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1 PFC Baseline
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Fig. 1: The overview of PFC baseline. The PFC baseline takes frozen voxel vision
CLIP features as inputs. We modified the segmentation head of a closed-set model so
that it can predict in-vocabulary class embedding. The classification score is predicted
by computing the cosin similarity between the predicted embedding and the text CLIP
embedding. During testing, we further apply per-mask vision feature pooling to ob-
tain out-of-vocabulary class embedding. The final per-mask classification logits are the
geometric ensemble of in-vocabulary and out-of-vocabulary classification results.

As there is no existing work for the 3D open vocabulary panoptic segmenta-
tion task, a natural idea would be to extend the 2D state-of-the-art open vocab-
ulary segmentation to 3D. We start by adapting the essential components from
FC-CLIP [7], a 2D open-vocabulary segmentation model that achieves state-of-
the-art performances across different datasets, to P3Former [4], a state-of-the-art
3D closed-set panoptic segmentation model. Since the models of FC-CLIP and
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P3Former are very different, we conduct some necessary changes to the archi-
tecture of P3Former. We name this baseline PCFormer+FC-CLIP (PFC). The
overall architecture of the PFC is shown in Fig. 1.
Vision CLIP feature extraction. FC-CLIP [7] demonstrates that frozen
CLIP features can produce promising classification performance on both base
and novel classes. In the same spirit, we construct a Vision CLIP feature extrac-
tor as follows: a pre-trained V-L segmentation model [1] is applied to extract
pixel-wise CLIP features from each camera image. Within each voxel, every Li-
DAR point is projected into its corresponding camera image based on the intrin-
sic and extrinsic calibration parameters, in order to index into the corresponding
vision CLIP features. The vision CLIP features of all the points belonging to each
voxel are then averaged to represent that voxel. The voxel CLIP features will be
referred as Fvclip ∈ RV×Demb , where V is the number of voxels after voxelization
and Demb is the dimension of the CLIP features. Note that the Vision CLIP
encoder is frozen and it is identical to the one in our proposed method.
Segmentation head. We use one learnable querie q to represent each instance
or thing. Queries matched with groudtruth objects are supervised with both
classification loss and mask loss. FC-CLIP [7] shows that the mask generation
is class-agnostic, and therefore we follow FC-CLIP and only modify the classi-
fication head to add a class embedding. Specifically, the class embedding fcls
prediction is defined as:

vq = fcls(q) ∈ RDemb , (1)
where vq is in the CLIP embedding space. The predicted class logits are then
computed from the cosine similarity between the predicted class embedding and
the text embedding of every category name from the evaluation set using a frozen
CLIP model. The classification logits are defined as:

svq =
1

T
[cos(vq, t1), cos(vq, t2), . . . , cos(vq, tC)] (2)

where ti ∈ RDemb , i ∈ {1, 2, . . . , C} is the text embedding, C is the number
of categories (CB in training and CB+CN in testing), and T is a learnable
temperature term that controls the concentration of the distribution. Following
FC-CLIP, we name this trainable classifier the in-vocabulary classifier. The
loss function, then, is L = wα ∗ Lcls + wβ ∗ Lmask, where Lcls and Lmask are
the softmax cross-entropy classification loss and mask loss, respectively. wα and
wβ are weights for classification loss and mask loss, respectively. Note that, for
classification, we apply a softmax cross-entropy loss instead of focal loss because
of the following ensembling process.
Geometric ensemble. Previous open-vocabulary works [1–3, 5, 7] show that a
trainable in-vocabulary classifier fails to make good predictions for novel classes.
During testing, we follow [5, 7], and construct an out-of-vocabulary classifier
that utilizes voxel Vision CLIP features to get an embedding for each query q
by mask pooling the Vision CLIP features:

wq =
1

|Mq|
∑
p

1(p ∈ Mq)Fvclip(p) (3)
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, where Mq is the set of points, p, belonging to the mask for query, q. The
out-of-vocabulary classification logits swq

can be computed as

swq =
1

T
[cos(vq, t1), cos(vq, t2), . . . , cos(vq, tC)] (4)

where the temperature term T is the same is the one in Eq. (2). Note that the
out-of-vocabulary classifier is frozen and is only applied during testing. The final
classification score is computed as the geometric ensemble of the in-vocabulary
classifier and out-of-vocabulary classifier for every class, i:

sgq (i) =

{
pvq (i)

1−αpwq
(i)α if i∈ CB

pvq (i)
1−βpwq (i)

β if i∈ CN

(5)

where pvq = softmax(svq ), pwq
= softmax(swq

) are the derived probabilities and
α, β ∈ [0, 1] are hyperparameters to control the contributions of in-vocabulary
classifier and out-of-vocabulary classifier. In practice, we try multiple pairs of
α, β and report the result of the best pair. We have found that α = 0 and β = 1
generates the best results for the PFC baseline in all different base/novel splits,
which indicates that the baseline solely relies on out-of-vocabulary classifier to
make predictions for novel classes.

2 Query Assignment
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Fig. 2: Visualization for the two strategies for query assignment.

For both the baseline and our method, a single query is used to represent
an individual object. This requires specific query assignment strategies to match
predictions with groundtruth base objects during training. FC-CLIP uses one set
of learnable queries to make predictions for base and novel classes. Therefore,
the same set of queries are matched with base thing and stuff objects. The
unmatched queries are potentially in charge of making predictions for novel
thing and stuff objects, as shown in Fig. 2 (a). In contrast, our method uses two
sets of queries. The first query set is used to represent base things classes after
bipartite matching, while the second, fixed, query set is for base stuff classes, as
shown in Fig. 2 (b). The separation of base things queries and base stuff queries
makes our model converge faster and improves overall performance.
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3 Intuition of Voxel-level Distillation Loss
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Fig. 3: Intuition of the voxel-level distillation loss (LV ). LV does not require any
labels during training and can be optimized on all queries and voxeles. Therefore,
it encourages the unmatched queries to make predictions in the voxels that have no
supervision from the base classes.

Fig. 3 illustrates the intuition behind the proposed voxel-level distillation loss
LV . LV is not dependent on any labels, and therefore, can be applied to all the
queries. For voxels belonging to base classes, all loss functions will be enforced
during optimization, including the two standard loss functions (per-query mask
classification loss Lcls and per-query mask prediction loss Lmask), the proposed
object-level distillation loss LO and the proposed voxel-level distillation loss LV .
For voxels belonging to queries that do not match to any labels, likely being novel
things or novel stuff objects, they will be mainly supervised by the proposed
voxel-level distillation loss LV . With the help of this loss, the unmatched queries
learn to make predictions in the voxels with no supervision from the base classes.
In this way, we enforce the supervision on all the queries and voxels and the model
can learn to produce meaningful predictions for both base and novel categories.

4 More Experimental Results

Queries in object-level distillation loss. In our loss function design for the
object-level distillation loss LO, we only enforce constraints on queries matched
with base classes. One natural question would be: can we apply the constraint on
all queries to improve predictions? We conduct an ablation study for this, with
results shown in Tab. 1. We consider PQ as the most important metric. When
we apply the object-level distillation loss to all queries, the overall performance
is slightly worse, especially for the novel stuff classes.
More splits. In order to show that our proposed method generalizes well in
different scenarios, we conduct experiments on two more random B12/N4 splits.
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Table 1: Impact of queries in LO. We conduct an ablation study comparing apply-
ing LO to matched queries vs all queries. The overall performance is better when we
only apply LO on matched queries.

Queries in LO PQ PQTh
N PQSt

N RQ RQTh
N RQSt

N SQ SQTh
N SQSt

N mIoU
Matched Only 62.0 49.6 35.2 70.9 55.6 46.0 87.0 89.1 76.7 60.1

All 61.0 49.9 25.4 70.0 56.3 34.4 86.3 74.3 88.7 60.5

Table 2: Performance of panoptic segmentation on nuScenes with a different
split. We compare the performance with a different split with 4 novel classes (B12/N4).
The novel things classes are construction vehicle and traffic cone. The novel stuff classes
are other-flat and man-made. Our method consistently outperforms the PFC baseline
across almost all the metrics by a large margin.

Model Type Supervision PQ PQTh
N PQSt

N RQ RQTh
N RQSt

N SQ SQTh
N SQSt

N mIoU

P3Former [4] closed-set full 75.8 76.4 86.9 83.8 84.8 98.3 90.1 89.8 88.4 78.2

PFC open-voc partial 49.9 22.5 14.0 59.6 26.9 21.9 85.6 82.9 61.0 53.8

Ours open-voc partial 55.4 23.2 24.7 62.9 26.0 29.8 85.6 87.6 69.3 55.0

As shown in Tab. 2 and Tab. 3, our method surpasses the PFC baseline in almost
all metrics across all the splits, demonstrating the capability of our proposed
method.
Performance on novel stuff classes. The performance of PFC baseline is al-
most 0 on novel stuff classes. To verify whether it is due to poor mask predictions
for the novel stuff calss, we conduct an oracle experiment by max-pooling vision
CLIP features with ground truth masks and then use its similarity with CLIP
text features to determine its category, and the results are shown in Tab. 4. We
achieve 53 RQ using ground truth mask, which demonstrate that the bad per-
formance of PFC baseline is indeed due to poor mask quality. Also, the low RQ
number shows that the prediction task on novel stuff class is very challenging.

5 Discussion

Class-agnostic mask generator. As shown in FC-CLIP [7], the mask head is
class-agnostic if we do not apply any penalty to unmatched queries. We follow
the same strategy in our paper. The metrics SQTh

N and SQSt
N in all experiments

indicate that the mask predictions for both things and stuff are reasonable.
Comparison with RegionPLC. RegionPLC [6] proposes to take advantage
of regional visual prompts to create dense captions. After point-discriminative
contrastive learning, the model can be used for semantic segmentation or in-
stance segmentation. There are two main differences between RegionPLC and
our method: 1. RegionPLC addresses the problem of semantic segmentation or
instance segmentation individually, while our model addresses semantic segmen-
tation and instance segmentation in the same model. 2. RegionPLC focuses on
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Table 3: Performance of panoptic segmentation on nuScenes with another
different split. We compare the performance with a different split with 4 novel classes
(B12/N4). The novel things classes are barrier, bus and truck. The novel stuff class is
drivable surface. Our method consistently outperforms the PFC baseline across almost
all the metrics by a large margin.

Model Type Supervision PQ PQTh
N PQSt

N RQ RQTh
N RQSt

N SQ SQTh
N SQSt

N mIoU

P3Former [4] closed-set full 75.8 71.1 96.2 83.8 78.8 99.9 90.1 90.1 96.3 78.2

PFC open-voc partial 43.1 16.4 2.1 51.6 20.0 3.0 79.8 83.8 69.7 43.5

Ours open-voc partial 53.1 31.0 35.1 63.0 35.2 53.8 82.3 87.7 65.3 50.5

Table 4: Performance on novel stuff classes. We compare the performance of
PFC, our method and the oracle setting that based on the GT masks on novel stuff
classes. The spilits are the same as in Tab. 1 of the main paper.

mIoU PQ RQ SQ
PFC 4.38 0.5 0.83 60.44
Ours 45.14 35.25 45.97 76.69

Oracle (GT Masks) 51.39 52.61 53.00 99.26

getting point-level discriminative features, while our model takes the pretrained
CLIP features as input and aims to build model architecture and design loss
functions. In our method, we do not compare with RegionPLC because the ex-
periment settings are different and there is no public code to reproduce the
contrastive learning process. However, we do think there is great potential in
combining RegionPLC and our method. One idea would be to replace the vision
CLIP features in our model with the features derived from RegionPLC.

6 Visualization

We present the visualization of PFC baseline, our method and groundtruth
in Fig. 4 and Fig. 5. Note that we only visualize the points that are visible
in frontal camera views in Fig. 5.
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Fig. 4: Qualitative Results in nuScenes Dataset. We present the comparison among
PFC, our method and the groundtrth. The novel objects are marked in bold in the
legend.
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Fig. 5: Qualitative Results in SemanticKITTI Dataset. We present the comparison
among PFC, our method and the groundtrth. The novel objects are marked in bold
in the legend.
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