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Abstract. 3D panoptic segmentation is a challenging perception task,
especially in autonomous driving. It aims to predict both semantic and
instance annotations for 3D points in a scene. Although prior 3D panop-
tic segmentation approaches have achieved great performance on closed-
set benchmarks, generalizing these approaches to unseen things and un-
seen stuff categories remains an open problem. For unseen object cate-
gories, 2D open-vocabulary segmentation has achieved promising results
that solely rely on frozen CLIP backbones and ensembling multiple clas-
sification outputs. However, we find that simply extending these 2D mod-
els to 3D does not guarantee good performance due to poor per-mask
classification quality, especially for novel stuff categories. In this paper,
we propose the first method to tackle 3D open-vocabulary panoptic seg-
mentation. Our model takes advantage of the fusion between learnable
LiDAR features and dense frozen vision CLIP features, using a single
classification head to make predictions for both base and novel classes.
To further improve the classification performance on novel classes and
leverage the CLIP model, we propose two novel loss functions: object-
level distillation loss and voxel-level distillation loss. Our experiments
on the nuScenes and SemanticKITTI datasets show that our method
outperforms the strong baseline by a large margin.

Keywords: Autonomous driving · 3D panoptic segmentation · Vision-
language

1 Introduction

3D panoptic segmentation is a crucial task in computer vision with many real-
world applications, most notably in autonomous driving. It combines 3D seman-
tic and instance segmentation to produce per-point predictions for two different
types of objects: things (e.g ., car) and stuff (e.g ., road). To date, there has been
significant progress in 3D panoptic segmentation [27, 40, 42, 47, 52, 58]. Most
recently, methods such as [47] produce panoptic segmentation predictions di-
rectly from point clouds by leveraging learned queries to represent objects and
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Transformer-based [45] architectures [2, 4] to perform the modeling. However,
existing models only predict panoptic segmentation results for a closed-set of
objects. They fail to create predictions for the majority of unseen object cate-
gories in the scene, hindering the application of these algorithms to real-world
scenarios, especially for autonomous driving. In this work, we focus on segment-
ing unseen things and unseen stuff objects in autonomous driving scenarios. We
follow [10,53] and develop models under the open-vocabulary setting: we divide
the object categories into base (seen) categories and novel (unseen) categories,
and evaluate models that are only trained on base categories.

Such open-world computer vision tasks [3] benefit from the recent advance-
ments in vision-language (V-L) models [22, 39]. In 2D vision, there are many
successful methods in open-vocabulary object detection [12,15,24] and segmen-
tation [11,50,54]. These methods make predictions in a shared image-text embed-
ding space, where predictions for unseen categories are produced by comparing
the similarity of an object with the text embedding of the category. However,
these methods are only possible due to the vast amounts of paired image-text
data available, making it difficult to train similar models for 3D data.

Instead, researchers have continued to leverage the effectiveness of these 2D
vision-language models for 3D with the help of pixel-point correspondences by
running inference on 2D images and then aligning with the 3D features. These
methods have achieved promising results on open-vocabulary semantic segmen-
tation [10,35,53,55] and instance segmentation [10,43,53], individually. However,
there are no methods that address the problem of 3D open-vocabulary panoptic
segmentation, i.e., addressing both open-vocabulary semantic segmentation and
open-vocabulary instance segmentation at the same time. The challenge lies in
how to handle segmentation for novel things and stuff objects simultaneously.

3D open-vocabulary panoptic segmentation is a challenging problem, due to
both the significant domain gaps between the camera and LiDAR modalities
and unsolved problems in open-vocabulary segmentation. Many existing open-
vocabulary works rely on similarities between text embeddings of class names
and pre-trained V-L features to obtain associations between predictions and
classes [35,43,55]. However, while projecting 2D V-L features to 3D can account
for a large part of the scene, there are often many points unaccounted for due to
unmatched pixel/point distributions and differing fields of view between sensors.
Some 3D open-vocabulary works [10,53] apply contrastive learning to obtain bet-
ter association between language and points, but they require extra captioning
models and do not address the difficulties of detecting novel stuff classes.

In this work, we aim to address these two issues with a novel architecture for
3D open-vocabulary panoptic segmentation. Building on existing 3D closed-set
panoptic segmentation methods, we train a learned LiDAR feature encoder in
parallel with a frozen, pre-trained camera CLIP model. By fusing the 3D LiDAR
features with the 2D CLIP features, our model is able to learn rich features
throughout the entire 3D sensing volume, even if there are no camera features
in certain regions. In addition, we apply a pair of novel distillation losses that
allow the 3D encoder to learn both object-level and voxel-level features which
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live inside the CLIP feature space. This provides a learned module in 3D space
which can directly be compared with text embeddings. These losses also provide
useful training supervision to unknown parts of the scene where there would
otherwise be no loss gradient.

With the proposed model and loss functions, our method significantly out-
performs the strong baseline on multiple datasets. Our contributions are sum-
marized as follows:

– We present the first approach for 3D open-vocabulary panoptic segmentation
in autonomous driving.

– We propose two novel loss functions, object-level distillation loss and voxel-
level distillation loss to help segment novel things and novel stuff objects.

– We experimentally show that our proposed method significantly outperforms
that strong baseline model on both nuScenes and SemanticKITTI datasets.

2 Related Work

This work is closely related to 3D panoptic segmentation, 2D open-vocabulary
segmentation, and 3D open-vocabulary segmentation.
3D panoptic segmentation. The goal of 3D panoptic segmentation is to group
3D points according to their semantics and identities. This is a challenging task
and relies on a good representation of the 3D data [1,20,36,37,44,46,48]. Most
panoptic segmentation models have separate branches for instance segmentation
and semantic segmentation [19, 27, 44, 58]. By following DETR [5], the recently
proposed P3Former [47] uses learnable queries and a transformer architecture to
obtain state-of-the-art performance on multiple panoptic segmentation bench-
marks. Although those closed-set methods achieve incredible results, they cannot
predict the labels and masks for novel classes.
2D open-vocabulary segmentation. 2D open-vocabulary segmentation aims
to group image pixels according to their semantics or identities for base (seen) or
novel (unseen) categories. The prediction on novel categories is usually done by
leveraging large V-L models [22,39]. There are many works that focus on open vo-
cabulary semantic segmentation [14,17,26,29,31,34,49,51,56,57,59]. Some work
has also explored open-vocabulary panoptic segmentation [11, 38, 50]. Recently,
FC-CLIP [54] proposes a single-stage framework based on a frozen convolutional
CLIP backbone [21, 32, 39] for 2D open-vocabulary panoptic segmentation that
achieves state-of-the-art performance. However, due to the camera-LiDAR do-
main gap, we show that simply extending it to 3D leads to poor performance.
3D open-vocabulary segmentation. 3D open-vocabulary segmentation is less
explored due to the lack of 3D point-to-text association. One common practice
is to utilize V-L models and use 2D-3D pairings to obtain rich, structured infor-
mation in 3D [7,8,10,16,18,35,41,43,53,55]. Notably, CLIP2Scene [7] proposes
a semantic-driven cross-modal contrastive learning framework. PLA [10] lever-
ages images as a bridge and builds hierarchical 3D-caption pairs for contrastive
learning. OpenScene [35] extracts per-pixel CLIP features using a pre-trained
V-L model [14, 26] then derives dense 3D features by projecting 3D points onto
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Fig. 1: Overview of our method. Given a LiDAR point cloud and the corresponding
camera images, LiDAR features are extracted with a learnable LiDAR encoder, while
vision features are extracted by a frozen CLIP vision model. The extracted LiDAR
features and the frozen CLIP vision features are then fused and fed to a query-based
transformer model to predict instance masks and semantic classes.

image planes. One concurrent work, RegionPLC [53], utilizes regional visual
prompts to create dense captions and perform point-discriminative contrastive
learning, which is used for semantic segmentation or instance segmentation, in-
dividually. In contrast, our work does not rely on any captioning model or extra
contrastive learning, but only depends on pre-trained CLIP features. Our model
also handles semantic segmentation and instance segmentation simultaneously.

3 Method

This section is organized as follows. First, we define the 3D open-vocabulary
panoptic segmentation task. Then we provide detailed descriptions of the model
architecture as well as the proposed loss functions. The overview of our method
is presented in Fig. 1, and the two proposed loss functions are illustrated in Fig. 2
(a) and Fig. 2 (b).

3.1 Problem Definition

In 3D panoptic segmentation, the goal is to annotate every point in a point cloud.
For stuff classes, (e.g . road, vegetation), a category label is assigned according
to its semantics. For things classes (e.g . cars, pedestrians), an instance label is
assigned to an object in addition to its semantic label.

In open-vocabulary panoptic segmentation, the models are trained on CB

base(seen) categories. At test time, besides these CB base categories, the data
will contain CN novel(unseen) categories. Following the settings of prior work [15,
24, 54], we assume the availability of the name of the novel categories during
inference, but the novel categories are not present in the training data and their
names are not known. Note that we do not apply any prompt engineering, as
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this is not the focus of this paper. We follow OpenScene [35] to obtain the CLIP
text embedding for each category.

3.2 3D Open-Vocabulary Panoptic Segmentation

Most of the previous 3D open-vocabulary works only address semantic segmenta-
tion [7,8,10,16,18,35,41,53,55] or instance segmentation [43,53] separately, and
there is no existing work for the 3D open-vocabulary panoptic segmentation task,
which handles novel things and novel stuff objects simultaneously. A natural idea
would be extending the 2D open vocabulary segmentation methods to build the
3D counterpart. We start with P3Former [47], a state-of-the-art transformer-
based 3D closed-set panoptic segmentation model, and add the essential com-
ponents to support open-vocabulary capability by following FC-CLIP [54], a 2D
open-vocabulary segmentation model that achieves state-of-the-art performance
on multiple datasets. However, we found that this simple extension leads to poor
performance in our experiments, and in this work we propose several new fea-
tures to improve the performance of our model. More implementation details for
this baseline can be found in the supplementary material.

In order to improve the open vocabulary capability of our model, we propose
significant changes to the P3Former architecture, as well as two new loss func-
tions. The architecture of our method is shown in Fig. 1 and mainly consists of
multimodal feature fusion, a segmentation head, and input text embeddings for
open-vocabulary classification.
Multimodal feature fusion. The core idea of many recent 2D open-vocabulary
works is to leverage the features of large-scale vision-language models [22, 39].
These methods [54] mainly rely on frozen CLIP features and use a transformer
model to perform the 2D panoptic segmentation task. However, this is not op-
timal for 3D tasks since many points do not have corresponding valid camera
pixels, leading to invalid features preventing meaningful predictions. To fully
exploit the power of the CLIP vision features and learn complementary features
from both CLIP features from camera and features from LiDAR, we generate
predictions from the fusion of CLIP features extracted by a frozen CLIP model
and learned LiDAR features from a LiDAR encoder.

As shown in Fig. 1, there are three major components for the multimodal
feature fusion including a LiDAR encoder, a vision CLIP encoder, and voxel-
level feature fusion. The LiDAR encoder is a model which takes an unordered set
of points as input and extracts per-point features. We apply voxelization to the
features from the LiDAR encoder, producing output features Flidar ∈ RV×Dlidar ,
where V is the number of the voxels and Dlidar is the dimension of the learned
LiDAR feature. The Vision CLIP encoder is a pre-trained V-L segmentation
model [14] which extracts pixel-wise CLIP features from each camera image.
Within each voxel, every LiDAR point is projected into the camera image plane
based on the intrinsic and extrinsic calibration parameters to index into the
corresponding vision CLIP features, then the vision CLIP features of all the
points belonging to each voxel are averaged to represent that voxel. Zero padding
is used for points which do not have any valid corresponding camera pixels. The
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voxel CLIP features will be referred as Fvclip ∈ RV×Demb , where V is the number
of voxels after voxelization and Demb is the dimension of the CLIP features.
Finally, the learned per-voxel LiDAR features and frozen per-voxel vision CLIP
features are concatenated together to be used as input into the transformer
decoder in the segmentation head. This feature fusion enables our model to learn
complementary information from both the LiDAR and CLIP features, allowing
us to fine-tune our backbone for each dataset’s specific data distribution.
Segmentation head. The segmentation head is a transformer [45] model that
takes the LiDAR-Vision fused feature as input to produce panoptic segmentation
results. Prior works, including existing 2D open-vocabulary works such as FC-
CLIP [54], typically use learnable queries q to represent each instance or thing,
and they contain a mask prediction head fmask to produce the corresponding
mask for each individual object and a classification head fcls to predict the per-
mask class score for each known class. However, as a result, they also need to rely
on another classifier to handle novel categories. Our goal is to use a single model
to handle the prediction for both base and novel categories. Thus, we predict
a class embedding instead of a class score for each mask. During training, the
model learns to regress an analogy to the CLIP vision embedding for each mask,
and the category prediction can be obtained by calculating its similarity with
the CLIP text embedding of text queries during the inference stage. The class
embedding fcls prediction is defined as:

vq = fcls(q) ∈ RDemb , (1)

where vq is in the CLIP embedding space. The predicted class logits are then
computed from the cosine similarity between the predicted class embedding and
the text embedding of every category name from the evaluation set using a frozen
CLIP model. The classification logits are defined as:

svq =
1

T
[cos(vq, t1), cos(vq, t2), . . . , cos(vq, tC)] (2)

where ti ∈ RDemb , i ∈ {1, 2, . . . , C} is the text embedding, C is the number
of categories (CB in training and CB+CN in testing), and T is a learnable
temperature term that controls the concentration of the distribution.
Query assignment. A common practice [9,54] for transformer-based panoptic
segmentation models is to utilize a single set of queries to make predictions for
both things and stuff classes jointly. In contrast, P3Former uses one query set
to represent things classes after bipartite matching and one fixed query set for
stuff classes. We have found that this separation of things queries and stuff
queries makes our model converge faster and improve overall performance, and
similar pattern has been observed in other tasks [28]. However, the fixed set of
queries for stuff classes is not applicable to the open-vocabulary setting due to
the unknown number of novel stuff classes. To take advantage of the benefits of
separating things queries and stuff queries, we propose to predict the base stuff
classes with a fixed set of queries and utilize a set of learnable queries to target
base things classes and all novel (things and stuff ) classes. More details of the
query assignment can be found in the supplementary materials.
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Fig. 2: (a) the proposed object-level distillation loss, and (b) the proposed voxel-level
distillation loss.

3.3 Loss Function

Closed-set panoptic segmentation models [47] are typically optimized with ob-
jective functions consisting of a classification loss Lcls and a mask prediction
loss Lmask. We follow P3Former [47] for these two losses: the classification loss
Lcls optimizes the focal loss [30] between the class predictions and the category
labels, while the mask loss Lmask optimizes the voxel-query classification loss.
Besides the two standard loss functions, we propose two simple yet effective
losses to apply distillation from the CLIP model at different levels.
Object-level distillation loss. Similar to previous methods [50, 54], we use
the cosine similarity between predicted class embeddings and class text CLIP
embeddings to produce classification scores. However, the classification loss ap-
plied to Eq. (2) only enforces similarity to known classes. In this work, we make
the assumption that the frozen CLIP features are discriminative with respect
to open-vocabulary classes and have good out-of-distribution generalization. We
propose an additional training loss which forces our predicted object-level class
embeddings to be similar to the CLIP embeddings within their corresponding
masks after matching. Similar to [54], we utilize voxel vision CLIP features to
get an embedding for each query q by mask pooling Vision CLIP features:

wq =
1

|Mq|
∑
p

1(p ∈ Mq)Fvclip(p) (3)

where Mq is the set of points p belonging to the mask for query q. Our object-
level distillation loss is then defined as:

LO =
1

|Qmatched|
∑

q∈Qmatched

1− cos (vq, wq), (4)

where Qmatched is the set of queries matched with ground truth objects during
training, v is the set of predicted class embeddings, and w is the set of mask-
pooled CLIP embeddings. This loss forces the model to directly distill object-
level camera CLIP features and improves model performance for novel things
classes. We also experimented with applying LO to all predicted masks, but we
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found that this slightly reduced model performance, likely due to the presence
of masks that do not correspond to any objects in the scene.
Voxel-level distillation loss. While the object-level distillation loss distills
the per-object features from CLIP model, it does not provide any supervision
for the mask prediction head, which would otherwise only receive supervision for
known classes. We found this particularly problematic for unknown stuff classes,
which tend to be more spread out and cover larger and more diverse parts of
the scene. In addition, it is only being applied to queries with relatively accurate
mask predictions in order to learn useful CLIP features. To target these issues,
we propose the voxel-level distillation loss to explicitly learn voxel-level CLIP
features, which do not depend on any labels and can be applied on all queries.
In particular, the voxel-level distillation loss is defined as:

Frec = MT
QFQemb (5)

where Q is the number of queries, FQemb ∈ RQ×Demb is the predicted embedding
for all queries and MQ ∈ RQ×V is the predicted per-voxel mask probabilities for
all queries. The reconstructed features can be regarded as the weighted sum of all
queries for each voxel. We supervise these features with the voxel CLIP features:

LV = L1(Frec, Fvclip) (6)

Unlike the object-level distillation loss, which is only applied to queries with
matched ground truth, this loss is applied to all predicted mask scores and
queries. In our experiments, we found that this loss significantly improves per-
formance on novel stuff categories in particular, likely as it does not require ex-
act matches with the ground truth, which can be difficult for large stuff classes.
However, this loss is still susceptible to noisy or low quality mask scores, and we
found that larger weights for this loss can disrupt training.

To summarize, LO helps get rid of the ensemble of classifiers in [14, 15, 24,
50,54] and enables open-vocabulary ability with one trainable classifier. LV uses
a scene-level representation represented by the embedding of all queries, while
previous methods only consider object-level representation. Combining LO with
LV enables segmenting novel things and novel stuff objects simultaneously. Our
final objective function can be written as:

L = wα ∗ Lcls + wβ ∗ Lmask + wλ ∗ LO + wγ ∗ LV (7)

, where wα, wβ , wλ, wγ , are weights for the corresponding objective functions.

3.4 Implementation Details

For the LiDAR encoder and segmentation head, we follow the implementation of
the state-of-the-art closed-set 3D panoptic segmentation method P3Former [47].
For the Vision CLIP encoder, we use OpenSeg [14], due to its remarkable per-
formance on the recent open-vocabulary 3D semantic segmentation task [35].
For the Text CLIP encoder, we use CLIP [39] with ViT-L/14 [45] backbone,
following other state-of-the-art open vocabulary works [35].
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4 Experiments

4.1 Experimental Setting

Following the state-of-the-art closed-set 3D panoptic segmentation work [27,40,
42, 47, 52, 58], we conduct experiments and ablation studies on the nuScenes [4]
and SemanticKITTI [2, 13] datasets.
nuScenes. The nuScenes dataset [4] is a public benchmark for autonomous
driving. It consists of 1000 run segments and is further divided into prescribed
train/val/test splits. We use all key frames with panoptic labels in the training
set(28130 frames) to train the model. Following the most recent state-of-the-art
model P3Former [47], we evaluate the models on the validation set(6019 frames).
There are 16 semantic classes, including 10 things classes and 6 stuff classes.
SemanticKITTI. SemanticKITTI [2, 13] is the first large dataset for LiDAR
panoptic segmentation for autonomous driving. We conduct experiments on the
training and validation sets, where panoptic segmentation labels are available.
3D open-vocabulary methods often require point and pixel pairing. In the Se-
manticKITTI dataset, however, the ego-vehicle is only equipped with frontal
cameras. Thus, we filter out the points that are not visible in the camera view
based on the provided camera parameters for both training and evaluation. There
are 19 semantic classes, including 8 things classes and 11 stuff classes.
Data split. Both the nuScenes and SemanticKITTI datasets do not provide offi-
cial base and novel class splits. Following the state-of-the-art 3D open-vocabulary
segmentation work [6,10,53], we randomly split the classes into base and novel,
while keeping the ratio between base and novel classes around 3 : 1. For nuScenes,
the number of class for base and novel split are 12 and 4 respectively, and this
setting will be referred as B12/N4. For SemanticKITTI, the number of class for
base and novel split are 14 and 5, and this setting will be referred as B14/N5. We
use the same splits in the main comparison with prior methods, and provide the
results of more variations in the ablation studies and supplementary materials.
Training details. We follow most of the architecture configurations in the of-
ficial P3Former [47] implementation. We set wα = 1, wβ = 1, wλ = 1, wγ = 0.1
for both datasets. We use the AdamW [23,33] optimizer with a weight decay of
0.01. We set the initial learning rate as 0.0008 with a multi-step decay sched-
ule. The models are trained for 40 epochs, and we use the checkpoint of the
last epoch for evaluation. To avoid ambiguous class names and better utilize the
CLIP text embedding, we follow [25, 35, 54] and apply multi-label mapping for
the text queries. During inference, if there are multiple labels for one class, we
derive the class score by getting the maximum scores among these labels.
Evaluation metrics. We use panoptic quality (PQ) as the major evaluation
metric for the panoptic segmentation task. PQ is formulated as:

PQ =

∑
TP IoU
|TP |︸ ︷︷ ︸
SQ

× |TP |
|TP |+ 1

2
|FP |+ 1

2
|FN |︸ ︷︷ ︸

RQ

. (8)

PQ is the multiplication of segmentation quality (SQ) and recognition quality
(RQ). We report all the three metrics (PQ, RQ, SQ) for all classes. We also



10 Z. Xiao et al.

Confidential & proprietary

PFC Ours PFC Ours 

BusVegetation
BusVegetation

Pedestrian Pedestrian

Fig 4

Fig. 3: Open-vocabulary panoptic segmentation results from PFC and our method on
nuScenes. PFC predicts inaccurate category and masks for the novel pedestrian (red),
bus (yellow) and vegetation (green), while ours makes correct predictions.

report PQ, RQ, SQ for novel things objects and novel stuff objects separately.
In particular, PQTh

N means PQ for novel things classes and PQSt
N stands for PQ

for novel stuff classes. We also report the mean Intersection over Union (mIoU)
for all classes to measure semantic segmentation quality.

4.2 P3Former-FC-CLIP Baseline

As a baseline for novel-class panoptic segmentation, we construct a model from a
fusion of P3Former [47] and FC-CLIP [54]. This baseline will be called P3Former-
FC-CLIP (PFC). The baseline model takes the frozen voxel vision CLIP features
as input, and the final prediction is obtained by geometric ensembling [14,15,24,
50,54] of the results from the classification head fcls and another frozen classifier
based on the similarity between the average-pool class embedding wq and the
CLIP text embedding. Following FC-CLIP [54], the same set of learnable queries
were used to represent both things and stuff classes. In summary, this baseline
provides a comparison against our proposed method without the multimodal
feature fusion module, the unified segmentation head, and the distillation losses.
More information on this baseline can be found in the supplementary material.

4.3 Main Results

Since there are no existing methods for the 3D open-vocabulary panoptic seg-
mentation task, we mainly compare with three methods to demonstrate the
capability of our method: (1) the strong open-vocabulary baseline method PFC
to fairly demonstrate the strength of our method, (2) the closed-set state-of-the-
art 3D panoptic segmentation method P3Former to understand the headroom
of our method, and (3) the open-set, zero-shot state-of-the-art method for 3D
semantic segmentation, OpenScene [35]. Comparisons on the nuScenes and Se-
manticKITTI datasets are shown in Tab. 1 and Tab. 3.
Results on nuScenes dataset. Table 1 shows the quantitative comparison on
the validation set of the nuScenes dataset. Our method significantly outperforms
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Table 1: Quantitative results of panoptic segmentation on nuScenes. We
compare the performance of open-vocabulary and fully supervised models. All open
vocabulary models share the same randomly picked base/novel split: B12/N4. The novel
things classes are bus, pedestrian and motorcycle. The novel stuff class is vegetation.

Model Type Supervision PQ PQTh
N PQSt

N RQ RQTh
N RQSt

N SQ SQTh
N SQSt

N mIoU

P3Former [47] closed-set full 75.9 85.1 82.9 84.7 89.9 95.9 89.8 94.7 86.5 76.8

OpenScene [35] open-voc zero-shot - - - - - - - - - 42.1

PFC open-voc partial 54.8 37.3 0.5 63.6 42.1 0.8 84.2 89.3 60.4 55.5

Ours open-voc partial 62.0 49.6 35.2 70.9 55.6 46.0 87.0 89.1 76.7 60.1

Table 2: Performance for base classes on nuScenes. We report the performance
on base classes for models in Tab. 1. A gap still exists between open and closed-set
methods for base classes. We show that this is due to lack of supervision of the whole
scene as P3Former achieves similar performance when only trained on base categories.

Model Supervision Training Data
Base Things Base Stuff

PQTh
B RQTh

B SQTh
B PQSt

B RQSt
B SQSt

B

P3Former [47] full base+novel 73.4 80.5 90.9 73.9 85.3 85.9

P3Former [47] partial base 65.2 71.3 88.0 64.2 77.4 81.8

PFC partial base 65.6 73.3 89.0 61.0 75.4 83.7

Ours partial base 66.7 73.7 89.8 69.2 82.1 83.7

the strong baseline PFC across all metrics. PFC works relatively well for the
novel things classes, but performance on the novel stuff class collapses. This
is likely because stuff classes tend to cover large parts of the scene, leading to
diverse per-voxel CLIP features which may not be good representatives for their
respective classes. Qualitative comparison is provided in Fig. 3.

To further understand the headroom of our method, we also compare our
model with the closed-set P3Former. Note that the comparison here is delib-
erately unfair since the supervision signals are different. Compared with the
closed-set P3Former, our segmentation quality(SQ) is good while there is a large
gap on mask classification quality(RQ). The gap is largely due to regressions in
the novel classes, where precise supervision is not available for open-vocabulary
models. For base classes, as shown in Tab. 2, the gap is relatively small ex-
cept for a drop in RQTh

B . We believe the closed-set P3Former sees ground truth
supervision for the entire scene, while open-set methods do not receive supervi-
sion in the ‘unknown class’ regions. In fact, when P3Former is only trained on
base categories, the performance is worse than our proposed method. Besides
the comparison with the closed-set method, we also compare with the zero-shot
state-of-the-art method OpenScene [35] which does not use any labels for train-
ing. In this comparison, our model significantly outperforms OpenScene in the
mIoU metric for semantic segmentation. Note that this comparison is not en-
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Table 3: Quantitative results of panoptic segmentation on SemanticKITTI.
We compare the performance different models. All open vocabulary models share the
same randomly picked base/novel split: B14/N5. The novel things classes are bicycle
and truck. The novel stuff classes are sidewalk, building and trunk.

Model Type Supervision PQ PQTh
N PQSt

N RQ RQTh
N RQSt

N SQ SQTh
N SQSt

N mIoU

P3Former [47] closed-set full 62.1 65.9 74.2 71.3 74.8 86.8 77.1 88.3 83.9 61.6

PFC open-voc partial 33.7 12.0 0.4 40.1 15.0 0.6 67.6 81.1 47.3 33.4

Ours open-voc partial 42.2 13.1 17.8 50.4 16.2 26.7 73.0 84.0 67.2 44.6

Table 4: Impact of each component. We evaluate the impact of each component
using the base/novel split in Tab. 1. We observe that each component can provide
improvements over the PCF baseline. Noticeably, LV brings the biggest improvement.

Components
PQ PQTh

N PQSt
N RQ RQTh

N RQSt
N SQ SQTh

N SQSt
N mIoU

QA Fusion LO LV

54.8 37.3 0.5 63.6 42.1 0.8 84.2 89.3 60.4 55.5
✓ 55.5 35.7 0.4 64.0 40.8 0.7 84.3 87.4 56.5 56.6
✓ ✓ 56.4 38.1 0.4 65.0 43.5 0.6 84.6 87.4 61.3 56.4
✓ ✓ ✓ 56.3 43.8 0.2 64.8 49.2 0.3 85.1 88.9 64.0 54.0
✓ ✓ ✓ ✓ 62.0 49.6 35.2 70.9 55.6 46.0 87.0 89.1 76.7 60.1

tirely fair, as our method is trained with partial labels. Instead, the comparison
is useful to understand the gap between the two types of open-vocabulary meth-
ods. The concurrent work RegionPLC [53] also reports open-vocabulary results
for the semantic segmentation task on the nuScenes dataset. However, we can-
not directly compare with this method since it removes one class (other-flat) and
does not provide its base/novel split.
Results on SemanticKITTI dataset. To demonstrate the generalization
ability of our method across different datasets, we report the results on Se-
manticKITTI dataset in Tab. 3. Overall, we observe similar patterns as on the
nuScenes dataset. The baseline achieves relatively poor overall performance and
struggles with the novel stuff classes. Using our architecture and loss functions,
our model significantly outperforms PFC on PQ, with the largest margin for
novel stuff classes. Note that the gap between the open-vocabulary methods
(ours and PFC) and the closed-set method is larger on SemanticKITTI, likely
due to the smaller dataset limiting performance.

4.4 Ablation Studies and Analysis

To better understand the effectiveness of each component, we conduct ablation
studies for each design choice and loss function on the nuScenes dataset. These
results are shown in Tab. 4. We conduct five sets of experiments, starting with
the PFC baseline and build upon it four ablations with different combinations.
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Table 5: Performance on a different split. We compare the performance with
a split with 5 novel classes (B11/N5). The novel things classes are bicycle, car and
construction vehicle. The novel stuff classes are terrain and man-made. Our method
consistently outperforms the PFC baseline across all the metrics by a large margin.

Model Type Supervision PQ PQTh
N PQSt

N RQ RQTh
N RQSt

N SQ SQTh
N SQSt

N mIoU
P3Former [47] closed-set full 75.8 70.5 71.7 83.8 76.4 85.5 90.1 91.6 83.6 75.0

PFC open-voc partial 43.9 27.7 0.6 51.7 33.2 1.0 80.2 82.4 62.7 45.2
Ours open-voc partial 52.8 56.0 16.4 60.5 61.8 22.6 84.9 89.7 68.7 49.9

Impact of query assignment. Starting from the PFC baseline model, we
add our proposed fixed query assignment for stuff categories. As shown in the
second row of Tab. 4, with query assignment, the overall PQ improves by 0.7.
The performance for the novel classes drop slightly, but improvement on the
base classes overcomes this for the overall PQ.
Impact of feature fusion. The third row of Tab. 4 shows the impact of feature
fusion. Without feature fusion, our model already achieves 55.5 PQ, demon-
strating the power of the CLIP vision features. The third row shows that the
performance with feature fusion for the model input improves the overall PQ by
0.9. This slightly improved the overall performance, but the improvement on the
novel things class is the most significant, demonstrating that the learned LiDAR
features and CLIP vision features are indeed complementary for the task.
Impact of object-level distillation loss. The fourth row of the results in Tab. 4
shows the impact of the proposed object-level distillation loss. Note that for mod-
els with the object-level distillation loss, we remove the frozen class classification
head and the ensemble in the PFC baseline, consolidating to a single class em-
bedding head. Although the RQSt

N slightly dips by 0.3 for the novel stuff classes,
this loss can significantly improve the RQTh

N for the novel things class by 5.7.
Impact of voxel-level distillation loss. We study the impact of the voxel-
level distillation loss to see if it can further improve the performance given all
of our designs. The results are shown in the last row of Tab. 4. With this loss
function, PQ significantly improves by 5.7. The improvement on the novel split
is particularly large, especially for the novel stuff classes. The PQSt

N of the novel
stuff class improves from 0.2 to 35.2, which demonstrates the importance of the
voxel-level supervision to the performance of the novel stuff class.
Performance of different splits. To validate the generalizability of our method,
we conduct experiments on a different split (B11/N5) for the nuScenes dataset.
As shown in Tab. 5, our proposed method consistently and significantly outper-
forms the strong baseline method. This again demonstrates the effectiveness of
our design and the proposed loss functions.
Open-vocabulary exploration. In previous experiments, we follow other 3D
open-vocabulary works [6, 10, 53] and provide analytical results on pre-defined
object categories, mainly due to the limited categories in current panoptic seg-
mentation datasets. In practice, our model goes beyond detecting these object
categories: we can take class embeddings vq in Eq. (1) and compute the cosine
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Plastic Metal

Booth Dumpster

Traffic Message BoardConstruction Zone

Fig. 4: Open-vocabulary exploration. We show the novel materials/objects in blue
color. The orientation of the ego vehicle is fixed in the LiDAR point visualization while
the reference images come from on of the surrounding cameras of the ego vehicle.

similarity with CLIP embedding of any text. Fig. 4 shows that we can detect
novel materials/objects that are not in the predefined category list. Note that
the concept of open vocabulary is very different from domain adaptation, as open
vocabulary refers to the ability to deal with novel inputs in a scene while domain
adaptation addresses the difference in data distributions in different scenes.
Limitations. Our models are only evaluated on current autonomous driving
panoptic segmentation benchmarks, with limited number of category annota-
tions. To further evaluate open-vocabulary performance, a large-scale autonomous
driving benchmark with more diverse object categories is greatly desired.

5 Conclusion

In this paper, we present the first approach for the open-vocabulary 3D panop-
tic segmentation task in autonomous driving by leveraging large vision-language
models. We experimentally verified that simply extending the 2D open-vocabulary
segmentation method into 3D does not yield good performance, and demon-
strated that our proposed model design and loss functions significantly boost
performance for this task. Our method significantly outperformed the strong
baseline on multiple well-established benchmarks. We hope our work can shed
light on the future studies of the 3D open-vocabulary panoptic segmentation.
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