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Fig. 1: Nuvo is a technique for UV mapping geometry produced by state-of-the-art 3D
reconstruction and generation models such as Neural Radiance Fields (NeRFs) [22].
When applied to such geometry, existing UV mapping algorithms like xatlas [45] pro-
duce fragmented texture atlases (as shown by the chart boundaries marked in orange)
that are unusable for appearance editing. Nuvo produces high-quality editable UV
mappings for these 3D models, and is robust to challenging input geometry such as (a)
meshes extracted from trained NeRF models and (b) meshes generated by text-to-3D
models such as DreamFusion [27]. Nuvo can even operate directly on (c) non-surface
geometry, e.g . NeRF volume density, without requiring a triangulated mesh.

Abstract. Existing UV mapping algorithms are designed to operate on
well-behaved meshes, instead of the geometry representations produced
by state-of-the-art 3D reconstruction and generation techniques. As such,
applying these methods to the volume densities recovered by neural ra-
diance fields and related techniques (or meshes triangulated from such
fields) results in texture atlases that are too fragmented to be useful
for tasks such as view synthesis or appearance editing. We present a
UV mapping method designed to operate on geometry produced by 3D
reconstruction and generation techniques. Instead of computing a map-
ping defined on a mesh’s vertices, our method Nuvo uses a neural field to
represent a continuous UV mapping, and optimizes it to be a valid and
well-behaved mapping for just the set of visible points, i.e. only points
that affect the scene’s appearance. We show that our model is robust
to the challenges posed by ill-behaved geometry, and that it produces
editable UV mappings that can represent detailed appearance.
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1 Introduction

Surface parameterization (“UV mapping”) is the process of flattening a 3D sur-
face onto a plane, and it is a core component of 3D content creation pipelines
that enables representing and editing detailed appearance on surface geometry.
For complex, real-world meshes, this usually necessitates finding a sequence of
cuts such that distortion of the mapping can be minimal. If those cuts result
in multiple disconnected components that get packaged into one texture, this is
commonly referred to as a “texture atlas”.

Existing UV mapping algorithms are generally designed to work with well-
behaved meshes, such as those created by specialized 3D artists. However, an
increasing amount of 3D content does not fall into this category: State-of-the-
art methods for reconstructing and generating 3D representations from images
or text are based on Neural Radiance Fields (NeRFs), which represent geome-
try as volumetric fields instead of meshes [22]. Level sets of volume density are
generally not smooth, and triangulating these level sets using techniques such
as marching cubes [20] produces meshes with multiple connected components,
holes that connect to internal “hidden” geometry, and many small “bumpy” tri-
angles. More formally, such meshes are typically not manifold or locally smooth,
and frequently contain a large number of connected components. Existing UV
mapping methods either cannot operate on such meshes or produce heavily frag-
mented UV atlases that complicate downstream applications. For instance, ap-
pearance editing in texture space becomes difficult, and optimization through
differentiable rendering is complicated by discontinuities in the surface param-
eterization which could cause instabilities or necessitate the use of very large
texture representations.

We present an approach, which we call Nuvo, that addresses these issues by
using neural fields to directly optimize a UV mapping that satisfies the myriad
requirements of a well-behaved surface parameterization. Our method simply
requires a representation of scene geometry that allows for sampling visible 3D
points, and we optimize Nuvo from scratch for each scene by minimizing a set
of losses that encourage Nuvo to represent a well-behaved mapping for observed
points. Because our method uses point sampling on the surface as its fundamen-
tal operation, it can be applied to any implicit surface representation, as well
as polygonal meshes, without strong limitations on manifoldness, connectivity,
or smoothness. For instance, Nuvo can generate texture atlases directly from
NeRF’s volume density representation of geometry and it can be applied to ex-
tracted meshes while remaining agnostic to the connectivity of the underlying
mesh. Because Nuvo’s UV mapping representation is not tied to any underlying
mesh, it does not suffer from the chart fragmentation issues that can arise when
texturing non-smooth meshes with many small triangles.

We test Nuvo on a variety of 3D geometry representations: well-behaved
meshes, volume density fields reconstructed by NeRF, meshes extracted from
NeRF’s volume density fields, and meshes produced by text-to-3D generative
models. As illustrated in Figure 1, Nuvo produces texture atlases that are high-
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quality with low chart fragmentation, and can therefore be be used to represent
and edit detailed surface appearance.

2 Related Work

Preliminaries Surfaces reconstructed by neural field representations can have
vastly different topology depending on the scene. As such, triangulated meshes
of these representations do not have guarantees on manifoldness, uniformity
of triangle areas, smoothness, number of connected components, or genus. Since
only developable surfaces (such as a cylinder) allow for isometric mappings to the
plane without cuts, our method is designed to optimise both segmentation of the
surface, i.e. cuts, and the UV mapping, i.e. the parameterization, simultaneously.

A mapping is isometric if it preserves both lengths and angles, and conformal
if it only preserves angles. Connected components in UV space are referred to
as charts, and their collective is called an atlas [21]. Packing charts into an atlas
is typically done as a post-processing step, but because Nuvo produces square
charts (similarly to Carr et al . [4]) which are trivial to pack, we will not discuss
packing in detail. Please refer to reviews by Sheffer et al . [34] and Floater et
al . [11] for further mesh parameterization details.
Mesh Cutting & Parameterization Mesh parameterization is a long-standing
problem [5,40]. However, only a few existing methods address the same problem
setting as we do by simultaneously optimizing both cuts and UV mappings.

Many methods instead start with a user-specific boundary and optimize a UV
mapping for that specific cut. Least Squares Conformal Mapping (LSCM) [18]
is a widely-used technique that produces conformal maps for a pre-cut mesh.
LSCM and related techniques construct and solve a system of equations that is
a function of the mesh and its connectivity. This strategy ties these methods to
the given mesh topology, and imposes strict requirements like manifoldness. In
contrast, Nuvo never explicitly builds and solves such systems and instead relies
on sampling points on the surface.

Sorkine et al . [36] propose the first method to simultaneously optimize cuts
and surface parameterization by starting from from seed triangles and iteratively
adding elements until a distortion bound is reached. Geometry Images [14] and
Multi-Chart Geometry Images [32] encode a 3D triangle mesh on a regularly
sampled grid, which allows the geometry to be stored using image compression
techniques and facilitates surface re-meshing. Rectangular Multi-Chart Geom-
etry Images improves these algorithms to ensure one-to-one texel assignment
across chart boundaries while forming rectangular charts that can be packaged
easily [4], like our method. Their cutting and parameterization algorithm is sim-
ilar to Sorkine et al . [36], but with a different objective function. Unlike Nuvo,
these methods require manifold triangle meshes and were developed for well-
behaved surfaces with significantly lower complexity than those we address.

AutoCuts [28] and OptCuts [19] generate parameterizations of 3D surfaces
that have both minimal cut length and low distortion by alternating the opti-
mization of the mapping distortion (continuous) and cut locus (discrete). While
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AutoCuts is designed for an interactive workflow, OptCuts operates fully au-
tomatically. While OptCuts method can produce mappings with low distortion
and simple boundaries on simpler meshes, it is unable to run on high-complexity
meshes extracted from neural fields, even after manual cleanup.

A related line of work focuses on improving existing UV parameterizations.
Smith and Schaefer [35] minimize symmetric Dirichlet energy to improve the
distortion of an existing parameterization, which can be very efficient [30] and is
more robust than prior work such as LSCM [18]. Several recent methods optimize
a pre-existing UV mapping to minimise a reconstruction loss using differentiable
rendering [17, 38]. However, these techniques must be provided with an initial
surface parameterization. Variational Surface Cutting [33] investigates the theo-
retical problem of optimizing a surface cut to minimize distortion in the contin-
uous setting, and show that this can be done without explicitly parameterizing
the surface to compute distortion.
Neural 3D Representations & Parameterization State-of-the-art meth-
ods for 3D reconstruction and generation are based on neural fields, which typ-
ically represent 3D geometry as some variation of a volumetric density field [2,
26, 31, 44] parameterized by some combination of MLPs with positional encod-
ing [39] and feature grids [12, 24, 37]. Some recent works focus on finding 2D
parameterizations of 3D signals without using explicit triangle meshes. For ex-
ample, Layered Neural Atlases [16] convert videos into a set of 2D atlases where
an MLP maps from a 3D coordinate in the video to a 2D atlas containing color
and transparency. AtlasNet [13], FoldingNet [43], and follow-up methods [3, 29]
use learned mappings from 2D to 3D for generating and reconstructing geometry
of objects. Other recent works [6,7] learn UV mapping-based models of appear-
ance for the specialized cases of dynamic human models and 3D human faces.
Neural Surface Maps [23] use MLPs to encode single-chart surface mappings for
geometry processing problems including establishing correspondences between
surfaces. Williams et al . [41] train sets of MLPs to map from 2D to 3D for the
goal of reconstructing surfaces from point clouds.

Our work builds upon NeuTex [42], which proposes a joint optimization
framework for appearance and surface parameterization. Similar to Nuvo, Neu-
Tex uses a cycle-consistency loss to encourage invertible mappings from 3D to
2D. However, NeuTex and related followups [9, 10, 46] cannot represent atlases
with multiple charts, and are therefore not suited to represent mappings for
general scenes with multiple connected components.

3 Method

Given a representation of scene geometry that allows for sampling visible points
in the scene (e.g . a NeRF or a mesh), Nuvo generates a UV mapping that
partitions the scene geometry into n charts using 2n+ 1 MLPs (see Figure 2):

1. One “chart assignment” MLP c : R3 → ∆n−1 assigns points on the surface
to charts by mapping from a 3D point to a probability mass function (PMF)
of a categorical distribution over the n charts.
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Fig. 2: Overview of Nuvo. Our model uses a neural field to represent a scene’s
UV mapping. Our “chart assignment” MLP c(·) outputs probabilities of a categorical
distribution over charts for any surface point x, our “texture coordinate” MLPs ti(·)
map from 3D points x to 2D UV coordinates u, and our “surface coordinate” MLPs
si(·) map from 2D UV coordinates to 3D points on the surface. Here we visualize
Nuvo’s mappings for charts i = 1 and i = 3 in an atlas consisting of n = 4 charts.

2. A set of n “texture coordinate” MLPs {ti : R3 → [0, 1]2}, each of which
describes chart i’s UV mapping from a 3D point to the corresponding 2D
“UV” texture coordinate (bounded to lie between 0 and 1).

3. A set of n “surface coordinate” MLPs {si : [0, 1]2 → R3}, each of which
describes the inverse of each ti by mapping from a 2D texture coordinate to
a 3D point.

3.1 Losses

We optimize Nuvo by minimizing a weighted sum of losses that encourage the
recovery of a well-behaved mapping for the scene. The losses are averaged over
batches of either random 3D points x ∈ G sampled from the input scene geom-
etry, or random 2D points u ∈ T distributed uniformly in texture space [0, 1]2.
Mapping bijectivity Each chart’s texture coordinate mapping from 3D points
on the surface to 2D points on the plane should be approximately bijective,
i.e. both injective (multiple 3D points should not map to the same texture
coordinate) and surjective (the entire texture space should be “used” by the
mapping). Injectivity is important, as we require the ability to make separate
edits to the appearance of all distinct surface points. However, since our method
is designed to be applied to 3D volumetric representations such as NeRFs (and
not just 2D surfaces embedded in 3D), it cannot be strictly injective. Instead,
we encourage the mappings to be invertible but allow them to “collapse” for
regions of the volume when doing so does not hinder representing appearance.
Surjectivity is desirable but does not need to strictly hold, as a small amount
of unused texture space is tolerable for our purposes. We encourage bijectivity
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Fig. 3: Visualization of our
bijectivity and chart assign-
ment entropy losses. These
losses together encourage Nuvo
to partition the scene into a set
of approximately bijective chart
mappings. Lentropy maximizes
chart i’s probability for 3D
points si(u) that are mapped
to from 2D points in chart i.
L3 )2 )3 and L2 )3 )2 regularize
each chart’s mapping to be bi-
jective by encouraging ti and si
to be each other’s inverse for all
3D surface points x and all 2D
UV points u.
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by minimizing two cycle consistency losses. The first loss minimizes the squared
distance travelled by 3D points x after being mapped to 2D and back:

L3 )2 )3 =
1

|G|
∑
x∈G

∑
i

c(x)[i] · ∥si(ti(x))− x∥22 . (1)

We weight the loss by chart probabilities c(·)[i] (the PMF value corresponding
to chart i predicted by the chart assignment MLP c(·)) such that the cycle
consistency loss for a given point x under chart i is proportional to the current
probability estimate that point x belongs to chart i. Our second cycle consistency
loss minimizes the squared distance travelled by 2D points u after being mapped
to 3D and back:

L2 )3 )2 =
1

|T |
∑∑

i

∥ti(si(u))− u∥22 . (2)

Note that both both cycle consistency losses are necessary to encourage a bi-
jective mapping: L3 )2 )3 encourages chart mappings to be injective (one-to-one),
but it does not penalize mappings that only map to a subregion of texture space,
while L2 )3 )2 encourages the entirety of texture space to be covered by an invert-
ible mapping, but it does not penalize mappings that are degenerate for parts
of the 3D scene.

Chart assignment entropy Intuitively, if we sample a 2D point u in chart
i, the corresponding 3D point mapped to by surface coordinate MLP si should
have a chart assignment PMF that is close to a one-hot distribution where the
value for chart i is 1 and the rest are 0. We can therefore encourage the chart
assignment MLP to confidently partition the 3D scene by minimizing the cross-
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entropy of the output PMFs with these one-hot distributions:

Lentropy = − 1

|T |
∑
u∈T

∑
i

log c(si(u))[i] . (3)

Figure 3 illustrates how our bijective and chart assignment losses together
encourage Nuvo to represent a texture atlas that confidently partitions the scene
into a set of n charts.
Surface coordinate We encourage the surface coordinate MLPs to approx-
imate the input geometry by minimizing the symmetric Chamfer distance be-
tween random 2D texture points u mapped to 3D by surface coordinate networks
and random 3D points x sampled from scene geometry:

Lsurface =
1

|G|
∑
x∈G

min
x′∈

⋃
i si(T )

∥x′ − x∥22

+
1

|⋃i si(T )|
∑

x′∈
⋃

i si(T )

min
x

∥x′ − x∥22 ,
(4)

where
⋃

i si(T ) is the union of the 3D points mapped to by all surface coordinate
MLPs from random 2D UV points u ∈ T . This loss is meant to encourage the
entire UV domain to be mapped to by points on the 3D geometry. Without
ensuring that all 2D texture points map back to the actual 3D surface, it is
possible for the MLPs to only represent injective mappings to a subregion of UV
space and satisfy L2 )3 )2 with injective mappings from 3D regions not on the
surface to the remainder of UV space.
Chart assignment clustering We penalize texture atlas fragmentation using
a clustering loss that minimizes the distance from each 3D point to the centroids
of the points assigned to each chart. We weight the loss by the chart assignment
probabilities such that distances from a point x to the centroid of chart i is
penalized proportionally to the probability that point x belongs to chart i:

Lcluster =
1

|G|
∑
x∈G

∑
i

c(x)[i] ·
∥∥∥∥(∑

x′∈G c(x′)[i] · x′∑
x′∈G c(x′)[i]

− x

)∥∥∥∥2
2

, (5)

Distortion To enable texture editing and to encourage an even allocation
of texture resolution over the scene, we want our chart mappings to have low
distortion. In particular, we would like the chart mappings to be conformal
(angle-preserving), and we would like the amount of stretching or shrinking in
the mapping to be uniform, as satisfying these properties ensures that a texture
wrapped onto the surface resembles the original texture image.

To this end we impose regularizers on the texture coordinate mappings’ dif-
ferentials, as illustrated in Figure 4. The differential of mapping ti at point x,
Dti(x), is a linear mapping of vectors in the 3D surface’s tangent space at x to
2D UV vectors u. If a mapping is conformal, applying the differential to orthog-
onal tangent space vectors should result in orthogonal vectors. If a mapping has
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Fig. 4: Visualization of our distor-
tion loss. The differential of mapping
ti, Dti(x), transforms tangent vectors
on the surface to vectors in UV space.
Lconformal encourages the mappings to
preserve angles by penalizing the co-
sine between the differential Dti(x) ap-
plied to orthogonal tangent vectors at x
and Lstretch encourages the mappings to
have uniform stretch by penalizing vari-
ation over the scene of the areas of par-
allelograms spanned by the differentials
of orthogonal tangent vectors.
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Dti(x)

uniform stretch, the degree to which Dti(x) stretches 3D tangent vectors should
be constant for all x.

We generate random orthogonal tangent space unit vectors, rx and vx using
the normal at each point x, and then transform the endpoints of ϵpx and ϵqx
(ϵ = 10−2 in all experiments) to obtain UV vectors Dti(ϵpx) and Dti(ϵqx) (note
that we drop the dependence of the differential on x for readability). These
vectors approximate the mappings’ differentials and let us define a distortion
loss that is the sum of conformal and uniform stretch regularizers: Ldistortion =
Lconformal+Lstretch. Our conformal regularizer is the squared cosine between the
transformed vectors, weighted by the probability that x belongs to chart i:

Lconformal =
1

|G|
∑
x∈G

∑
i

c(x)[i] ·
(

Dti(ϵpx) ·Dti(ϵqx)

∥Dti(ϵpx)∥∥Dti(ϵqx)∥

)2

. (6)

Our uniform stretch regularizer penalizes the squared difference between the
mapping’s stretch (the area of the spanned parallelogram) and a single scalar
“average stretch” scalar parameter σ that we optimize for in each scene:

Lstretch=
1

|G|
∑
x∈G

∑
i

c(x)[i]·
∥∥∥∥∥Dti(ϵpx)×Dti(ϵqx)

∥∥
2
− σ

∥∥∥2
2
. (7)

This is functionally equivalent to simply minimizing the variance of the
stretch over the scene, but we found that alternative to have the undesirable
effect of collapsing the texture coordinate MLPs to map all points to the same
texture coordinate, while our loss results in stable optimization.
Texture optimization We find that optimizing Nuvo’s mappings to be us-
able for representing surface normals helps encourage injectivity. To this end we
impose a penalty on the difference between surface normals optimized in UV
space and the true surface normals:

Ltexture =
1

|G|
∑
x∈G

∑
i

c(x)[i] ·
∥∥Ni(ti(x))− n(x)

∥∥2
2
, (8)
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Fig. 5: Visualization of mappings for varying number of charts n. Nuvo pro-
duces editable UV mappings across a wide range of user-specified number of charts
(n = 4, 8, 16 shown here).

where Ni(u) is the value of a pixel grid for chart i at 2D points u (using bilinear
interpolation) and n(x) is the surface normal at x. We jointly optimize pixel
grid values in Ni alongside the mapping MLPs to minimize this loss.

4 Experiments

Datasets We compare UV mappings across four datasets: bunny (72K ver-
tices) and lion (750K vertices) are well-behaved meshes with a single connected
component and smooth manifold geometry. gardenvase (1.4M vertices) and
amigurumi (2.2M vertices) are meshes extracted by marching cubes from Zip-
NeRF [2] reconstructions. These two scenes are captured in the “Mip-NeRF 360”
style [1] with roughly 185 images per dataset, where one eighth of these are re-
served for testing. The meshes of these two scenes have non-smooth geometry,
thousands of separate connected components, and non-manifold edges.

When optimizing UV mappings for well-behaved meshes, we sample random
3D points x uniformly distributed on the surface. When optimizing UV mappings
for meshes extracted from NeRF reconstructions, we sample random camera rays
that view the mesh, and use their intersection points as x.

4.1 Nuvo Represents Detailed Appearance

We first validate Nuvo’s ability to produce UV mappings that effectively repre-
sent detailed appearance for a given geometry. As our goal is to compute UV
mappings for geometry produced by NeRF and other view synthesis approaches,
we evaluate the mappings produced by Nuvo and our baselines by measuring
how useful they are for view synthesis.

We conduct this evaluation on the gardenvase and amigurumi datasets.
Starting with an optimized NeRF (we use the state-of-the-art Zip-NeRF [2]),
we first extract a mesh using marching cubes [20], and then compute a UV
mapping using our algorithm. Next, we define an appearance model consisting
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gardenvase amigurumi
PSNR Params PSNR Params

BakedSDF [44] 22.55 37.8M 28.63 59.4M
Ours, n = 2 23.11 9.1M 28.63 11.5M
Ours, n = 2 (b) 23.09 10.1M 28.47 14.1M
Ours, n = 8 23.48 9.1M 28.81 11.5M
Ours, n = 8 (b) 22.98 10.1M 28.42 14.1M
Ours, n = 32 23.72 9.1M 28.92 11.5M
Ours, n = 32 (b) 23.41 10.1M 28.67 14.1M

Table 1: View synthesis comparison. Nuvo’s UV mappings effectively represent
detailed surface appearance for view synthesis. We optimize the view-dependent ap-
pearance model used in BakedSDF [44], but in UV atlas space instead of on mesh
vertices. We evaluate Nuvo’s view synthesis performance on two scenes from the Mip-
NeRF 360 dataset [1] using n = 2, 8, 32 charts, and fix memory usage by using a texture
resolution of 256

√
2/n×256

√
2/n for each chart. Additionally, we evaluate “baked” ver-

sions of Nuvo (indicated with “b”) by precomputing and storing the MLP-predicted
UV coordinates on mesh vertices to show that Nuvo’s MLPs do not need to be kept
after optimization, and that our UV maps can be used in standard graphics pipelines.

of a diffuse color and three spherical Gaussian view-dependent color lobes (the
same appearance model used in BakedSDF [44]) on a 2D grid in UV space, and
optimize this representation to best reproduce the training images.

Table 1 compares Nuvo’s view synthesis results to those of BakedSDF, which
uses the same view-dependent appearance model defined directly on the ex-
tracted mesh’s vertices. We can see that optimizing our UV mappings for view
synthesis performs similarly or even better than optimizing the same appear-
ance model directly on mesh vertices, and we are able to achieve this perfor-
mance while using less memory than BakedSDF as we do not allocate memory
to triangles that do not directly influence view synthesis.

To further demonstrate Nuvo’s usefulness in standard graphics pipelines, we
“bake” the optimized UV coordinates onto the mesh as vertex attributes (we
select the chart with the maximum probability for each vertex). This can be
thought of as a piecewise linear approximation of the optimized UV mappings.
The “(b)” rows in Table 1 demonstrate that even though our UV mappings are
optimized as continuous MLP-parameterized functions, baking them onto a mesh
incurs a minimal decrease in performance.

4.2 Nuvo Produces Editable Mappings

Baselines We compare UV mappings produced by our model (using n = 1, 2,
8, and 32 charts) to:

NeuTex [42], which optimises a single-chart paramterization with a bijective
consistency loss (L3 )2 )3) and no penalty on distortion;
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Fig. 6: UV mapping and appearance editing of the amigurumi mesh extracted from
Zip-NeRF volume densities. (a) Nuvo is able to recover a high-quality editable mapping
that supports realistic appearance editing, while (b) NeuTex [42]’s mappings exhibit
significant distortion (red circles), and (c) xatlas’ [45] and (d) Blender’s [8] atlases are
too fragmented for appearance editing. Chart boundaries are marked in orange.

xatlas [45], an open-source library used throughout the 3D content cre-
ation industry based on work such as LSCM [18] and multi-chart geome-
try images [32]. Xatlas has been used in many recent reconstruction meth-
ods [15,25];
Blender Smart UV [8], a robust industrial tool which we found to be-
have similarly to “automatic UV” methods in proprietary and commercial
applications;
OptCuts [19] alternatingly minimizes distortion and cut length, and is the
most recent academic method we found for obtaining a UV atlas.

We use the official implementations of xatlas, OptCuts, and Blender 2.93, all with
default settings. We were unable to run OptCuts on our more complex scenes as it
failed to find a suitable initial UV embedding, even after manually simplifying the
meshes by removing non-manifold geometry and multiple connected components.

Metrics We compare UV mappings using two metrics: “Boundary” and “Ed-
itability” (higher is better for both), computed over a test set of randomly-
sampled camera viewpoints for each dataset. “Boundary” quantifies texture at-
las fragmentation by measuring the fraction of rendered pixels that do not lie
on chart boundaries. “Editability” quantifies a user’s ability to wrap arbitrary
texture on the geometry. First, we compute the UV coordinates for the vertices
of the triangle intersected by each camera ray (using the “baked” versions of
our MLP-parameterized mappings for fair comparison). Next, we measure each
triangle’s editability as the average of angular distortion and area distortion met-
rics of the linear mapping implied by the UV coordinates of the three vertices.
The image’s total editability score is the average of each pixel’s triangle editabil-
ity masked by chart boundaries; pixels corresponding to chart boundaries are
not considered editable. Please refer to the supplementary materials for a full
detailed definition of these metrics.
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bunny lion gardenvase amigurumi
Boundary Editability Boundary Editability Boundary Editability Boundary Editability

Ours, n = 1 0.987 0.946 0.988 0.914 0.986 0.682 0.983 0.836
Ours, n = 2 0.982 0.937 0.977 0.890 0.974 0.859 0.983 0.813
Ours, n = 8 0.970 0.923 0.964 0.882 0.933 0.780 0.966 0.809
Ours, n = 32 0.924 0.860 0.903 0.811 0.823 0.704 0.927 0.784
NeuTex [42] 0.990 0.777 0.987 0.652 0.989 0.516 0.994 0.659
xatlas [45] 0.926 0.924 0.692 0.689 0.457 0.457 0.249 0.248
Blender Smart UV [8] 0.876 0.837 0.680 0.657 0.778 0.764 0.603 0.581
OptCuts [19] 0.987 0.954 0.970 0.939 — — — —

Table 2: Editability comparison. Nuvo is competitive with the state-of-the-art
OptCuts method specifically designed for well-behaved meshes (bunny and lion) and
Nuvo significantly outperforms all baselines on the challenging meshes extracted from
Zip-NeRF (gardenvase and amigurumi), where OptCuts is unable to compute any UV
mapping. The “Boundary” metric quantifies the texture atlas fragmentation (higher
is better i.e. less fragmented), and the “Editability” metric quantifies a user’s ability
to wrap arbitrary new textures on the geometry (higher is better, best method is
highlighted in red and second best method is highlighted in orange), which requires
that the mapping has both low fragmentation and low distortion.

4.3 Ablation Studies

The loss ablations in Table 3 demonstrate that our full model achieves the best
tradeoff of minimizing texture fragmentation (“Boundary”), minimizing distor-
tion (“Stretch” and “Conformal”), and utilizing all of UV space (“UV Efficiency”).
Figure 5 visualizes Nuvo’s results when varying the number of charts, Figure 8
visualizes the effect of our texture optimization loss, and Figure 9 visualizes
ablations of the distortion and clustering losses.

Bound. Stretch Conf. UV Eff. Avg.

Ours, n = 4 0.976 0.976 0.940 0.846 0.935
w/o L3 )2 )3 0.973 0.974 0.898 0.617 0.865
w/o L2 )3 )2 0.974 0.990 0.914 0.247 0.782
w/o Lentropy 0.976 0.988 0.946 0.456 0.841
w/o Lsurface 0.982 0.987 0.948 0.381 0.824
w/o Lcluster 0.953 0.979 0.947 0.785 0.916
w/o Ldistortion 0.974 0.983 0.588 0.965 0.878
w/o Ltexture 0.968 0.981 0.937 0.848 0.933

Table 3: Loss ablations for bunny using n = 4. Removing either of the bijectivity,
chart assignment entropy, surface coordinate, or chart assignment clustering losses
results in mappings that only use a subregion of UV space (low “UV Efficiency”).
Ablating the distortion regularization results in a mapping with much worse conformal
distortion. Removing the texture optimization loss does not significantly affect metrics,
but can result in non-invertible mappings, as shown in Figure 8.



Nuvo: Neural UV Mapping 13

Fig. 7: UV mapping comparisons on the lion mesh. (a) Nuvo produces a mapping with
a simple boundary and low overall distortion. (b) NeuTex’s [42] mapping is distorted
and challenging to edit. (c) xatlas and (d) Blender produce atlases with significant frag-
mentation that preclude appearance editing. (e) OptCuts [19] recovers a high-quality
mapping for this well-behaved mesh, but is unable to run on the more challenging
meshes extracted from NeRF. Chart boundaries are marked in orange.

(a) With texture optimization loss

(b) Without texture optimization loss

Fig. 8: Texture optimization loss
Ltexture encourages the optimized map-
pings to be injective (one-to-one) by pe-
nalizing UV mappings that cannot ac-
curately represent surface normals. In-
specting the optimized mappings for the
bunny’s left ear (grey box) from either
side, we see that an ablation trained
without texture optimization maps both
sides of the ear to the same coordinates
in UV space; the “C7” and “D7” UV coor-
dinates (red circles) are visible from both
sides of the ear. Our complete model
trained with texture optimization does
not have this degeneracy.

(a) Complete model (b) Without distortion loss (c) Without clustering loss

Fig. 9: Loss ablations visualization. (a) Our complete model recovers a high-quality
UV mapping for the bunny model. (b) Removing our distortion loss Ldistortion results
in a texture atlas with non-uniform warping that hinders editing in 2D texture space.
(c) Removing our chart assignment clustering loss Lcluster leads to fragmented and
irregularly-shaped charts, which also makes appearance editing cumbersome.
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4.4 Discussion

Table 2 demonstrates that Nuvo’s UV mappings are competitive with OptCuts’
on simpler well-behaved meshes, such as lion shown in Figure 7, and significantly
better than all baselines for the more challenging cases of geometry extracted
from NeRF models, such as amigurumi shown in Figure 6. These results are in
line with our expectations. OptCuts effectively minimizes both boundary length
and distortion, but its optimization procedure is expensive and does not ap-
ply to the unstructured non-manifold geometry produced by NeRF. xatlas’ and
Blender’s strategy of starting with many cuts and attempting to merge mappings
is not able to produce simple boundaries for non-smooth surfaces, resulting in
heavily-fragmented atlases. Moreover, Nuvo is more efficient than these alter-
natives and only requires 20-40 minutes to optimize a UV mapping. OptCuts
takes 2 hours for bunny and 35 hours for lion. xatlas and Blender SmartUV
take about 10 minutes for bunny, close to an hour for lion, and over a day for
the gardenvase and amigurumi NeRF meshes.
Limitations One of Nuvo’s strengths is that it optimizes a UV mapping with
point samples instead of explicitly parameterizing the mapping over an entire
mesh. However, this makes it harder to absolutely guarantee that it is bijective
or that it globally minimizes distortion for a given boundary. Finally, while
Nuvo is able to automatically optimize editable UV mappings for challenging
geometry, it currently lacks interactive mapping capabilities such as allowing
users to specify cut locations or regions for which they would particularly like to
minimize distortion. We think that extending Nuvo to address these deficiencies
would be fruitful directions for future work.

5 Conclusion

We have presented Nuvo, a method that produces editable UV atlases without
severe fragmentation and distortion, even for challenging geometry created by
3D reconstruction and generation techniques. By focusing on visible surfaces
and parameterizing mappings using neural fields instead of directly on mesh
vertices, Nuvo can handle scenes with complexity beyond the capability of prior
approaches. We believe that this work opens up numerous possibilities for cre-
ative and artistic editing of reconstructed 3D content.
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