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Abstract. Panoramic images, capturing a 360° field of view (FoV),
encompass omnidirectional spatial information crucial for scene under-
standing. However, it is not only costly to obtain training-sufficient dense-
annotated panoramas but also application-restricted when training mod-
els in a close-vocabulary setting. To tackle this problem, in this work, we
define a new task termed Open Panoramic Segmentation (OPS),
where models are trained with FoV-restricted pinhole images in the
source domain in an open-vocabulary setting while evaluated with FoV-
open panoramic images in the target domain, enabling the zero-shot
open panoramic semantic segmentation ability of models. Moreover, we
propose a model named OOOPS with a Deformable Adapter Network
(DAN), which significantly improves zero-shot panoramic semantic seg-
mentation performance. To further enhance the distortion-aware model-
ing ability from the pinhole source domain, we propose a novel data aug-
mentation method called Random Equirectangular Projection (RERP)
which is specifically designed to address object deformations in advance.
Surpassing other state-of-the-art open-vocabulary semantic segmenta-
tion approaches, a remarkable performance boost on three panoramic
datasets, WildPASS, Stanford2D3D, and Matterport3D, proves the ef-
fectiveness of our proposed OOOPS model with RERP on the OPS task,
especially +2.2% on outdoor WildPASS and +2.4% mlIoU on indoor
Stanford2D3D. The source code is publicly available at OPS|

1 Introduction

Panoramic imaging systems [26L[27] have advanced significantly in recent years,
which has fostered a wide variety of panoramic vision applications [1,/17]. Due to
the comprehensive 360° Field of View (FoV), omnidirectional panoramas provide
more informative visual cues when perceiving surroundings in a broad spectrum
of scene understanding tasks [3},36},51,/52,/54,/79)], enabling a more complete and
immersive capture of environmental data, which is crucial for in-depth scene un-
derstanding. This wide perspective surpasses the limited scope of pinhole images,
significantly enhancing the capability of computer vision systems to perceive and
interpret surroundings in a variety of applications. While the benefits of utiliz-
ing panoramic images in computer vision applications are apparent compared
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Fig. 1: (a) The challenge of existing state-of-the-art segmentation models. (b) The lim-
itation of categories in traditional close-vocabulary panoramic segmentation tasks. (c)
Our newly defined Open Panoramic Segmentation (OPS) task aims at tackling
the above challenges. OPS consists of three important elements: Open the FoV tar-
geted at the challenge of 360° FoV, targeted at the drawback
of close-vocabulary panoramic segmentation and Open the Domain targeted at the
challenge of scarcity of panoramic labels.

with pinhole images, it is imperative to give increasing consideration to some
noteworthy challenges as follows: (1) The challenge of wider FoV. For example,
Fig. [Ta]illustrates the degraded performance of state-of-the-art open-vocabulary
semantic segmentation approaches @ with an increasing FoV, i.e., from
pinhole images to 360° panoramic images. Over 12% mloU performance degra-
dation can be observed, indicating the challenges introduced by the large diver-
gence of semantic and structural information across narrow-wide imagery. (2)
The limitation of categories. The traditional close-vocabulary segmentation task
paradigm only provides a limited amount of labeled categories, which
cannot handle the inestimable amount of categories in real-world applications.
Fig. [Lb] illustrates the difference between close- and open-vocabulary segmenta-
tion. Compared to the close-vocabulary setting (first row) the open-vocabulary
setting (second row) is not limited by the number of categories of the datasets.
Only four predefined categories (highlighted in different colors) are recognized
in the close-vocabulary setting in contrast to the open one, where every pixel of
the panorama has its own semantic meaning even though the categories are not
annotated in the dataset.

To further release the great potential of panoramic images three critical
problems are eager to be solved: How to obtain a holistic perception via a
single image? to break the barrier of limited recognizable categories in
existing panoramic datasets so that downstream vision applications can bene-
fit from unrestricted informative visual hints? How to deal with the scarcity of
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panoramic labels? Based on the aforementioned three questions, we propose
a new task named Open Panoramic Segmentation (OPS) that compre-
hensively addresses these challenges, aiming to better leverage the advantages
brought by panoramic images. The new task paradigm is shown in Fig.
The open panoramic segmentation task consists of three important elements
considering the three problems. The concept of “Open” is three-fold: omni-
directional panoramic images (Open the FoV), an unrestricted range of recog-
nizable classes ( ), and additionally, models are trained
using pinhole images in the source domain while evaluated with panoramic im-
ages in the target domain (Open the Domain). Given that densely annotated
pinhole segmentation labels incur lower costs compared to panoramic ones |74],
it is cost-efficient to open different domains. Note that OPS is different from
Domain Adaptation (DA). In the context of training in DA, the utilization of
data encompasses both the source and target domains while in OPS, exclusive
reliance is placed on data originating solely from the source domain during the
whole training process.

Apart from the new task, we propose a new model named OOOPS to address
the aforementioned three openness-related challenges in the OPS task. It consists
of a frozen CLIP model [49] and a key component named Deformable Adapter
Network (DAN), which serves two critical purposes: (1) efficiently adapting the
frozen CLIP model to the panoramic segmentation task and (2) addressing ob-
ject deformation and image distortion inherent in panoramas. More specifically,
a novel Deformable Adapter Operator (DAO), the key component of DAN, is de-
signed to tackle panoramic distortion. To advance the modeling capabilities for
distortion awareness in the pinhole source domain, we further introduce Random
Equirectangular Projection (RERP) explicitly crafted to tackle object deforma-
tions and image distortions. A pinhole image is divided into four image patches
that are randomly shuffled. Equirectangular Projection, one of the most common
methods for mapping a globe into a panoramic plane, is then introduced in the
shuffled image. Our OOOPS model with RERP outperforms other state-of-the-
art open-vocabulary segmentation methods with +2.2%, +2.4%, and +0.6%
mloU on WildPASS [76], Stanford2D3D |[2]|, and Matterport3D [6], respectively.

To summarize, we present the following contributions:

— We introduce a new task termed open panoramic segmentation, OPS for
short, including Open FoV, Open Vocabulary and Open Domain. Mod-
els are trained with FoV-restricted pinhole images in the source domain in an
open-vocabulary setting while evaluated with FoV-open panoramic images
in the target domain.

— We put forward a model called OOOPS with the aim to address three
openness-related challenges at once. A Deformable Adapter Network
(DAN) is proposed to transfer the zero-shot learning ability of a frozen
CLIP model from the pinhole domain to different panoramic domains.

— A novel data augmentation strategy named Random Equirectangular
Projection (RERP), which is specifically designed for the proposed OPS
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task, further boosts the accuracy of the OOOPS model, achieving state-of-
the-art performance in the open panoramic segmentation task.

For benchmarking OPS, we conduct comprehensive evaluations on both in-
door and outdoor datasets (WildPASS, Stanford2D3D and Matterport3D),
involving more than 10 close- and open-vocabulary segmentation models.

2 Related Work

2.1 Open-vocabulary Semantic Segmentation

Motivated by the success of vision-language pre-training models, Open-Vocabulary
Semantic Segmentation (OVSS) has been recently explored to achieve open-set
pixel-wise understanding [7| 11, 12, 18, 19, 29, 31, 32,/34,34/37|39,/40,/44, 53, 56,
58,59, 61} 64, 70, 71]. Most works leverage the open-vocabulary capabilities of
CLIP [49] to reason about relations between dense pixel semantics and arbi-
trary class labels [9}, 12, 32,38, 61, 71]. In [78,89], multiple datasets are uni ed by
transferring heterogeneous labels into text embeddings for training to achieve
OVSS. In |35,67], image-caption datasets are employed for learning alignment
between visual regions and text entities. To reduce the computational costs of
using a frozen pre-trained CLIP model for identifying novel classes, latest stud-
ies [21,69] have also proposed e cient architectures for fast OVSS. SAN [68, 69]
has designed an asymmetric input resolution strategy to decouple mask proposal
prediction and attention bias prediction applied to CLIP for mask class recog-
nition. Furthermore, open-vocabulary panoptic segmentation has been tackled
in [8,|12,13,)34, 45, 66, 66, 71, 80] to render universal image understanding. In
this work, we focus on the open-vocabulary zero-shot learning opanoramas
instead of pinhole images discussed in the aforementioned works.

2.2 Panoramic Semantic Segmentation

Panoramic semantic segmentation enables more informative decision-making and
interaction within complex and dynamic environments, advancing the capabil-
ities of intelligent systems for navigation and perception [4, 16, 24, 25, 28, 33,
42,46, 75]. PASS [72, 73] achieves panoramic segmentation on annular images,
whereas 360BEV [54] tackles panoramic semantic mapping. ECANets [76] ad-
dress omnidirectional semantic segmentation with multi-source omni-supervised
learning to enhance generalization. Zhanget al. [81] propose to use attention-
augmented designs for panoramic representation learning. Guttikondat al. [20]
propose a single-frame panoramic semantic segmentation approach using multi-
modal spherical images. Huet al. [22] propose a distortion convolution module
for panoramic semantic segmentation. An important cluster of works revisits
panoramic semantic segmentation from an unsupervised domain adaptation per-
spective [23,30,41,81,82,86,87], by adapting from label-rich pinhole images to the
panoramic images. Unlike these works, we propose a method to tacklepen-
vocabulary panoramic semantic segmentation for unconstrained surrounding
understanding.
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2.3 Deformable Neural Networks

In the realm of deformable neural networks, notable advancements have been
made through various iterations. The pioneering work [10] introduces the con-
cept of deformable convolution, laying the foundation for subsequent develop-
ments. Building upon this foundation, DCNv2 [90] further re nes deformable
convolution by introducing a modulation mechanism that expands the scope
of deformation modeling. The evolution of deformable neural networks contin-
ues with the introduction of DCNv3 [57], which combines the group convolution
with DCNv2 for the sake of imitating multi-head mechanism of Transformer [55].
DCNv4 [65] aims to speedup DCNv3, achieving a more e cient model. Addi-
tionally, Trans4PASS [82,83] proposes Deformable Patch Embedding (DPE) and
Deformable MLP (DMLP) to handle the distortion that occurs in panoramas.
Incorporating the principles of deformable convolution into vision transform-
ers [14], Xiaet al. propose DeformableViT [62,63], extending the applicability
of deformable neural networks to the domain of transformer architectures. After
rethinking a series of DCN designs, we propos®AO to improve the model's
ability to handle image distortion in the OPS task.

3 Methodology

3.1 Open Panoramic Segmentation

Open Panoramic Segmentation (OPS) task is proposed to deal with three chal-
lenging problems:{ the narrow FoV, - the restricted range of classes, and
the scarcity of panoramic labels. OPS gives three answers to the aforementioned
issues:{ Open the FoV, - Open the Vocabulary, and, Open the Domain.
The OPS task paradigm is shown in Fig. 1c. Models are trained in the narrow-
FoV pinhole source domain in an open-vocabulary setting while evaluated in the
wide-FoV panoramic target domain.

3.2 Model Architecture

A foundation model [49] can be e ciently transferred to downstream tasks by
using an adapter [68]. To improve the modeling ability for panoramas, we de-
sign the OOOPS model. As shown in Fig. 2, it comprises a frozen CLIP model
and a proposed Deformable Adapter Network (DAN) that incorporates multiple
Transformer Layers and the novel DAO, which will be detailed in Sec. 3.3. Fea-
ture fusion takes place between the intermediate layers of CLIP and DAN. One
of the two outputs from DAN consists of mask proposals, while the other serves
as deep supervised guidance for CLIP to generate proposal logits. In the training
phase, pinhole images are forwarded into OOOPS, generating mask proposals
and proposal logits for the loss calculation. In the inference phase, panoramas
are forwarded into OOOPS to generate segmentation predictions via the multi-
plication of mask proposals and the corresponding proposal logits. The frozen
CLIP is necessary for the zero-shot learning ability of OOOPS.
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Fig. 2: Overview of the OOOPS model architecture . It consists of a frozen CLIP
model and a Deformable Adapter Network (DAN) which includes Transformer Layers
and the proposed DAO.

3.3 Deformable Adapter Network

The Deformable Adapter Network is a combination of multiple Transformer [55]
Layers and the proposed DAO. Since distortion exists in panoramic images,
which is a big challenge when utilizing informative panoramas, we delve deeper
into the deformable design [57] and sampling methods like APES [60], MateR-
obot [85], proposing DAO to tackle the image distortions and object deforma-
tions of panoramas. To provide a detailed rethinking process of the deformable
convolution design, we introduce the preliminary of the DCN series as follows.
Revisiting DCN Series.  The seminal work DCN [10] can enable the traditional
CNN with spatial deformation-aware ability. Given a convolutional kernel of K
sampling locations, letwy and px denote the weight and pre-speci ed o set for

de nes a3 3 convolutional kernel of dilation 1. Let x(p) and y(p) denote the
features at location p from the input feature maps x and output feature maps
y, respectively. DCN is formulated as:

X
y(p)=  wkx(p+pk+  pk); 1)
k=1
where pg is the learnable o set for the k-th location. Although DCN is capable
of capturing spatial deformation, every sampling location is treated equally when
calculating the local features. DCNv2 [90] is proposed with an additional term
called modulation scalar. Speci cally, DCNv2 can be formulated as:

X
y(p) = wimgX(p + px +  Pk); ()

k=1
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where my is the learnable modulation scalar for thek-th location. Inspired by
Transformer, DCNv3 [57] is proposed with a grouping operation, further boost-
ing the deformation-aware ability of DCNv2. DCNv3 can be addressed with the
following formula:

X X
y(p) = nggkxg(p + pkt pgk); (3)
g=1 k=1

whereG denotes the total number of aggregation groups. DCNv4 [65] is similar to
DCNv3, achieving similar performance while signi cantly reducing the runtime.

Fig. 3: Salient map generation in DAO.

Deformable Adapter Operator (DAO). When dealing with distortions in
panoramas, DCNv3 and DCNv4 fall short of meeting the distortion-aware re-
quirements. This is illustrated by the visualization of Fig. 6 in Sec. 4.5. Therefore,
DAO is proposed to tackle the distortion problem in panoramic images using the
following expression:

¥ X
y(p) = s(p) WgMgkXg(P + P+ Pgk); 4)
g=1 k=1

where s(p) is the learnable salient scalar at locationp. Inheriting from DCNv3,
DAO comes up with an additional term called salient scalar indicating the im-
portance of each pixel within the whole panorama. It's worth noting that DCNv3
and DCNv4 share the same mathematical expression, but DCNv3 isnore ro-
bust according to our experiments before designing DAO. Therefore, we adopt
DCNv3 as a part of DAO rather than DCNv4. lllustrated in Fig. 2, the feature
map outputted by DCNv3 passes through the Patch Similarity Layer, Normal-
ization Layer, and Standard Deviation Layer sequentially to form a salient map.
The intuition for such a design is straightforward. The salient pixels in an image
are those that di er signi cantly from their neighboring pixels, e.g., edge pixels.
If all pixels within an image patch are di erent, the standard deviation of the
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(a) Equirectangular Projection (ERP) maps (b) Visualization of ERP and RERP of

a globe into a panorama. It's clear that strong pinhole images. First column: pinhole im-

distortion occurs in the panorama, especially ages. Second column: ERP on pinhole images.
on object edges in the horizontal direction. Third column: RERP on pinhole images.

Fig.4: (a) Visualization of ERP on a panoramic image and (b) Our proposed RERP
on pinhole images.

pixel similarity for this patch is higher than the one containing similar pixels,
resulting in a higher salient scalar. Fig. 3 gives a more detailed explanation of
the salient map generation. Given a feature map, DAO rst calculates the cosine
similarity between the center pixel and all pixels within a kernel, e.g., 9 pixels
within a 3 3 kernel in Fig. 3, resulting in a 9-dimensional cosine similarity
vector. Softmax normalization is then applied to the vector. Afterward, DAO
calculates the standard deviation of this normalized cosine similarity vector, in-
dicating the importance of the center pixel. By traversing every pixel across
the entire feature map, a salient map is generated for the sake of enhancing
the salient pixels, which are usually the edge pixels of an image where strong
panoramic distortion occurs.

3.4 Random Equirectangular Projection

The Equirectangular Projection [50] (ERP) is one of the most common meth-
ods for mapping a globe into a panoramic plane, which transforms spherical
coordinates into planar coordinates expressed as follows:

x = R( o)cod" 1); %)
y=R( o) (6)

where and' are the longitude and latitude of the location to project, respec-

tively. ' 1 are the standard parallels. o and ' ¢ are the central meridian and

central parallel of the map, respectively.R is the radius of the globe.x denotes

the horizontal coordinate, while y represents the vertical coordinate of the pro-
jected location on the map. Fig. 4a visualizes the ERP on a panoramic plane. It
can be observed that after equirectangular projection strong distortion occurs in
the panorama, e.g., a straight line is transformed into a curve. To further boost

the performance, we propose Random Equirectangular Projection (RERP) on
pinhole images since the OPS task requires the model to train with pinhole
images instead of panoramas.
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We divide the pinhole image into four parts and randomly shu e the image
patches. Afterward, we apply equirectangular projection to the distortion-free
pinhole image. Fig. 4b visualizes pinhole images after RERP. The rst column is
the pinhole images without any data augmentation. The second column is ERP
on pinhole images without random shu ing. The last column is our proposed
RERP. It can be observed that the panorama-like distortion also occurs in the
pinhole images after RERP. Random shu ing is employed to enhance robustness
and promote generalization.

4 Experiments

4.1 Datasets

We train our model using the pinhole general-object COCOStu -164k [5] while
evaluating the model performance on three di erent panoramic datasets: panoramic
street-view WildPASS [76], panoramic indoor-scene Stanford2D3D [2] and panoramic
indoor-scene Matterport3D [6].

COCOStu -164k.  The pinhole dataset comprisesl64k images acrossl71 an-
notated classes, partitioned into training, validation, and test sets, with 118,

5k, and 41k images, respectively. In our experiments, we utilize the entirel 18-
image training set as the training data by default.

WIildPASS. The panoramic street-view dataset contains2; 500 panoramas in
65 cities from all continents Asia, Europe, Africa, Oceania, and North and South
America (excluding only Antarctica) with 8 dense-annotated classes. All images
have a70° 360 FoV in the size of 400 2048

Stanford2D3D. The panoramic indoor dataset consists ofl; 413images in the
size of 512 1024 and 13 object classes. All results are averaged oveB cross-
validation folds.

Matterport3D.  The panoramic indoor dataset includesl0; 800panoramic views
from 194, 400 RGB-D images. According to the data preprocessing pipeline of
360BEV [54], a subset of7/72 images in the size o512 1024 with 20 classes is
used to evaluate the segmentation performance.

4.2 Metrics

Close-vocabulary Metric. Mean Intersection over Union (mloU) is used as the
evaluation metric in close-vocabulary semantic segmentation tasks. Speci cally,
loU is calculated as the area of overlap between the predicted segmentation
and the ground truth, divided by the area of union between them. mloU is a
hard metric designed for close-vocabulary segmentation ignoring the semantic
meanings of similar classes referring to the open-vocabulary setting.
Open-vocabulary Metric. Open mean Intersection over Union [88], open
mloU for short, is a soft metric compared to mloU since the similarity scores
between di erent classes are also taken into account, which are calculated by the
WordNet approach [43]. In this work, we will report both close and open metrics
for a comprehensive understanding of all models.
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Table 1: Results on WildPASS . The mloU, open mloU, and per-class loU are in
percentage (%). #PARAMs is the number of learnable parameters in millions.

N}
@ N NS N

v?Y@ ™ ?f\& S & RS2 4 o“»‘g‘@ N & \3(\»" &

Network L N F & 5 o) &
Close-Vocabulary
Fast-SCNN [48] 11 248 - 459 60.0 317 9.7 171 6.0 142 138
PSPNet18 [84] 175 28.2 - 58.2 66.8 28.4 13.0 19.2 6.2 182 156
SwiftNet [47] 11.8 30.0 - 55.7 64.1 29.2 16.2 229 85 211 222
DenseASPP [77] 8.3 33.2 - 51.1 69.1 381 16.4 263 87 274 284
ERF-PSPNet [73] 25 34.0 - 66.3 70.5 36.5 6.4 241 94 265 320
PSPNet50 [84] 53.3 46.1 - 80.0 749 517 239 314 198 389 481
DANet [15] 47.4 47.2 - 748 722 49.9 28.9 238 254 519 50.6
OO0SS (ERF-PSPNet) [74] 25 56.1 - 87.2 79.3 60.8 28.0 38.1 545 488 522
PASS (ERF-PSPNet) [73] 25 64.7 - 87.3 80.0 614 71.1 49.9 722 375 57.9
ERF-PSPNet (omni-sup’) [76] 25 66.8 - 90.5 82.7 65.6 70.5 515 58.2 62.0 53.1
ECANet (with attention) [76] 2.6 67.7 - 90.4 83.7 68.4 67.8 52.1 614 545 633
ECANet (with fusion) [76] 2.6 69.0 - 90.6 85.7 68.0 679 521 66.0 59.3 62.3
Open-Vocabulary

SAN [68] 8.4 55.6 56.9 84.3 81.9 69.6 10.1 28 722 549 69.1
CAT-seg [9] 59.5 55.7 57.1 84.1 815 70.0 10.2 30 725 548 693
OpenSeeD [80] 65.4 55.8 57.2 84.3 816 69.7 10.3 3.0 73.6 549 69.1
OOOPS (ours, w/o RERP) 8.7 57.0 58.5 849 816 68.7 15.1 8.4 713 553 704
OOOPS (ours, w/ RERP) 8.7 58.0 59.7 849 816 68.7 19.4 8.3 73.8 549 722

4.3 Implementation Details

We utilize CLIP ViT-B/ 16as the frozen CLIP model. All models are trained with
the pinhole general-object COCOStu -164k training set with 4 A40GPUs while
evaluated on three panoramic datasets which are in totally di erent domains
compared with the pinhole dataset. The AdamWw optimizer is applied with an
initial learning rate of 0:0001, weight decay of 0:000], batch size of32, and a
total of 60;000 training iterations. Throughout the training, the learning rate
follows a polynomial schedule with a power 00:9. Data augmentations, including
random image resizing within the short-side range 0f320 1024]and a crop size
of 640 640 are applied. Additionally, when verifying the e ectiveness of the
proposed RERP, it is applied as an extra data augmentation. Following the
practice of SAN [68], apart from the supervision of mask recognition with cross-
entropy loss, we utilize the dice loss and binary cross-entropy loss for mask
proposal generation.

4.4 Comparison with the State of the Art

Results on WildPASS. Comparisons with both close- and open-vocabulary
state-of-the-art methods on WildPASS are listed in Table 1. It is not surprising
that ECANet (with fusion) [76] achieves the best performance among all meth-
ods since it is a close-vocabulary method, meaning that ECANet is only able
to predict the classes prede ned by the dataset. However, our OOOPS model
is quali ed for predicting classes that are not annotated in the dataset. The
OOOPS method (with RERP) surpasses other state-of-the-art open-vocabulary
panoramic segmentation methods with over+2.2 % mloU while introducing
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