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A Implementation Details

Hardware Setup. In this work, we train our models using 4×A40 GPUs with
respective 40 GB memory. This computational node also contains 200 GB CPU
memory. The source code and the model checkpoints will be made publicly avail-
able.
Training Settings. The training process utilizes the AdamW optimizer, em-
ploying an initial learning rate of 0.0001, a weight decay of 0.0001, a batch size
of 32, and a total of 60, 000 training iterations. During the training phase, the
learning rate adheres to a polynomial schedule with a power of 0.9. Apart from
the training specification listed in Table 1a, Table 1b illustrates the data aug-
mentations and the corresponding parameters used in the training. The short
edge of an image is randomly resized in a range of [320, 1024]. Afterward, the
image is randomly cropped into 640×640. For RandomBrightness, RandomCon-
trast, RandomSaturation, and RandomHue, they are randomly applied with a
probability of 0.5. The brightness delta, contrast range, saturation range, and
hue delta of the aforementioned data augmentations are reported in Table 1b.
The input image is also flipped in the horizontal direction with 0.5 probability
before being forwarded to the model. The whole training process takes roughly
10 hours.

Table 1: Implementation details.
(a) Training settings.

Configurations Parameter

Optimizer AdamW
Learning Rate 0.0001
Weight Decay 0.0001
Scheduler Poly. (power 0.9)
Training Iterations 60, 000
Batch Size per GPU 8

(b) Data augmentation during the training process.

Configurations Parameter

RandomResize [320, 1024]

RandomCrop 640× 640

RandomBrightness 32

RandomContrast [0.5, 1.5]

RandomSaturation [0.5, 1.5]

RandomHue 18

RandomFlip Horizontal
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B Qualitative Results

B.1 Visualization of Segmentation Predictions

Fig. 1 presents the visualization of segmentation predictions on WildPASS [3]
dataset. The first row is the input panoramic images. The second row is the
close-vocabulary segmentation predictions with only 8 predefined categories in
the WildPASS dataset while the last row is the open-vocabulary segmentation
predictions with an arbitrary number of classes. It can be observed that all pixels
of the entire image have their own semantic meanings, showcasing the superi-
ority of our proposed OOOPS model and the zero-shot learning ability. It is
worth noting that even the challenging category, e.g ., mailbox, can be detected
in the open-vocabulary setting. Fig. 2 and Fig. 3 illustrate the visualization of
segmentation predictions on Stanford2D3D and Matterport3D datasets, respec-
tively. It’s obvious that all predefined categories of these two datasets can be
predicted correctly by the OOOPS model. Beyond the correctness, the object
deformations, e.g ., the door in the middle column of Fig. 2, can also be detected
by our proposed OOOPS model, indicating the OOOPS model is aware of the
image distortion and object deformation.

B.2 Visualization of Deformable Offsets

Since our OOOPS model is specifically designed for image distortion and object
deformation, it is necessary to present the deformation-aware capability of the
model. Fig. 4, Fig. 5 and Fig. 6 illustrate the deformable offsets on WilPASS,
Stanford2D3D and Matterport3D dataset, respectively. The green points • are
the sample locations. The red points • are deformable offsets in 2 levels, indicat-
ing a deformable receptive field (e.g ., each level has a 3× 3 kernel size, resulting
in (3 × 3)2 = 81 red points). Leveraging the standard deviation of the cosine
similarity vector calculated by the center pixel and all pixels within a kernel,
the OOOPS model is capable of capturing the salient pixels, e.g ., edge pixels
of an image where strong panoramic distortion usually occurs. For example, the
sidewalk in the first row and second column of Fig. 4 has a very strong distor-
tion due to the Equirectangular Projection [2] (ERP) from a globe to a plane
resulting in a panoramic image. Although the image distortion occurs, the green
sample location has a deformable receptive field presented by red points along
the edges of the sidewalk, indicating the deformation-aware capability of the
OOOPS model. The deformable awareness can be observed not only in the out-
door WildPASS panoramic dataset in Fig. 4 but also in the indoor Stanford2D3D
and Matterport3D datasets in Fig. 5 and Fig. 6.
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Fig. 1: Visualization on the WildPASS dataset. First row: RGB images. Second
row: close-vocabulary predictions of the proposed OOOPS model. Third row: open-
vocabulary predictions of the proposed OOOPS model.

Fig. 2: Visualization on the Stanford2D3D dataset. First row: RGB images.
Second row: predictions of the proposed OOOPS model.

Fig. 3: Visualization on the Matterport3D dataset. First row: RGB images.
Second row: predictions of the proposed OOOPS model.
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Fig. 4: Visualization of deformable offsets on WildPASS dataset. The green
points • are the sample locations. The red points • are deformable offsets in 2 levels,
indicating a deformable receptive field (e.g ., each level has a 3×3 kernel size, resulting
in (3× 3)2 = 81 red points). Zoom in for a better view.

Fig. 5: Visualization of deformable offsets on Stanford2D3D dataset.

Fig. 6: Visualization of deformable offsets on Matterport3D dataset.
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Table 2: mIoU of RERP with adaptive sizes on WildPASS, Stanford2D3D, and Mat-
terport3D datasets. mIoU is in percentage (%).

Method WildPASS Stanford2D3D Matterport3D

RERP 58.0 41.1 31.2
RERP w/ adaptive sizes 58.5 41.5 31.6

Table 3: mIoU of RERP and simple horizontal rotation on WildPASS, Stanford2D3D,
and Matterport3D datasets. mIoU is in percentage (%).

Method WildPASS Stanford2D3D Matterport3D

OOOPS w/o RERP 57.0 39.5 31.1
OOOPS w/ Rotation 57.0 39.5 31.1
OOOPS w/ RERP 58.0 41.1 31.2

C Ablation Study

C.1 Adaptive Shuffling Patches

We conduct an experiment that divides pinhole images into parts of adaptive
sizes when doing RERP augmentation, similar to Mosaic augmentation. The re-
sults in Table 2 indicate adaptive sizes can further boost the model performance.

C.2 Simple Horizontal Rotation

The simple horizontal rotation [1] is used to get a new panorama with a different
viewpoint. It is applied to panoramas, not pinhole images. RERP is used to
transform a pinhole image into a panorama-like image. It is applied to pinhole
images, not panoramas. We experiment with applying simple horizontal rotation
to pinhole images. From Table 3 we find that simple horizontal rotation does not
bring gains, which falls behind the one with RERP.

D Discussion

Limitations and Future Work. In this work, we focus on the open panoramic
segmentation, where the models are trained in the narrow-FoV pinhole source do-
main in an open-vocabulary setting while evaluated in the wide-FoV panoramic
target domain. Compared to the state-of-the-art methods trained in a close-
vocabulary setting, the limitations of the proposed OOOPS model are obvi-
ous. The performance of the open-vocabulary model falls short of the close-
vocabulary ones. The architectural design does not encompass the 360° bound-
aries of panoramas, providing an opportunity for improving seamless scene seg-
mentation. Additionally, the generalization capability of the OOOPS model can
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be evaluated using surround-view fisheye images. Our future plans involve ex-
tending the proposed solution to encompass panoramic panoptic segmentation.
Societal Impacts. The proposed Open Panoramic Segmentation (OPS) task
and the OOOPS model with Random Equirectangular Projection (RERP) en-
able distortion-aware open-vocabulary panoramic semantic segmentation in dif-
ferent open domains even though there are no training-sufficient dense-annotated
panoramic labels. Evidently, this represents a great technological advancement
that necessitates not only strategic utilization but also a thorough awareness of
the inherent risks. Although this work is able to predict an arbitrary number of
classes in holistic scene understanding, e.g ., in the autonomous driving scenario
regarding panoramic distortion, the performance of the model should be further
improved for the safety of both drivers and pedestrians. Apart from the outdoor
applications, the indoor navigation of robots using panoramas is supposed to
focus more on open-vocabulary prediction correctness so that robots can better
serve humans, avoiding unexpected potential dangers.
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