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Abstract. Unsupervised Domain Adaptation (UDA) is the task of bridg-
ing the domain gap between a labeled source domain, e.g., synthetic
data, and an unlabeled target domain. We observe that current UDA
methods show inferior results on fine structures and tend to oversegment
objects with ambiguous appearance. To address these shortcomings, we
propose to leverage geometric information, i.e., depth predictions, as
depth discontinuities often coincide with segmentation boundaries. We
show that naively incorporating depth into current UDA methods does
not fully exploit the potential of this complementary information. To this
end, we present MICDrop, which learns a joint feature representation by
masking image encoder features while inversely masking depth encoder
features. With this simple yet effective complementary masking strategy,
we enforce the use of both modalities when learning the joint feature
representation. To aid this process, we propose a feature fusion module
to improve both global as well as local information sharing while being
robust to errors in the depth predictions. We show that our method can
be plugged into various recent UDA methods and consistently improve
results across standard UDA benchmarks, obtaining new state-of-the-art
performances. Project Page: https://github.com/ly-muc/MICDrop

Keywords: Domain Adaptation · Semantic Segmentation · Depth Guid-
ance

1 Introduction

The computer vision community has seen tremendous success in recognition
tasks over the years, yet the issue of efficiently sourcing large volumes of labeled
images for supervised training of neural networks persists. This problem is
especially pronounced in semantic segmentation, where manually creating labels
is particularly labor-intensive [7, 43]. Alternatively, images can be obtained at a
large scale from a simulator, which can also easily generate the corresponding

https://github.com/ly-muc/MICDrop
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Fig. 1: Previous UDA methods such as MIC [23] struggle with the segmentation of fine
structures (top row) and oversegmentation of difficult objects (bottom row). Therefore,
we propose MICDrop to improve semantic segmentation UDA with depth estimates,
which can capture fine structures and are consistent within object boundaries. We apply
MICDrop to four different methods on the GTA→Cityscapes benchmark and show
consistent improvements.

segmentation labels. In that scenario, models are often trained on synthetic
datasets and later applied to real-world data. This transition frequently results in
a noticeable performance decline due to the variance in data distribution between
the synthetic source and real-world target sets (e.g . appearance of objects), a
phenomenon known as domain shift. Therefore, conventional training mostly
considers datasets where the training and test data are drawn from the same
distribution. However, this assumption often breaks in real-world applications
under domain shifts. Recognizing these challenges, researchers have been exploring
ways to minimize or eliminate the need for annotated data from the target domain.
This paper focuses on Unsupervised Domain Adaptation (UDA), where a model
is trained using labeled data from a synthetic source domain and unlabeled data
from a real-world target domain.

Current challenges in UDA. Recent UDA methods [4, 20, 21, 23, 56] are
able to significantly reduce the gap to methods trained in a fully supervised
fashion on the target domain. However, state-of-the-art methods struggle with
two main aspects shown in Fig. 1: (1) Despite using high-resolution strategies such
as HRDA [21], they still face problems with fine structures and high-frequency
details. (2) UDA methods are prone to oversegmentation when visual appearance
clues are ambiguous. These issues motivate us to look into scene representations
that are more robust to appearance changes and provide precise boundaries to
strengthen the existing UDA models.

Complementary representation. An appearance-based image representation
is essential to our task, however, a geometric representation could provide com-
plementary cues when it comes to segmentation. In particular, the correlation
of depth and segmentation boundaries can help to address challenges (1) and
(2), as shown in Fig. 1. First, a pole might blend with a building behind it in
color, but its depth profile is distinct, simplifying its segmentation. Second, the
back of the truck might have visual features that could also be part of a building.
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However, the depth is smooth within the boundaries of the truck, suggesting
that the semantic class should be consistent. While actively measured depth
might not be available, advances in image-based depth estimation [10, 60] enable
us to explore the task in a general setting. Previous works [13, 27, 53] in UDA
have focused on improving the learning process via an auxiliary depth predic-
tion task. In such multi-task learning settings, a network is trained to predict
both depth and semantics from RGB inputs. However, multi-task learning adds
additional complexity, including balancing multiple network branches and their
corresponding losses, to the already challenging UDA setting.

Contributions. We propose a more streamlined approach: Instead of engaging
in multi-task learning, we treat it as a modality fusion problem. Rather than
producing multiple outputs from a single input (one-to-many), we redefine
and simplify the task as a many-to-one prediction problem. With semantic
segmentation as our output and readily available depth estimates, we study two
research questions: First, what is the most effective method to fuse features from
two modalities in a UDA context? Second, how can we utilize existing work and
design our method as a plugin network that seamlessly integrates with pretrained
models, thereby eliminating the need for extensive retraining?

We integrate our findings into MICDrop, a novel framework for leveraging
depth in domain-adaptive semantic segmentation. Our framework is based on
a novel cross-modality complementary dropout technique along with a tailored
masking schedule. Our masking strategy mitigates the tendency of the network
to underutilize additional depth features, as is prevalent in multi-modal learning,
and becomes more pronounced with pretrained networks. In particular, we foster
cross-modal feature learning by strategically corrupting both RGB and depth
features in a complementary manner, enforcing the utilization of the different
modalities to fill in masked information. To integrate information from both
modalities effectively, we also propose a cross-modality feature fusion module. It is
designed to integrate global and local cues from one modality to the other. First,
it computes depth feature similarities to aggregate RGB features based on the
resulting attention map, aiding the RGB feature aggregation with global depth
cues. This is particularly beneficial for segmenting objects that the RGB encoder
struggles to represent accurately but have a smooth depth profile. Second, it
applies local self-attention to depth features, leveraging the discontinuity in local
depth for describing boundaries, a critical factor in identifying thin structures.
This approach yields significant improvements over various recent UDA methods
on two standard benchmarks while only requiring the training of a light-weight
plugin network for a low number of iterations. Thus, MICDrop (w/ DAFormer)
can be trained within 11 hours on a single GTX Titan X GPU (12 GB).
In summary, our key contributions are:

– A complementary feature masking strategy for depth and RGB, foster-
ing cross-modal feature learning.

– A cross-modality fusion module to improve segmentation based on depth
by using global and local cues.
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– Comprehensive ablations demonstrating MICDrop’s efficacy, with improve-
ments ranging from 0.7 to 1.8 mIoU across four recent UDA methods
on the GTA→Cityscapes benchmark.

By showing that complementary geometric information even improves modern
high-resolution, Transformer-based UDA methods, we hope to lay the foundation
for future research exploring the merits of auxiliary modalities for semantic
segmentation UDA.

2 Related Work

Unsupervised Domain Adaptation (UDA). In UDA, methods have access
to labeled source and unlabeled target data at training time and can mostly
be categorized into two primary groups. The first one utilizes a Generative
Adversarial Network (GAN) [11] to align input images [17], image features [18], or
output features [42,48,51] across domains. The second stream of works are built on
self-training [12,28]. Here, pseudo labels are created using a teacher network [1,45].
These labels can be further refined using confidence thresholds [35,65,68] and
pseudo label prototypes [36,63,64]. The student model then receives an image
version with cross-domain class mix [46, 67] and color augmentations [1]. The
self-training can further strengthened by domain-robust Transformers [20, 40, 61],
class-balanced sampling [20,68], multi-resolution adaptation [21], or contrastive
learning [4, 56]. Our proposed MICDrop builds on the self-training paradigm.

Depth in Semantic Segmentation. Several works in semantic segmentation
have shown the merits of leveraging geometric cues. In one branch of work [19,
29, 41, 49, 52, 53], depth estimation is only used as an auxiliary task. Different
from that, some methods [32,59,66] explore multi-task learning from RGB input,
in which depth is another output target. Similar multi-task studies [13,24,27,53]
have also been made in the context of UDA. In both cases, this requires a bi-
directional feature exchange across modalities. Our method, however, is more
closely related to RGB-D semantic segmentation [5, 26], in which both RGB and
depth are input, while semantic segmentation is the only output, and hence we
focus on a uni-directional feature refinement from depth to RGB. In our case,
depth also serves the purpose of reducing the domain gap further. While some
methods [26,44,59] uses variants and extensions of the Squeeze-and-Excitation
Block [25] for cross-modal feature fusion, more recent methods [5,32,54,62] propose
softmax attention-based aggregation. Inspired by their success, we propose a
combination of an excitation block for local windows and a cross-attention block
for global reasoning. Crucially, we use a depth-guided attention map, thereby
enhancing uni-directional guidance using geometric data. In contrast to previous
RGB-D works such as [5, 31, 62], we leverage both local and global dependencies
for domain-robust depth-to-segmentation refinement. We show in Tab. 3b that
leveraging geometric cues is not trivial in the context of UDA and conventional
cross-attention fails here.
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Fig. 2: Method overview. Our proposed architecture is visualized on the left side. We
use a light-weight hierarchical depth encoder and process the features in our proposed
cross-modal feature fusion module. On the right side, we illustrate our training pipeline,
in which source and target images are fed through the student encoders. Then, our
proposed cross-modality complementary dropout is applied to the corresponding features
on each feature resolution. Finally, we feed them through our fusion block, followed by
the decoder, to make a final prediction.

Masked Image Modeling (MIM). MIM is a powerful method for self-
supervised pretraining. In this approach, information is withheld in order to train
the network to recover certain targets. Such reconstruction targets can range from
RGB inputs [14, 58], to HOG features [55], to visual tokens [3, 8]. MultiMAE [2]
shows the benefits of using masking of input patches in supervised multi-task
learning by using a shared encoder and modality-specific decoder. In contrast
to their work, we propose complementary masking in a UDA setup on a multi-
resolution feature level in separate encoders (instead of input masking), enabling
the use of pretrained RGB encoders. MIC [23] applies MIM to UDA to improve
context reasoning. Different from MIC, we propose a novel complementary multi-
modal feature dropout to facilitate cross-modality learning instead of only masking
RGB inputs for context enhancement. In Sec. 4.2, we show that complementary
feature dropout is orthogonal and further boosts networks trained with MIC.

3 Method

Overview. In Fig. 2, we present our method, featuring two novel modules
that can be plugged into various UDA methods to leverage geometric cues. Our
feature fusion module (Sec. 3.1) integrates auxiliary inputs, e.g ., depth, into RGB
features. It fuses global and local information via attention-based aggregation.
Our masking module (Sec. 3.2) ensures balanced input use, avoiding pure reliance
on a single input modality such as RGB or depth. We outline UDA training
essentials before diving into the details of the multi-modal feature fusion module
and the masking strategy.
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Problem Definition. We tackle the problem of unsupervised domain adaptation,
in which we have access to labeled source data (Xs, Ys) and unlabeled target
data (Xt) to train a neural network. The goal is to bridge the domain gap between
Xs and Xt. The performance is measured on a labeled hold-out validation set of
the target domain. In this work, we focus on RGB images and depth images as
input and semantic segmentation as output.

Preliminaries. Training a network on a source domain typically follows standard
supervised methods. However, overcoming the domain gap with the target domain
requires leveraging the unlabeled target data. Recent approaches, such as those
in [1, 20, 21, 23, 46, 47, 56], adopt a student-teacher framework. In this framework,
the teacher network is updated each training iteration as an exponential-moving
average (EMA) [45] of the student network. This EMA teacher generates pseudo
labels on the target images, which in turn act as a supervisory signal (Xt,
Ỹt) to the student. We follow standard practice [46] and present the student
with a heavily augmented view while presenting the teacher with a weakly
augmented view of an image. Additionally, we note that most methods use
hierarchical encoders to produce multi-resolution feature maps, enhancing fine-
grained segmentation. We study the effectiveness of our proposed method by
extending existing pretrained hierarchical encoders [20,21] to leverage depth. The
depth estimates are obtained from RGB images. If stereo image pairs are available,
we utilize UniMatch [60]. If not, we use the monocular method MonoDepth2 [10].

3.1 Multi-Modal Feature Fusion

First, we study the fusion of features from different modalities. Our goal is to
have a light-weight training pipeline, which can make use of already existing work
in UDA. For that purpose, we construct a multi-modality encoder that contains
two individual encoders, one for RGB features and one for depth features. The
depth features come from a newly trained, light-weight depth encoder, while the
RGB features come from a pretrained RGB feature encoder. As state-of-the-art
encoders typically output multi-scale feature levels, we perform feature fusion
separately on each level. Different from multi-task learning, in which features
from different modalities are all refined, our goal is solely to improve semantic
segmentation. Thus, we focus on a unidirectional refinement, i.e., the depth
features are used to enrich the RGB features but not vice-versa. As can be
seen in Fig. 3, we divide our feature fusion block into (1) global depth-guided
cross-attention, (2) local self-attention and (3) final residual fusion.

Global Depth-Guided Cross-Attention. Intuitively, similarities in depth
features can provide a strong cue towards the same semantic class. For example,
large objects like bus or train exhibit similar gradual changes within their object,
while thin structures such as pole or sign typically exhibit rapid depth changes
relative to their surroundings. Such additional cues could serve as a correctional
and complementary signal to the RGB features when predicting the semantic class.
Thus, the purpose of this branch is to aggregate RGB features globally based on
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Fig. 3: Feature fusion of RGB and
depth. The presented method comprises
two key components: a global and a local
attention module. The local attention mod-
ule refines information coming from depth
within a local window by using sigmoid
gates. In contrast to that, the global at-
tention module aggregates image features
based on similarity in their corresponding
depth features, and thus providing more
global context. Finally, the residual feature
fusion block fuses all features.

their corresponding depth feature similarity. For such a global aggregation across
different tasks, one natural choice would be cross-attention.

However, directly using (global) attention usually exhibits problematic scaling
behavior. Given an input x ∈ RH×W×C , the standard attention [50] has a
complexity of O((HW )2C +HWC2) making it computationally infeasible for
our case. We, therefore, bilinearly downsample high-resolution feature maps to
reduce the spatial dimensions before applying cross-attention. During training, we
sample feature maps with a pooling factor of {4, 2, 1, 1} for low- and high-level
features, respectively. Conversely, during inference and pseudo-label generation,
this pooling is adjusted to {2, 1, 1, 1} and thus only applied to low-level features.

Given potentially downscaled depth features Fi
depth at level i, we obtain

depth-based queries Qdepth and keys Kdepth by using projection weights Wi
q and

Wi
k. The corresponding RGB features Fi

rgb are downscaled in similar fashion and
serve as values Vrgb after being projected by Wi

k. Formally, the cross-attention
for the aggregation is:

Fi
global = softmax

(
QdepthK

T
depth,√

dk

)
Vrgb (1)

Local Self-Attention. Modeling global interactions on a downsized resolution
might not be enough to capture the fine details of objects like sign or pole. Keeping
the same computational complexity problem for the self-attention of depth
features in mind, we argue that many important interactions for segmentation
happen within a local window. Specifically, depth discontinuities provide strong
cues for boundary regions among semantic classes, while smooth and continuous
depth indicate no change in semantics. Thus, we hypothesize that restricting the
self-attention to a local window would still capture important complementary
signals to the global information.

To model such dynamics, we draw inspiration from earlier work [16,59], in
which sigmoid gates were used successfully to control the local flow of information
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without adding a large computational overhead. In particular, we use two 3× 3
convolutions. The first convolution outputs features into a sigmoid function σ to
obtain a local attention map. We note that no pooling has been used, enabling
the network to model a precise local control flow. The second convolution is used
to refine the depth features, which are fed into a pointwise multiplication together
with the local attention map. As this branch is used to model complementary
features, we exclusively use depth features. Formally, we compute the local
self-attention as:

Fi
local = σ

(
Conv3×3

(
Fi

depth
))

⊙ Conv3×3

(
Fi

depth
)

(2)

Residual Feature Fusion. After aggregating global and local features, we
propose a simple two-step feature fusion block to fuse all aggregated features
as well as the original RGB features. At first, the depth-guided global features
Fi

global and local features Fi
local are concatenated (||) and fused through a 1× 1-

Conv-BN-ReLU block. After that, the original RGB features Frgb are added,
resulting in the refined features:

Fi
refined = Fi

rgb + ReLU(BN(Conv(Fi
global||Fi

local))) (3)

The refined features are then fed to a DAFormer head [20] for the final predictions.

3.2 Complementary Feature Masking

During initial experiments, we observe that simply providing estimated depth
and RGB images to the network does not enable the network to leverage the full
potential of all provided information. We refer the reader to Sec. 4.2 for details
of that analysis. We hypothesize that the network grows too confident in the
RGB encoder and thus dismisses complementary information from the depth
encoder, which limits adaptability to the target domain. To improve cross-modal
information exchange, we therefore introduce a cross-modal masking strategy. In
contrast to Masked Image Modeling in UDA [23], our method involves masking
the learned representation of different modalities on feature-level rather than
a single modality on input-level. Moreover, our masking strategy and schedule
are specifically designed to improve redundancy across modalities and prevent
getting stuck in local minima due to one encoder already being pretrained.

Complementary Dropout. For this, we propose using blockwise dropout [9] to
generate masked features. When masking only individual pixels, the information
could be easily restored from the neighborhood in the same modality without
requiring the other modality. When masking larger blocks, the network has to
understand the semantics of the other modality to recover the missing information.
We, therefore, opt to mask out whole blocks within the feature map according to
a predefined schedule. Furthermore, we hypothesize that learning complementary
features across modalities can be achieved best by masking the feature maps of
different modalities in complementary fashion. For example, if we mask 70% of
the RGB features, we would mask the remaining 30% in the depth features. This
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intuitively corrupts the information across modalities and forces the network to
rely on features from all modalities. Fig. 2 illustrates the idea of complementary
dropout. Formally, we define the complementary masking as:

Mrgb(u, v) = [γ > mt
r], γ ∼ Uniform(0, 1) (4)

Mdepth(u, v) = 1−Mrgb(u, v) (5)

where mt
r denotes the masking ratio at iteration t and (u, v) the block index of the

i-th feature map. To fulfill our goal of true cross-modal complementary masking,
we use the same masking across all feature map levels and experimentally validate
that design in Sec. 4.2. Conceptually, this avoids the recovery of features within
the feature pyramid of the same modality. Therefore, our method is designed to
foster the transfer of complementary information and to promote the learning of
potentially redundant information, which in turn increases robustness and reduces
sensitivity to domain-specific appearance changes.

Masking Schedule. Prior studies [9, 30] have highlighted the limitations of a
static masking ratio. In response, we adopt a dynamic masking ratio schedule for
RGB and depth features. This approach is particularly effective when using a
pretrained encoder for one modality and an untrained encoder for the other, as
it compensates for the initial disparity in feature quality. At the beginning of the
training, we keep a high proportion of depth features to accelerate the training
of the depth encoder and improve its feature quality. As training progresses,
the schedule is adjusted to gradually reduce depth feature retention, thereby
increasing the reliance on the RGB encoder. We note that this masking is only
applied during training but not during inference. This method not only promotes
an efficient exchange of information between modalities but also capitalizes on
the depth data to bolster semantic learning in the early stages of training.

4 Experiments

Datasets. We perform our experimental evaluation on two widely used UDA
benchmarks. The first one uses synthetic source data from the GTA [38] dataset,
which contains 24,966 images with a resolution of 1914×1052. The second bench-
mark uses SYNTHIA [39], which consists of 9,400 synthetic images with a
resolution of 1280×760. In both cases, the target dataset is Cityscapes [7], which
includes 500 validation images, each having a resolution of 2048×1024.

Depth Estimates. We obtain depth estimations for the source domain from
MonoDepth2 [10] via self-supervised monocular depth estimation trained on
image sequences from VIPER(GTA) [37] and SYNTHIA-SEQ. For Cityscapes,
we obtain disparity estimations from UniMatch [60] using stereo images trained
on a large synthetic dataset [34].

Metrics. Following previous studies, we report the mean Intersection over Union
(mIoU) in % over the 19 common categories shared by GTA and Cityscapes and
the 16 common categories shared by SYNTHIA and Cityscapes.
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Network Architecture. We use DAFormer [20] as our baseline model for
ablation studies, as it achieves a strong performance at high training and inference
speed. As depth feature extractor, we use the light-weight MiT-B3 [57]. To
demonstrate the plugin capability of our method, we additionally apply MICDrop
to the state-of-the-art methods HRDA [21] and MIC [23].

Training details. We use an AdamW [33] optimizer with a learning rate
of 6×10−5 for the depth encoder and 6×10−4 for the decode head and feature
fusion module. To address the limited scale of SYNTHIA, we align the learning
rate for all modules to the depth encoder. As learning rate schedule, we use
linear warm-up in the first 1.5k iterations and polynomial decay with factor 0.9
afterward. The EMA [45] teacher is updated with a momentum of α=0.999 at
each step. Following prior works [20, 23, 46], the batch size is set to 2, with data
augmentations such as color jitter, Gaussian blur, and cross-domain class mixing.
We initialize the RGB encoder and decode head with the publicly available pre-
trained weights [20,21,23] for our experiments. The depth encoder is initialized
with ImageNet weights. We keep the RGB encoder frozen and train the rest
of the network 20k iterations on both GTA [38] and SYNTHIA [39]. We use a
cross-entropy loss for both source and target images. We additionally apply a
forward pass without masking to reduce the feature distribution shift between
training and (unmasked) inference time. MICDrop can be trained in 11 hours
using a single GTX Titan X GPU (12 GB) with DAFormer and in 17 hours on
two Titan GPUs with HRDA.

4.1 Main Results

To validate the effectiveness of MICDrop and its capabilities as a plugin, we
evaluate its performance across the three state-of-the-art methods DAFormer [20],
HRDA [21], and MIC [23]. The results are shown in Tab. 1.

Starting with applying MICDrop to DAFormer [20] on GTA, the results
improve by 1.8 mIoU. Using the recent MIC pretrained model, we obtain improve-
ments by 1.2 mIoU. Remarkably, our method still improves over the strong HRDA
method by 1.0 mIoU. When we build on top of the currently best performing
model MICHRDA, we can further boost results by 0.7 mIoU, setting a new state of
the art in UDA semantic segmentation. Considering that the improvement is on
top of the best-performing SOTA approach on a saturating benchmark (94% of
the oracle performance), this gain can be considered significant. By plugging our
light-weight modules into each of these architectures and adding complementary
dropout, we achieve consistent improvements, clearly showing that leveraging
depth helps in closing the domain gap. Furthermore, the comparison to MIC
supports our hypothesis that our contributions are orthogonal to the successes of
input masking (MIM) in UDA.

Diving into the details of these improvements, we notice predominantly gains
in two types of objects. First, we see consistent improvements in classes of thin
structures such as poles, signs, or motorbikes. This is enabled by our design of
aggregating local depth features without using any pooling, as these local depth
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Synthetic-to-Real: GTA→Cityscapes (Val.)

AdaptSeg [48] 41.4 86.5 25.9 79.8 22.1 20.0 23.6 33.1 21.8 81.8 25.9 75.9 57.3 26.2 76.3 29.8 32.1 7.2 29.5 32.5
ADVENT [51] 45.5 89.4 33.1 81.0 26.6 26.8 27.2 33.5 24.7 83.9 36.7 78.8 58.7 30.5 84.8 38.5 44.5 1.7 31.6 32.4
DACS [46] 52.1 89.9 39.7 87.9 30.7 39.5 38.5 46.4 52.8 88.0 44.0 88.8 67.2 35.8 84.5 45.7 50.2 0.0 27.3 34.0
CorDA [53] 56.6 94.7 63.1 87.6 30.7 40.6 40.2 47.8 51.6 87.6 47.0 89.7 66.7 35.9 90.2 48.9 57.5 0.0 39.8 56.0
ProDA [63] 57.5 87.8 56.0 79.7 46.3 44.8 45.6 53.5 53.5 88.6 45.2 82.1 70.7 39.2 88.8 45.5 59.4 1.0 48.9 56.4

DAFormer [20] 54.2 85.7 66.8 81.5 27.3 20.4 46.4 53.2 63.0 84.5 32.1 72.9 71.9 45.0 90.5 60.7 58.8 0.1 23.2 46.4
+ MICDrop 58.3 95.2 69.1 88.1 26.0 27.7 48.8 55.2 63.6 89.6 49.5 90.3 72.0 45.4 91.4 63.3 61.1 0.0 23.8 46.7

AdaptSeg† [48] 47.8 85.2 20.4 85.5 38.2 30.9 34.5 43.0 26.2 87.4 40.3 86.4 63.6 23.7 88.6 48.5 50.6 5.8 33.1 16.2
DACS† [46] 58.2 88.9 50.0 88.4 46.4 43.9 43.1 53.4 54.8 89.9 51.2 92.8 64.2 9.4 91.4 77.3 63.3 0.0 47.4 49.8

DAFormer [20] 68.3 95.7 70.2 89.4 53.5 48.1 49.6 55.8 59.4 89.9 47.9 92.5 72.2 44.7 92.3 74.5 78.2 65.1 55.9 61.8
+ MICDrop 70.1 96.0 71.8 90.3 53.3 46.4 54.8 57.8 66.7 90.0 49.2 92.2 73.6 46.3 92.8 78.1 80.6 70.7 57.5 63.2

MICDAFormer [23] 70.6 96.7 75.0 90.0 58.2 50.4 51.1 56.7 62.1 90.2 51.3 92.9 72.4 47.1 92.8 78.9 83.4 75.6 54.2 62.6
+ MICDrop 71.8 96.5 74.2 90.8 60.5 52.0 55.8 59.9 65.6 90.3 51.8 93.0 73.1 46.9 93.4 82.0 85.8 74.3 56.6 62.8

HRDA [21] 73.8 96.4 74.4 91.0 61.6 51.5 57.1 63.9 69.3 91.3 48.4 94.2 79.0 52.9 93.9 84.1 85.7 75.9 63.9 67.5
+ MICDrop 74.8 95.8 71.1 91.5 62.8 55.0 60.8 64.0 73.4 91.3 49.1 94.0 79.2 54.6 94.4 84.8 88.5 79.0 65.9 65.5

MICHRDA [23] 75.9 97.4 80.1 91.7 61.2 56.9 59.7 66.0 71.3 91.7 51.4 94.3 79.8 56.1 95.6 85.4 90.3 80.4 64.5 68.5
+ MICDrop 76.6 97.6 81.5 92.0 62.8 59.4 62.6 62.9 73.6 91.6 52.6 94.1 80.2 57.0 94.8 87.4 90.7 81.6 65.3 67.8

Synthetic-to-Real: Synthia→Cityscapes (Val.)

ADVENT [51] 41.2 85.6 42.2 79.7 8.7 0.4 25.9 5.4 8.1 80.4 – 84.1 57.9 23.8 73.3 – 36.4 – 14.2 33.0
DACS [46] 48.3 80.6 25.1 81.9 21.5 2.9 37.2 22.7 24.0 83.7 – 90.8 67.6 38.3 82.9 – 38.9 – 28.5 47.6
CorDA [53] 55.0 93.3 61.6 85.3 19.6 5.1 37.8 36.6 42.8 84.9 – 90.4 69.7 41.8 85.6 – 38.4 – 32.6 53.9
ProDA [63] 55.5 87.8 45.7 84.6 37.1 0.6 44.0 54.6 37.0 88.1 – 84.4 74.2 24.3 88.2 – 51.1 – 40.5 45.6

DACS† [46] 52.2 58.0 46.0 84.8 37.7 5.2 38.6 20.9 47.3 85.9 – 81.6 73.0 43.9 86.9 – 55.6 – 51.1 18.6

DAFormer [20] 61.3 82.2 37.2 88.6 42.9 8.5 50.1 55.1 54.5 85.7 – 88.0 73.6 48.6 87.6 – 62.8 – 53.1 62.4
+ MICDrop 62.4 81.0 37.1 89.4 45.7 9.5 51.8 57.3 58.0 86.7 – 85.0 73.6 50.4 88.2 – 64.7 – 56.8 62.8

HRDA [21] 65.8 85.2 47.7 88.8 49.5 4.8 57.2 65.7 60.9 85.3 – 92.9 79.4 52.8 89.0 – 64.7 – 63.9 64.9
+ MICDrop 66.8 86.3 49.6 89.3 53.7 5.1 57.6 66.4 63.8 86.1 – 94.1 79.1 56.0 87.8 – 65.0 – 64.2 65.0

MICHRDA [23] 67.3 86.6 50.5 89.3 47.9 7.8 59.4 66.7 63.4 87.1 – 94.6 81.0 58.9 90.1 – 61.9 – 67.1 64.3
+ MICDrop 67.9 82.8 42.6 90.5 51.6 9.6 61.0 65.7 65.0 89.1 – 95.0 81.1 59.7 90.6 – 68.3 – 67.4 66.5

Table 1: Comparison of MICDrop with state-of-the-art UDA methods. The
performance is reported as IoU in %. We group methods based on ResNet [15] and
Segformer [57] backbones. † denotes results obtained with a Segformer backbone
from [22]. On both GTA and SYNTHIA, MICDrop achieves consistent improvements,
demonstrating the effectiveness of our masking strategy and fusion module.

continuities at boundary regions serve as a strong cue. Second, larger classes
of lower prevalence in the dataset, such as truck, bus, or train show generally
improved performance when adding MICDrop. In these cases, both global as well
as local depth features can help. Due to their size, global reasoning can improve
the consistency of their segmentation, but also the locally smooth, continuous
depth lower the likelihood of changes in the semantics within a local window.

We also benchmark MICDrop with a ResNet-101 architecture in the DAFormer
framework in Tab. 1. It shows a significant gain of 4.1 mIoU over the baseline
and outperforms the previous SOTA depth-guided UDA method CorDA [53].

Tab. 1 further provides results on SYNTHIA→Cityscapes. Also here, MICDrop
achieves consistent improvements over its baselines, i.e. 1.1 mIoU for DAFormer,
1.0 mIoU for HRDA, and 0.6 mIoU for MICHRDA. The improvements are slightly
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MICHRDA [23] 52.0 41.9 59.1 54.0 36.6 31.7 58.1 53.3 56.1 64.9 34.6 66.6 63.3 44.3 72.5 49.2 61.0 49.4 41.2 50.3
+ MICDrop 53.6 41.1 60.2 58.2 36.9 33.8 61.0 51.9 59.9 65.3 35.0 66.3 65.6 46.6 73.6 54.1 64.1 49.3 43.6 52.3
∆ +1.6 -0.8 +1.1 +4.2 +0.3 +2.1 +2.9 -1.4 +3.8 +0.4 +0.4 -0.3 +2.3 +2.3 +1.1 +4.9 +3.1 -0.1 +2.4 +2.0

Table 2: Boundary IoU on GTA→Cityscapes with a dilation factor of 0.005.

Target Image Estimated Depth MIC (HRDA) [23] MICDrop (ours) Ground Truth

Fig. 4: Qualitative results. These results show the improvements of MICDrop in
comparison to MIC (HRDA). We highlight improvements on thin structures, such as
pole and traffic sign, as well as on larger objects like trucks, busses and fences. In rows
1, 3, and 4, we can see that thin structures have a distinct depth profile, which helps in
predicting accurate boundaries. In rows 2, 4, and 5, we observe that the depth region
for the fence, bus, and truck is smooth, improving the consistency of the predicted
segmentation.

smaller than for GTA→Cityscapes, which might be caused by the smaller dataset
size of SYNTHIA, resulting in overfitting issues.

Boundary Analysis. Tab. 2 additionally studies the boundary IoU [6]. Com-
pared to the default IoU it improves by a significantly larger margin (1.6 vs 0.7),
supporting our hypothesis that MICDrop particularly improves segmentation
boundaries. The class-wise boundary IoUs further demonstrate that both classes
with fine structures (e.g . pole or sign) and classes that are prone to overseg-
mentation (e.g . truck and building) are improved, quantitatively supporting our
motivation in Fig 1.

Qualitative Analysis. In Fig. 4, we showcase a qualitative comparison with
the current state-of-the-art model. We note that the estimated depth exhibits
sharp discontinuities, providing strong cues for thin structures such as poles or
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traffic signs (cf . row 1, 3, and 4). Moreover, these examples demonstrate how the
piecewise smooth depth can help to mitigate oversegmentation of larger objects
by guiding the network to predict more consistent semantic segmentation within
depth contours, as can be seen for the truck, the bus, and fence (cf . row 2, 4,
and 5). Further qualitative comparisons with other methods are provided in the
supplementary material.

4.2 Ablation Studies

We start the experimental validation of our design choices by ablating our dropout
strategy. After that, we compare different operations for the task of feature fusion.
For a fair comparison, we also finetune the pretrained baseline model without any
changes using the same hyper-parameter described before but did not observe
any performance improvements (68.3 ±0.2 mIoU).

Cross-Modal Complementary Dropout. The ablation study in Tab. 3a
explores the impact of various masking strategies. All experiments use our
proposed feature fusion module. Adding depth information to our baseline without
masking increases the mIoU from 68.3 to 69.1 on the GTA dataset, showing the
promise of depth. However, we show experimentally that depth features are not
fully utilized by the decoder by testing simple masking strategies first.

When masking RGB features, the network can leverage depth information
marginally better by 0.2 percentage points, indicating that feature corruption,
when done right, could enhance cross-modal feature integration. However, ap-
plying independent masking to both RGB and depth features simultaneously
does not show improvements over no masking. As evident from a significantly
higher standard deviation, strategies in which the same regions in depth and
RGB might be masked make the training more unstable.

Notably, using the same complementary masking across all levels leads to
a substantial gain: an increase of 1.0 mIoU over the baseline with depth (with
or without independent masking) and 1.8 mIoU over the DAFormer baseline.
Furthermore, we show that true complementary masking is essential for effective
learning. For that ablation, we allow the network to recover masked features
from other feature levels as we apply complementary masking independently

Masking Strategy Masking RGB Masking Depth mIoU (↑)

Baseline (w/o Depth) ✗ ✗ 68.3 ±0.5
Baseline (w/ Depth) ✗ ✗ 69.1 ±0.2

Only RGB ✓ ✗ 69.3 ±0.1
Independent ✓ ✓ 69.1 ±0.6

Complementary (ours) ✓ ✓ 70.1 ±0.1
- Different per Level ✓ ✓ 69.7 ±0.1

(a) Dropout strategy ablation.

Fusion Operation mIoU (↑)

Baseline (no Depth) 68.3 ±0.5

Add 69.3 ±0.4
CMX [62] 68.6 ±0.3

Local Self-Attn 69.7 ±0.1
Global Cross-Attn 68.1 ±0.8

Local+Global (ours) 70.1 ±0.1

(b) Feature Fusion ablation.

Table 3: Ablation study. We use DAFormer [20] trained on GTA as our baseline
model. In (a), we study different dropout strategies. In (b), we ablate different designs
to fuse RGB and depth features. Mean and std. deviation are reported over 3 seeds.
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at each feature level, resulting in a 0.4 mIoU decrease. These findings support
that complementary masking plays a crucial role in effectively leveraging depth
information for semantic segmentation in UDA, as it achieves a great balance
between geometric and visual scene information.

Feature Fusion. The fusion of depth and RGB features is the essential block in
our RGB-D semantic segmentation. In Tab. 3b, we compare our proposed module
with different feature fusion operations. To best utilize both modalities, we deploy
our proposed complementary masking strategy across all tested feature fusion
operations. We first explore one simple fusion technique, namely feature addition.
The scores show that a naive feature fusion technique exhibits suboptimal perfor-
mance in our context. We further examine the SOTA RGB-D method CMX [62],
which fuses features at various encoder stages using cross-attention. However,
CMX only obtains a marginal improvement of 0.3 mIoU in the UDA setting.

Turning our focus to the individual efficacy of our proposed global and local
feature fusion blocks, we observed distinct outcomes. The local self-attention block,
employed independently, outperformed our naive addition baseline, indicating
its effectiveness in contextual feature integration. In contrast, the global depth-
guided cross-attention block, when used alone, failed to demonstrate improvement
and exhibited significant training instability, as evidenced by a high standard
deviation of 0.8 in mIoU. Analogous to the results observed with CMX, we
conjecture that these findings underscore the significance of controlling the
flow of local information in UDA. However, it is crucial to note that these
blocks were designed to complement each other. When combined, their synergy
becomes clear, validating our hypothesis that both local and global attention
mechanisms are indispensable for optimal performance. This combination led to
a notable improvement of additional 0.4 mIoU over local self-attention, achieving
an overall gain of 1.8 mIoU over the baseline [20]. In summary, our fusion module
effectively harnesses both global and local cues, significantly enhancing the overall
effectiveness of our RGB and depth feature fusion task.

5 Conclusion

We present a novel complementary dropout method specifically tailored for
UDA. Coupled with our cross-modal fusion module that combines RGB and
depth features, our approach consistently improves various recent UDA methods,
achieving state-of-the-art results. In particular, on both GTA and SYNTHIA,
MICDrop achieves a boost of 0.7 to 1.8 mIoU, depending on the method used
for encoding RGB features. Thus, MICDrop demonstrates the effectiveness of
utilizing depth in UDA without the need for retraining existing encoders, achieved
by adopting a many-to-one prediction framework rather than traditional multi-
task learning or auxiliary predictions. The plugin design of MICDrop is intended
to facilitate ease of integration into future domain-adaptive semantic segmentation
methods. We hope that our simple but effective approach inspires further research
into leveraging complementary cues in UDA.
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