matches the vertex count of its
adaptive counterpart. To exclude possible side-effects of the surface integration,
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Fig. 7: Comparison between uniform (top) and adaptive screen-space meshing (bot-
tom). Despite up to 5% more vertices, the RMSE is always higher for the uniform
meshes. Wireframes are rendered as vector graphics.

the 2D meshes are non-rigidly fitted to ground truth depth maps. Thus, the
remaining RMSE quantifies the error introduced by the mesh representation
alone. Although our locally adaptive triangulations always contain equal or fewer
vertices than the uniform triangulations, they still achieve a lower alignment
error in all cases, see Fig. 7.

Lastly, our method relies on a single user parameter to control the density of
the mesh, namely ϵ, the permitted error of the surface. Throughout our evalu-
ations, we consistently reported the results for three settings the parameter. In
Fig. 8, we set ϵ ∈ [0.1mm, 3mm] and non-rigidly fit the 2D meshes to ground
truth depth maps. The results show a strong correlation between the intended
and achieved approximation error. After a dataset-dependent offset, the achieved
error grows approximately linearly with ϵ. Additional results in the supplemen-
tary material suggest that this linear relation is still present after integration.

8 Conclusion & Limitations

We proposed a novel normal integration method, where normal maps are con-
verted into triangle meshes before the integration. A single user parameter con-
trols the mesh resolution. We showed that our data structure is substantially
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Fig. 8: Impact analysis of the user-parameter. Left: Obtained high (0.1mm), medium
(0.3mm) and low (1mm) resolution meshes (as vector graphics) with respective error
maps. Right: Average RMSE over all 20 views as a function of the user-parameter ϵ.

sparser, but well-suited to obtain detailed reconstructions. Our results show that
the mesh representation is especially advantageous for high-resolution normal
maps, where it facilitates enormous speed-ups. As with all work on normal inte-
gration, the resulting surfaces are only unique up to a global scale and absolute
depth remains ill-posed. Furthermore, we do not handle depth discontinuities im-
plicitly at the moment. For triangle meshes, we would need to control the mesh
topology and align the triangle edges with the discontinuities along the surface.
Developing such a method for our mesh-based integration is not straightfor-
ward and is an interesting research direction. Alternatively, depth discontinuities
could be precomputed and introduced as small holes into the foreground masks.
Anisotropic meshes to improve the handling of sharp corners are another inter-
esting direction for future work. Here, skinny triangles might be a drawback as
they may cause numerical instabilities due to diverging cotangents. Finally, our
method can be easily integrated into most existing photometric stereo pipelines.
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