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Abstract. Creating 3D semantic reconstructions of environments is fundamen-
tal to many applications, especially when related to autonomous agent opera-
tion (e.g., goal-oriented navigation or object interaction and manipulation). Com-
monly, 3D semantic reconstruction systems capture the entire scene in the same
level of detail. However, certain tasks (e.g., object interaction) require a fine-
grained and high-resolution map, particularly if the objects to interact are of
small size or intricate geometry. In recent practice, this leads to the entire map
being in the same high-quality resolution, which results in increased computa-
tional and storage costs. To address this challenge, we propose MAP-ADAPT, a
real-time method for quality-adaptive semantic 3D reconstruction using RGBD
frames. MAP-ADAPT is the first adaptive semantic 3D mapping algorithm that,
unlike prior work, generates directly a single map with regions of different qual-
ity based on both the semantic information and the geometric complexity of the
scene. Leveraging a semantic SLAM pipeline for pose and semantic estimation,
we achieve comparable or superior results to state-of-the-art methods on syn-
thetic and real-world data, while significantly reducing storage and computation
requirements. Code is available at https://map-adapt.github.io/.
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1 Introduction

Advancements in 3D sensing devices (e.g., Intel RealSense [13], Microsoft Kinect [27],
and Orbbec Astra [34]) and semantic understanding [3, 18, 19] have enabled the recon-
struction of an increasing number of semantic maps of environments in accuracy and
detail. This is particularly useful for autonomous agents since they utilize such maps to
perform tasks, e.g., navigation [1,20] and object manipulation [2,41]. In recent practice,
the common output of 3D reconstruction systems [33, 35, 39, 51] is a volumetric map
of the environment that is uniform in the level of detail (single-resolution map). When
the task requires a fine-grained and high-resolution reconstruction, e.g., for interacting
with objects of small size or intricate geometry, the resulting map can lead to substantial
computation and storage demands, which can be crucial for the operation of agents.
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Fig. 1: MAP-ADAPT. Our method generates quality-adaptive semantic 3D maps of environ-
ments, where regions of different semantics and geometric complexity are reconstructed in dif-
ferent quality levels. An example map is shown here: 3D reconstructed mesh (top-left) and the
semantic quality mask (bottom-left). Mask colors denote three quality levels, where red is high,
green is middle, and blue is coarse. A plant reconstructed in high quality due to its semantic label
is highlighted (top-right). Though the coffee machine based on its label should appear coarse, it
is still mapped in fine resolution due to high geometric complexity (bottom-right).

We approach these shortcomings from the lens of not always needing ‘everything
in anything’, i.e., all information in the same level of detail, and address them by creat-
ing the 3D semantic maps in a quality-adaptive manner. Prior work has independently
addressed building semantic maps [7,11,24,29,54] and multi-resolution geometric map-
ping [5, 6, 15, 45, 46, 50, 57] to achieve accurate and memory-efficient reconstructions.
Except for [43], no other method has attempted to create quality-adaptive semantic
3D maps. This method employs semantics to represent individual object instances in
separate 3D Truncated Signed Distance Field (TSDF) maps with different resolutions.
However, since each map is created independently from the others and due to noisy
semantic estimation, multiple maps may occupy the same spatial region without any
mechanism to disambiguate across and merge them.

To address these limitations, we propose MAP-ADAPT, a real-time method for
quality-adaptive semantic 3D reconstruction with RGBD frames. Our main contribution
is the first adaptive semantic 3D mapping algorithm that generates directly a single map
with regions of different quality. In comparison to prior work on multi-resolution maps
where the resolution is determined by the distance to the camera [50, 57], the quality
per region is defined by the semantic label of an object and/or its geometric complex-
ity. Our method is less computationally and storage demanding than single-resolution
methods [33] and it is faster and more accurate than the other semantic quality-adaptive
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method [43]. Hence, it has practical applicability to autonomous agents due to their
limitations on computing, power supply, and storage.

Given a lack of adaptive multi-resolution representations for semantic and 3D ge-
ometric data, we develop a new structure that can update reconstructed map regions
and their quality level as new observations are received, building on top of an existing
voxel hashing method [33]. We also propose a new approach to incrementally update
the geometric complexity of the surface in each single voxel. Furthermore, we estimate
the camera pose and semantics of RGBD frames with a SLAM and a semantic seg-
mentation method respectively, and use this information to build the map in an online
manner. We propose a modified mesh generation method based on [52] to create a mesh
from our multi-resolution map. Last, we evaluate end-to-end the adaptive semantic re-
construction of MAP-ADAPT and baselines in simulated and real-world environments
using two state-of-the-art 3D datasets. Our contributions are summarized as follows:

– A real-time framework that generates a single quality-adaptive map, where areas
that belong to different semantic groups and regions with intricate geometric details
are distinctly reconstructed.

– A multi-resolution map representation that encapsulates geometric and semantic
information and can be incrementally updated with newly acquired observations.

– An adaptive mesh generation approach that can handle voxels and their neighbors
in different resolutions.

2 Related Work

Adaptive 3D Semantic Mapping. Our focus is on methods that create real-time maps
of the scene at different levels of quality. Prior work has mainly explored the creation of
geometrically adaptive maps. In [5, 45], 3D information is kept at multiple resolutions
simultaneously. The coarse information is then used to regularize the fine resolution
levels. This creates a large amount of redundant information, especially when consider-
ing large-scale 3D scenes. In [46], the authors develop a SLAM approach that employs
surfel-based 3D maps of incoming frames in different resolution levels, which are fur-
ther associated per level to get the final 3D reconstruction of the scene. In [57], the
authors fuse depth frames into a multi-resolution triangular mesh that is adaptively tes-
sellated based on the distance of the camera from the observed surface. Similarly, [50]
introduces an octree-based volumetric SLAM pipeline that integrates and renders depth
images at an adaptive level of detail based on the camera distance. In [15], the authors
use a voxel-hashing approach to bypass the time-consuming traversal of tree structures
and generate adaptive maps based on the geometric complexity of the surface. In our
work, we address the problem of creating 3D semantic maps that adapt the geometry
based on both geometric and semantic information. Our TSDF voxel-based formulation
incorporates camera distance to define geometric and semantic accuracy.

In Panoptic Multi-TSDF [43], similar to us, the authors use a TSDF voxel-based
structure to acquire a semantic 3D map given RGBD frames. However, they represent
each object instance in the scene in a separate TSDF voxel-based map that varies in
terms of resolution depending on the semantic category of the object. Although this
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Fig. 2: Overview of MAP-ADAPT. (a) Given RGBD frames, we estimate (b-i) semantic seg-
mentation and (b-iv) camera pose and compute (b-ii) geometric complexity. (c-i) We integrate
geometric and semantic information (b-iii) on the TSDF voxel map. The geometric complexity
and the semantic label will define the voxel size of that region of the map. (c-ii) shows the multi-
resolution mesh output. The adaptive structure we use is shown in (c-iii).

work handles semantic mapping with different resolutions, dividing the scene into mul-
tiple maps has certain limitations. Imperfect semantic segmentation and camera pose
estimation can lead to duplicate reconstructions of spatial regions in these maps. This
occurs because semantic masks may overlap with adjacent categories when projected
from 2D to 3D and individual maps are created in isolation without information ex-
change. This complicates merging the data into a single map due to the ambiguity in
semantic interpretation. In contrast, we create a single map representation that handles
regions of adaptive resolution as new data points are received and overcomes the above
challenge because of the way it represents the scene.
3D Map Representations. There exist multiple ways of representing 3D scenes, rang-
ing from the use of 3D point clouds, to surfels [26, 53], voxels [33, 39], 3D Gaus-
sians [16], sparse representations [31, 55], and neural implicit ones [47, 56]. For gener-
ating real-time maps that can operate on autonomous agents and allow them to perform
other downstream tasks (e.g., navigation or object manipulation), voxel-based TSDF
representations are commonly used. To further allow real-time generation, methods
have focused on octrees [12] and voxel hashing [10, 32, 33]. In [33], voxel hashing
was shown to be a more efficient method to query voxels compared to octrees [12].
Hence, we build on the Voxblox [33] voxel-hashing TSDF approach and contribute to
it with a semantic adaptive structure and a fusion approach for generating and updating
3D semantic maps of adaptive resolution.
Semantic SLAM. Incorporating semantic information into SLAM-generated maps can
be categorized into three types of methods: (i) Object detection-based: Methods im-
plement object-level detection (e.g., [21, 38]) on RGB images to output 2D bounding
boxes. After further processing, they either use a parameterized way to represent the de-
tected object, such as Quadrics [37] and the pose of a pre-modeled object [42], or further
perform geometric segmentation on the depth map [9, 48]. (ii) Semantic segmentation-
based: Methods process semantic segmentation on 2D RGB images and build 3D geo-
metric maps separately. The two outputs are fused with a Bayesian update to generate
the semantic map [26,39]. (iii) Instance segmentation-based: Such methods are similar
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to (ii). The main difference is that the RGB image is segmented to acquire object in-
stances [25,40]. One exception is the method of Grinvald et al. [8], which first segments
a depth image and then utilizes the instance segmentation on an RGB image to refine
the previous segments. We follow a semantic segmentation approach that is based on
panoptic understanding [26,39], but the proposed method can easily adapt to instances.
Mesh Generation. Marching Cubes [22] is widely used to extract mesh from a voxel-
based map. Although it is effective for fixed-size voxel maps [32,33,39], modifications
are required for multi-resolution ones. To generate a mesh for a query voxel, a 2 ×
2 × 2 cube is formed with its 7 neighbors. [22] requires the latter in the same size,
which is not possible at the boundary of different resolutions. [50] proposes to use the
coarsest resolution at the voxel boundary to ensure that all 8 voxels exist. However, this
ignores fine-level voxels. In contrast, we adapt the idea of [52] on iso-surface extraction
to our specific data structure. Such a method leverages information from the voxels at
all levels. Although [6] also claims to follow [52]’s approach for mesh generation from
their multi-resolution voxel map, no explanation of the implementation is provided.

3 MAP-ADAPT

Given a set of RGBD frames, we use the RGB and depth images to estimate camera pose
Ck and predict semantic segmentation map Sk using the RGB images only, where k =
1, 2, ...,K and K is the total number of frames. We employ this information to create
a quality-adaptive map in an online manner. Hereafter, N ∈ N+ is the total number
of semantic labels that the semantic segmentation method can predict, l is a semantic
label from this set, and li,best is the label with the highest probability in the voxel Vi.
Let us consider that the adaptive map has three resolution levels: fine, middle, and
coarse.4 Each semantic label l is associated with a level of the targeted reconstruction
quality (e.g., fine) based on user preference. Per map region, the level of resolution is
decided based on its semantic label and can also incorporate the geometric complexity
of the observed surface. Regarding the latter, thresholds are noted as θr where r ∈
{fine,middle, coarse}. In the rest of this section, we describe the adaptive mapping
process and map representation in detail. An overview of the pipeline is in Fig. 2.
Adaptive Map Representation. Our map representation, as in Voxblox [33], uses a
TSDF voxel grid V to implicitly store geometric information, from which the 3D mesh
of the mapped scene will be extracted with the use of Marching Cubes [22]. This two
forms of maps are shown as (c-i) and (c-ii) in Fig. 2. In addition to the truncated dis-
tance, its weight, and color [33], each voxel Vi in our map stores its geometric complex-
ity gi, a weight wg

i representing the confidence in gi, a vector Li of semantic labels that
have been associated with this voxel, a vector Pi of the probabilities corresponding to
these semantics, and the probability prem

i that corresponds to any non-associated seman-
tic labels. We assume a uniform probability distribution for all non-associated labels so
that we can store their probabilities in a single scalar prem

i . Each voxel is initialized with
an empty vector for Li and Pi and the probability prem

i = 1/N . As new RGB-D frames
are processed, the probability of a semantic label l may be updated for that voxel (see

4 Even though we describe the map assuming three levels of hierarchy, its depth in our imple-
mentation can be chosen arbitrarily, depending on the application at hand.
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below for an explanation of the update process). If l was previously associated with Vi,
only its probability in Pi is updated. Otherwise, l and its probability will be added to
the Li and Pi vectors, respectively. Compared to allocating a single fixed-size vector
per Vi for the probabilities of all N semantic classes, even if not associated with this
voxel [26, 39], our approach consumes less memory, especially when N is large.

So far, the described map representation is not adaptive. We introduce adaptivity by
creating a hierarchy of parent-child voxels from the coarsest resolution (parent) to the
finest (child). A given voxel Vi in the voxel grid is initialized in the coarsest resolution
when first created, i.e., it is initialized in the largest voxel size. If either the most likely
semantic label li,best of Vi corresponds to a finer resolution level r or the geometric
complexity reaches the threshold gi ≥ θr, this voxel will be subdivided by generating
a vector of child voxels with the corresponding size of r. Furthermore, if Vi already
contains child voxels but both li,best and gi get updated to one of the coarser resolutions,
the child voxels will be removed from Vi so that the voxel degrades back to a coarse
representation. To avoid the loss of geometric information when the li,best is uncertain,
child voxels are removed only when li,best ≥ 0.95. Please note that division and merging
operations are defined based on the li,best and gi of the voxel in the coarser resolution
level. This adaptive resolution structure is shown in Fig. 2 (c-iii).

Incorporating RGB-D Frames. With the depth map, RGB image, pose Ck, and se-
mantic map Sk at frame k, we create a semantically labeled 3D point cloud PCk in the
world coordinate system (Fig. 2 (b-iii)). To avoid losing semantic information, espe-
cially when considering the noisy nature of predictions, instead of using a segmentation
map that contains per pixel only the l with the highest confidence score [39], we provide
at most the four top-scoring semantic labels that have confidence score greater than the
threshold t = 0.1. These semantic labels and their confidence scores are raycasted to
voxels in V per 3D point pcj in PCk. Similar to [33], a ray that connects the camera
center of frame k with pcj is used to find those voxels whose absolute value of the trun-
cated signed distance is smaller than their size. This saves computational effort by only
updating semantic information on voxels near the surface. We modify the raycasting
in [33] for adaptive resolution as described below.

Adaptive Raycasting. We use a modified version of the fast bundled raycasting in [33]
but extend it to the resolution-adaptive setting. Before casting a ray on V , we need to
decide which points from PCk may be redundant and hence can be skipped with a
minimum loss of information. For a non-adaptive geometric map, a hash 3D grid with
resolution vgrid = αv, where α is a subsampling factor with default value 0.5 and v
is the voxel size of the TSDF map, keeps track of points in PCk that will be used to
update V . Specifically, a point in PCk is discarded if the grid cell it falls into is already
occupied by another 3D point originating from the same frame k. Since MAP-ADAPT
has multiple resolutions (three in the described scenario), we initialize three grids with
vr,grid = αvr, where vr is the voxel size of quality level r in the TSDF map. Each
virtual grid is used to determine whether the point will be utilized to update voxels of
the corresponding size. Every point in PCk will be inserted into all three grids. If the
position in vr,grid has already been occupied, this point will not be used to update voxels
whose resolutions are level r. However, the same point might integrate information into
voxels of another size r′ as long as the position in vr′,grid is free.
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Updating Voxel Probabilities. Assume that Mj is the set of four (or fewer) top-scoring
semantic labels for point pcj and Pj(l|Sk) is the probability of the label of point pcj to
be semantic label l. When assigning semantic information from pcj in PCk to a voxel
Vi, we use the probabilities that are already associated with pcj for the top-scoring se-
mantic labels in Mj . For all other labels, we assume a uniform probability distribution.
To avoid exceedingly fast convergence to a specific label for Vi, we empirically define
a lower bound ξ = 0.01. Specifically, ∀l /∈Mj , its probability is given by:

Pj(l | Sk) = max

(
ξ,

1−
∑

m∈Mj
Pj(lm | Sk)

N − sizeof(Mj)

)
. (1)

Similar to [26,39], when new frames are incorporated in V , a Bayesian update is utilized
to update the semantic probabilities of voxel Vi. Given the 3D point pcj , the probability
of a voxel Vi to be semantic label l after k frames Pi(l | S1,...,k) is updated by the
following rules:

Pi(l | S1,...,k) =
1

Z
Pi (l | S1,...,k−1) [Pj(l | Sk)]

wj , (2)

where Z is a normalization term for the probabilities so that they will sum to 1 and
wj = 1/z2j is a weight function that depends on the depth measurement zj of point pcj
in the depth frame k.
Estimating Geometric Complexity. As certain tasks require increased precision in
understanding the geometric details of objects beyond semantic distinctions, we em-
ploy a voxel-wise geometric complexity measurement to determine the reconstruction
quality level. This involves assessing the change of curvature [36, 41] on the projected
points at each frame k and incrementally updating this value in V . For a point pcj in
PCk, the eigenvalues λj

1, λ
j
2, λ

j
3 of the respective 3D structure tensor [14] are extracted,

with λj
1 ≥ λj

2 ≥ λj
3 ≥ 0. The change of curvature at this point CCj is calculated as

CCj = λj
3/(λ

j
1 + λj

2 + λj
3). For a voxel Vi passed by the ray of pcj , its geometric

complexity gi and weight wg
i are updated as follows:

gi ←
wg

i gi + wjCCj

wg
i + wj

wg
i ← min (wg

i + wj ,Wmax)

(3)

Wmax is the same upper bound as in updating TSDF values.
Multi-resolution Mesh Generation. We generate the final 3D mesh with Marching
Cubes [22] in a bottom-up fashion. When generating the mesh, we traverse all coarse-
resolution voxels Vcoarse. If a voxel in Vcoarse has children – i.e. is split into a finer
resolution, the mesh will be generated on its child voxels. To mesh a voxel with [22], we
need the TSDF values and coordinates of its 7 neighbors to form a cube. However, [22]
requires all 8 voxels to be in the same resolution, which is not always feasible in our
multi-resolution map.

To construct the 8-voxel cube, we initiate the process with voxels at the finest reso-
lution. If any of the 8 voxels is absent at this level, it is substituted by its corresponding
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(a) Mesh generation. (b) An example of ghost mesh.

Fig. 3: Illustration of forming a cube to generate a mesh from our multi-resolution map.
(a) When a neighboring voxel of the queried resolution (orange node) does not exist, the corre-
sponding coarser-resolution one (green node) will be used instead. (b) A ghost mesh is generated
at the boundary of resolutions.

voxel at a coarser resolution. This process is illustrated in Figure 3a using a 2D grid
for simplification. Voxel a shows the typical mesh generation approach in fixed-size
maps, where a and its neighbors all belong to the finest resolution. When attempting to
mesh b, which is at the finest level, its neighbors (c, d, and e) are not available there.
Consequently, we substitute them with their coarse counterparts c’, d’, and e’. This sub-
stitution may result in the formation of different geometric structures, such as triangles
or lines, instead of hexahedra. For instance, when multiple fine-resolution voxels like
f and g are substituted by the same coarse-resolution voxel, it leads to collapsed edges
where endpoints coincide. As noted in [52], [22] can still process these geometries ef-
fectively as if they were regular hexahedra; no mesh is generated along the collapsed
edges since both endpoints have the same TSDF value.

The other challenging issue is that non-existent meshes (ghost meshes) may be gen-
erated near the surface of objects that occupy voxels in finer resolution. This primarily
occurs because the adjacent voxels in free space are in the coarsest resolution, lead-
ing to reduced accuracy in their TSDF values. An example is in Figure 3b, where we
split a voxel to the finest resolution because it contains a surface with high geometric
complexity, while its right neighbor remains in the coarse resolution. When ray A is
integrated into the map, the blue voxel, which is supposed to be empty, will also be
updated since the ray passes through a small part of it. As a result, the voxel will be as-
signed a negative TSDF value. Since two of its neighbors have a positive TSDF value,
a ghost mesh will be generated there. To mitigate this problem, when a voxel is split to
a finer resolution, we also split all neighboring voxels to the same one. Though it will
lead to higher quality reconstruction on regions which should have coarser resolution,
it significantly improves the quality of the generated mesh for fine-level semantics.

4 Experiments

We evaluate MAP-ADAPT’s performance on creating accurate and complete geometric
and semantic 3D maps with adaptive resolution, and compare with the fixed voxel size
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Table 1: Evaluation per quality level on HSSD [17]. @XXcm represents the evaluation on the
regions of semantics corresponding to the resolution level of XX (cm). Best values per evaluation
level are in bold.

Method Reconstruction
Quality (cm)

Completion
Error (cm) ↓

Compl. <5cm
Ratio (%) ↑

Geometric
Error (cm) ↓

Semantic
Accuracy (%) ↑

Semantic
mIoU (%) ↑

@
1c

m

Voxblox [33] (fixed) Fine [1] 2.49 ± 2.80 88.74 4.14 ± 4.49 12.96 6.62
Multi-TSDFs [43] Multi-level [1-4-8] 2.74 ± 4.00 85.59 4.10 ± 6.53 8.58 4.86
MAP-ADAPT-S Adaptive [1-4-8] 2.54 ± 2.92 88.15 4.18 ± 4.62 13.12 6.74

MAP-ADAPT-SG Adaptive [1-4-8] 2.53 ± 2.84 88.34 4.19 ± 4.57 13.12 6.74

@
4c

m

Voxblox [33] (fixed) Middle [4] 3.06 ± 3.50 84.39 4.10 ± 4.16 40.00 16.01
Multi-TSDFs [43] Multi-level [1-4-8] 3.09 ± 3.83 83.29 4.18 ± 6.46 10.57 6.41
MAP-ADAPT-S Adaptive [1-4-8] 2.89 ± 3.45 86.12 4.05 ± 4.19 39.69 16.26

MAP-ADAPT-SG Adaptive [1-4-8] 2.67 ± 3.25 88.04 3.85 ± 4.13 39.88 16.21

@
8c

m

Voxblox [33] (fixed) Coarse [8] 3.59 ± 3.59 77.93 4.57 ± 6.11 60.38 21.46
Multi-TSDFs [43] Multi-level [1-4-8] 3.42 ± 3.79 79.86 4.05 ± 5.89 49.59 8.85
MAP-ADAPT-S Adaptive [1-4-8] 3.43 ± 3.47 79.94 4.53 ± 5.95 60.38 21.18

MAP-ADAPT-SG Adaptive [1-4-8] 3.10 ± 3.27 83.56 4.53 ± 5.89 60.38 21.17

Voxblox [33] at different resolution levels, as well as with Panoptic Multi-TSDFs [43].
We choose the following three levels of quality (voxel size): fine (1 cm), middle (4 cm),
and coarse (8 cm). We use all three in the adaptive methods (ours and [43]), whereas for
the fixed-size one, we compare to three different instantiations of it, one per resolution.
Results from two versions of MAP-ADAPT are provided; MAP-ADAPT-S decides to
divide a voxel only based on its semantic label, whereas MAP-ADAPT-SG decides
based on semantic label and/or geometric complexity.

We report results on the Habitat Synthetic Scene Dataset (HSSD) [17] and on the
real-world ScanNet [4] dataset. The threshold of geometric complexity is chosen as
θmiddle = 0.05, θfine = 0.1. Since the motivation of the system is task-driven, giving
users the freedom to choose which categories to reconstruct in fine quality and which
are unimportant, in our experiments we randomly allocate semantic categories per level
of quality and we repeat this 5 times; results are averaged over them. For HSSD, we
randomly assign the 28 semantic categories provided into the three levels of quality.
For the 40 NYUv2 [44] labels used in ScanNet, we allocate those corresponding to
the HSSD categories to the same quality level and randomly assign the rest. In the
supplementary material, we provide results with allocating semantics per quality level
based on their physical size.

We employ the commonly used ORB-SLAM2 [28] as the visual SLAM module
for its robust and real-time behavior; any other SLAM approach could also be used.
We employ the Light-weight Refinenet [30] as the segmentation module5, for allowing
real-time processing while providing good segmentation results on unseen data. Sim-
ilarly, other segmentation methods could be used, especially if processing time is not
a concern. We sample training and validation data from the 125 HSSD scenes in the

5 Even though we demonstrate MAP-ADAPT with object categories, other semantic information
can be used, e.g., material, function, change.
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train split to train a Lightweight RefineNet model for our experiments on this dataset.
Provided by [30], a pre-trained model on the NYUv2 dataset is used for ScanNet.
Metrics. For geometric evaluation, we report: (i) completion error (cm), i.e., the mean
Euclidean distance of all ground truth (GT) 3D points from the closest reconstructed
ones; (ii) completion ratio for all GT points that have less than 5 cm distance from the
closest reconstructed point; and (iii) geometric error (cm), i.e., the mean Euclidean dis-
tance of all reconstructed points from the closest GT ones. The reconstructed 3D points
are sampled from the generated mesh. The GT points are the aggregated projections
from all depth frames, using GT camera pose. The geometric metrics are calculated
separately for 3 different quality levels. Each GT point will be classified as 1cm, 4cm,
or 8cm based on its GT semantic label. For each point Pi sampled from the recon-
structed mesh, we identify the nearest point Pgt in the GT map. We then evaluate Pi

based on the level corresponding to the semantic label of that closest Pgt regardless of
the predicted semantic label of Pi. For each of the three semantic levels, evaluation is
between the sampled points and GT points based on the latter’s quality level. For se-
mantic evaluation, we follow standard approaches [39] and report the overall portion of
correctly labeled voxels (Accuracy) and the mean Intersection over Union (mIoU). We
report map size in megabytes (MB) and runtime in milliseconds (ms).
Experimental Setup. All experiments are performed on an AMD Ryzen 7 5800H CPU.
The only component that requires GPU is the 2D semantic segmentation, which takes
37ms per frame on a GeForce RTX 2080 GPU for Light-weight Refinenet [30].
HSSD Dataset. The HSSD dataset [17] consists of high-quality 3D scenes on the scale
of an entire residence with fully human-authored 3D interiors. To generate sequences
of frames for SLAM-based reconstruction, the dataset is commonly used within the
Habitat [23, 49] simulation environment, which can render RGBD frames from the
underlying 3D model given arbitrary 3D camera poses. We manually record camera
trajectories in the scenes and use the rendered RGBD frames in our experiments. We
develop our method on the training scenes and evaluate on the open validation scenes
without parameter tuning. We create 43 subscenes from the validation split and ensure
they contain at least one semantic category per quality level in each subscene. Statistics
on these scenes are in the supplementary material.

Results on geometric and semantic evaluation are shown in Table 1. We employ col-
ors to differentiate the evaluation of regions from different quality levels and report only
directly comparable methods; e.g., at Eval. @8cm, MAP-ADAPT and [43] are directly
comparable with the Voxblox fixed-size on 8cm. Results for the fixed-size methods on
other resolutions are included in the supplementary material. We compute metrics per
quality level only based on the GT semantic regions that correspond to this level.

As shown in Table 1, both versions of MAP-ADAPT achieve performance similar to
fixed (1cm) reconstruction in regions where semantics are at the finest level. In regions
of semantics belonging to middle and coarse quality, MAP-ADAPT-S performs slightly
better than the corresponding fixed size [33] since we split the neighboring voxels of
fine-quality semantic voxels, thus these regions will be closer to ground truth points.
MAP-ADAPT-SG outperforms all methods in terms of completion error in the mid-
dle and coarse semantic regions as it generates finer resolution voxels in regions with
high geometric complexity even if their semantics are not allocated in the fine-quality
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set. The geometric error of MAP-ADAPT-SG does not show an advantage and is even
higher than [43] in the coarsest regions due to errors in the estimated camera pose. A
detailed reconstruction will lead to even higher geometric error if it is reconstructed in
the wrong position (see Section 4.1 for GT camera pose results). For the map recon-
structed using the fixed size method [33] with the finest quality (1 cm), the geometric
error in the coarse semantic regions is also large (5.11 ± 6.37cm). This result is re-
ported in the supplementary material. In contrast, [43] generates a relatively incomplete
reconstruction (higher completion error) in these challenging regions. This means there
are fewer points from which to compute the geometric error, which partially explains
the lower values. The other issue of [43] is that it generates overlapping mesh regions
across the individual semantic maps due to the noisy semantic estimation, as explained
in the related work. As a result, [43] performs significantly worse than MAP-ADAPT
in all semantic evaluation metrics.

An example of the generated map is shown in Figure 4 (top). The fixed-size Voxblox
versions provide less accurate geometry on the overall map as the quality level goes
from fine to coarse. This is visible with the increasingly brighter colored regions for
completion and geometric errors. For Muti-TSDFs [43] and MAP-ADAPT, we can ob-
serve the adaptive reconstruction from the various errors per semantic quality level.
The red regions (fine quality) in the GT semantic map have darker colors in the vi-
sualizations of completion and geometric error, and the blue regions (coarse quality)
are brighter in the error map. Comparing ours with [43], the completion error maps of
MAP-ADAPT-S and MAP-ADAPT-SG are darker throughout the scene. On the geo-
metric error map, we generally have a better result. However, objects with high error
(e.g. chandelier) are not reconstructed in [43], explaining why it has less geometric er-
ror on average, as stated above. In the geometric complexity color map, we observe that
MAP-ADAPT-SG manages to capture regions having rich geometric information and
those regions have much less error compared to MAP-ADAPT-S. We highlighted re-
gions with high geometric complexity (guitar) and with high-quality semantics (plant),
where MAP-ADAPT-SG generates the most detailed and sharp reconstruction.

We also report the map size and runtime per method in Table 2. Compared to
Voxblox (1cm), MAP-ADAPT-S occupies 3.5 times less memory and is also faster
in updating the TSDF values. MAP-ADAPT-SG needs more storage and time since it
reconstructs more high-quality regions but still consumes less than Voxblox (1cm). In
contrast, [43] takes substantially more time to perform TSDF updates since [43] gen-
erates multiple TSDF maps per instance and requires an additional process to track.
Both versions of MAP-ADAPT need more time to generate the mesh due to the com-
plex generation of meshes on the border of different voxel resolutions. However, mesh
generation is only executed once at the end of reconstruction. We provide statistics and
analysis on voxel percentage per quality level in the supplementary material.
ScanNet Dataset. To understand the behavior of MAP-ADAPT given real-world RGBD
frames, we evaluate on the ScanNet dataset [4]. It consists of 3D scenes on the scale of a
room and includes 3D mesh reconstructions, as well as the sequences of RGBD frames
that were used for the reconstruction. We evaluate our approach on 38 randomly se-
lected scenes from the open validation set.6 The results are in Table 3. We can observe

6 We employ the validation set since the test set does not have publicly available annotations.
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drawer cushion potted plant

bed chair picture

table table lamp no label

cabinet sofa white board

counter sink other structure

other large boxfloor other prop

Error [m] Geometric complexity

Fig. 4: Reconstruction results per method. Top example is on HSSD and bottom one on Scan-
Net datasets. Geometric and completion errors are shown as heatmaps; the darker the color, the
closer to the GT geometry. For semantic map, results are colorized per quality level; different se-
mantics in the same quality level range from brighter to darker. Another heatmap is used to show
the estimated geometric complexity. We highlight regions that are classified into high-quality se-
mantics (red block) or have large geometric variance (orange block). Best viewed on screen.

that all methods perform less well on this real-world dataset, given the blurriness in
the frames and noisy sensors. Despite this, MAP-ADAPT achieves comparable results
to fix-size (1cm) on fine-quality regions and performs better in semantic accuracy and
completion error on coarser regions. Results of [43] are similar to the HSSD dataset.
An example of the generated maps is in Figure 4 (bottom). Fixed-size Voxblox has a
similar behavior as on HSSD, and so does ours – e.g., error maps are comparable per
quality level. MAP-ADAPT-S and MAP-ADAPT-SG still provide lower completion
error over all quality levels vs. [43]. The map reconstructed by [43] exhibits a more
irregular structure with more holes in the cabinet and several ghost meshes, indicating
that it is more affected by the noisy pose estimation and depth data.
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Table 2: Evaluation on map size and runtime. Best values are bold. Best of multi-resolution
methods are in underlined bold. Note that update TSDF is processed at each frame, whereas
mesh generation only needs to be executed once at the end.

Method Map Size
(MB) ↓

Runtime (ms) ↓
Update TSDF Generate Mesh

Voxblox [33] (1cm) 1225.30 89.61 ± 14.16 631.66 ± 307.50
Voxblox [33] (4cm) 60.39 46.02 ± 7.47 31.76 ± 11.15
Voxblox [33] (8cm) 12.53 39.86 ± 6.40 8.83 ± 2.90

Multi-TSDFs [43] 266.91 201.45 ± 212.02 203.81 ± 155.16
MAP-ADAPT-S 265.21 54.62 ± 10.99 638.55 ± 384.82

MAP-ADAPT-SG 469.85 71.79 ± 11.87 1252.54 ± 606.16

Table 3: Evaluation per quality level on Scannet [4]. @XXcm represents the evaluation on the
regions of semantics corresponding to the resolution level of XX (cm). Best values per evaluation
level are in bold.

Method Reconstruction
Quality (cm)

Completion
Error (cm) ↓

Compl. <5cm
Ratio (%) ↑

Geometric
Error (cm) ↓

Semantic
Accuracy (%) ↑

Semantic
mIoU (%) ↑

@
1c

m

Voxblox [33] (fixed) Fine [1] 3.21 ± 4.92 82.61 7.08 ± 13.38 10.36 6.60
Multi-TSDFs [43] Multi-level [1-4-8] 3.75 ± 5.69 77.42 5.53 ± 10.47 6.55 4.41
MAP-ADAPT-S Adaptive [1-4-8] 3.36 ± 5.20 81.57 6.31 ± 11.51 10.40 6.60

MAP-ADAPT-SG Adaptive [1-4-8] 3.27 ± 5.03 82.27 6.84 ± 12.99 10.36 6.59

@
4c

m

Voxblox [33] (fixed) Middle [4] 4.93 ± 6.52 69.52 7.90 ± 14.80 9.07 5.76
Multi-TSDFs [43] Multi-level [1-4-8] 4.43 ± 6.80 74.94 6.95 ± 13.28 4.47 3.23
MAP-ADAPT-S Adaptive [1-4-8] 4.24 ± 6.22 75.62 8.02 ± 14.84 8.89 5.71

MAP-ADAPT-SG Adaptive [1-4-8] 3.91 ± 6.02 78.82 8.58 ± 16.20 9.00 5.73

@
8c

m

Voxblox [33] (fixed) Coarse [8] 6.48 ± 7.30 55.36 11.43 ± 17.92 19.05 8.94
Multi-TSDFs [43] Multi-level [1-4-8] 5.23 ± 7.02 67.00 9.02 ± 15.02 14.10 5.28
MAP-ADAPT-S Adaptive [1-4-8] 5.01 ± 6.64 67.77 9.94 ± 16.07 19.05 8.94

MAP-ADAPT-SG Adaptive [1-4-8] 4.27 ± 6.19 74.51 9.48 ± 15.82 19.05 8.94

4.1 Ablation Studies

In this section, to further evaluate our design choices, we provide additional experiments
on all 43 scenes from the HSSD dataset with 1 random semantic quality allocation.
GT pose and semantics: In Table 4, we further evaluate the geometric metrics of all
methods when using GT camera pose and semantic information as input. A full table
with semantic evaluation is in the supplementary material. As with estimated input,
MAP-ADAPT-S has similar results to the corresponding fixed-size Voxblox on regions
of different quality. Although the results of all methods are significantly improved,
MAP-ADAPT-S and MAP-ADAPT-SG outperform Multi-TSDF [43] on both geomet-
ric and completion errors in the fine quality. Without the noise of estimated poses, ob-
jects will not be reconstructed in wrong positions. Therefore, [43] cannot benefit from
an incomplete reconstruction when computing the geometric error. In the coarser re-
gion, multi-TSDFs [43] achieve less completion and geometric error due to a more
accurate TSDF estimation in large voxels. Nevertheless, this region requires less fo-
cus, since the objective is to maintain rough reconstruction on them and build a higher
quality map for other semantics.
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Table 4: Ablation Study. Results on HSSD with GT camera pose and 2D semantic segmentation.
We also investigate the impact of adaptive raycasting and neighborhood split. Best values per
evaluation level are in bold, second best in underlined bold.

Method Reconstruction
Quality (cm)

Completion
Error (cm) ↓

Compl. <5cm
Ratio (%) ↑

Geometric
Error (cm) ↓

@
1c

m

Voxblox [33] (fixed) Fine [1] 0.29 ± 0.22 99.99% 0.36 ± 0.37
Multi-TSDFs [43] Multi-level [1-4-8] 0.34 ± 0.56 99.71% 0.79 ± 1.62
MAP-ADAPT-S Adaptive [1-4-8] 0.27 ± 0.22 99.99% 0.37 ± 0.42

MAP-ADAPT-SG Adaptive [1-4-8] 0.29 ± 0.23 99.99% 0.37 ± 0.41
w/o adaptive raycasting Adaptive [1-4-8] 0.40 ± 0.31 99.98% 0.38 ± 0.35
w/o neighbor splitting Adaptive [1-4-8] 0.29 ± 0.27 99.98% 0.67 ± 2.01

@
4c

m

Voxblox [33] (fixed) Middle [4] 0.92 ± 1.15 98.55% 1.96 ± 1.96
Multi-TSDFs [43] Multi-level [1-4-8] 0.99 ± 2.39 96.85% 1.57 ± 2.20
MAP-ADAPT-S Adaptive [1-4-8] 0.85 ± 1.13 98.66% 1.83 ± 1.93

MAP-ADAPT-SG Adaptive [1-4-8] 0.49 ± 0.64 99.83% 0.90 ± 1.33
w/o adaptive raycasting Adaptive [1-4-8] 0.47 ± 0.54 99.89% 0.84 ± 1.30
w/o neighbor splitting Adaptive [1-4-8] 0.72 ± 0.88 99.59% 1.99 ± 2.57

@
8c

m

Voxblox [33] (fixed) Coarse [8] 1.43 ± 1.77 95.54% 1.42 ± 2.10
Multi-TSDFs [43] Multi-level [1-4-8] 0.87 ± 1.92 98.13% 0.75 ± 1.47
MAP-ADAPT-S Adaptive [1-4-8] 1.32 ± 1.64 96.33% 1.24 ± 1.90

MAP-ADAPT-SG Adaptive [1-4-8] 0.85 ± 1.13 98.90% 0.73 ± 1.18
w/o adaptive raycasting Adaptive [1-4-8] 0.86 ± 1.14 98.87% 0.72 ± 1.19
w/o neighbor splitting Adaptive [1-4-8] 1.19 ± 1.36 97.61% 1.24 ± 1.87

Adaptive raycasting: Table 4 shows results on MAP-ADAPT-SG without adaptive
raycasting, i.e., using a single virtual grid for coarse level (8 cm) to decide if a point
should be updated to voxels of all resolutions. Compared to using adaptive raycasting,
results in coarser regions are not affected. However, completion error increases in fine
regions where many holes appear. Visualization is in supplementary material.
Neighbor splitting: We provide results of MAP-ADAPT-SG without splitting neigh-
boring voxels to the same resolution of a query voxel when that gets split to a finer
resolution. In fine regions, although MAP-ADAPT-SG without split achieves a simi-
lar completion error, it has a significantly higher geometric error due to ghost meshes
generated at the boundaries of voxels in different resolutions.

5 Conclusion

We present MAP-ADAPT, the first real-time quality-adaptive semantic 3D reconstruc-
tion method that creates a single map with regions of different quality levels. We show-
case its performance in an end-to-end reconstruction pipeline on a simulated and a
real-world dataset. When compared to baselines, it provides a lightweight semantic
3D map that is comparable or superior in geometric and semantic accuracy to using a
fixed-sized map. Compared to the only other method that creates maps of different res-
olutions leveraging semantic information [43] – albeit individual object-instance-based
ones, our method generates more detailed and complete reconstructions without dupli-
cate information across resolutions.
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