Appendix

A. Implementation Details

A2. Architecture

We leverage the advanced pre-existing knowledge from pretrained MLLMs to aid
in model convergence. Specifically, we initialize our multi-modal decoder with
LLaVA-v1.5-7B checkpoint [2] from HuggingFace. Its vision encoder is CLIP-vit-
large-patch14 (CLIP-L) [5] and takes in Iﬁg}. We use ViT-H/1 [3] to extract the
image embedding of I,..s. Thus, a trained linear mapping is added at the output
of MLLM to map the learned text token from R*%%6 to R1024, The model is built
on top of the IP-Adapter [7] and the training code on LDM [6]. Our foundation
model is StableDiffusion v1.5 [6] with Realistic-Vision-v4.0 [1] checkpoint. Both
subject and context cross-attentions are implemented with the diffusers attention
processor class. We call our MLLM as multi-modal decoder because: it takes in
visual features of I;‘g} and text instruction and "generates the full image I,..z"
in the form of CLIP embeddings. So our MLLM is not a typical subject-feature
encoder like in most existing works, but instead a generative MLLM decoder.

A2. Training

we lock the parameters of the image encoders and only adjust the MLLM pa-
rameters along with the newly incorporated learnable token. In stage two train-
ing, the image/text encoder, multi-modal decoder, and the entirety of the UNet
parameters are frozen. We optimize exclusively the linear mappings of subjet-
cross-attention and context-cross-attentions.To expedite convergence, we employ
attention mapping layers from the IP-adapter [7] and start with a zero-initialized
subject-cross-attention. We apply large gradient accumulation steps (200) and
clip grad norm for smoother training. In both stages, we use the AdamW opti-
mizer with a learning rate of 17°. Training takes 7 days in total on 16 A100 80G
GPUs.

A3. Evaluation

We use the DDIM sampler with default parameters and 50 denoising steps.
Evaluation requires 23.5G GPU RAM for 512 x 512 resolution. The iterative
masking is disabled in the first denoising step since M., (;) is unavailable yet.
We apply classifier-free guidance on both the text prompt and Context-cross-
attention side, but not the subject-cross-attention. On the text prompt side,
simply replace the target prompt P4 with null embedding. On the context-
cross-attention side, we zero out the contextualized features before feeding them
to attention linear mappings. We use 8 = 1.0 in the recontextualization task for
better subject detail accuracy and, empirically, 8 = 0.5 in the texture editing
task for better balance between subject and prompt.



B. Visual comparison and more Results

B1. Uncurated Comparison with Baselines

We show uncurated results for our model and the baselines. Results are random
and not selected. For each method, 8 images are generated. IP-Adapter failed
to accurately capture the structure of the car in Fig. 1. In Fig. 2, increasing
the weight /scale to 0.85 in IP-Adapter still yields a wrong color pattern of the
dog. Under this scale, The original white background strongly interferes with its
generated image. Ours correctly captures the color and structure pattern with
much more favorable backgrounds, respecting both the reference image and the
text prompt.

We conclude from above that:(i) Our multi-modal LLM decoder and its con-
textualized feature are crucial to our model performance. It extracts visual fea-
tures from reference image I ;‘g} and contextualizes it with the target text prompt
P,g4;. Its output is trained to match the overall CLIP image embedding of the re-
sulting image and provides critical features to bridge the gap between the subject
feature and the target prompt. (ii) Iterative masking helps distinguish between
the background and main subject, improving CLIP-T. Removing it leads to
corrupted backgrounds and significantly lower image quality. (iii) Disabling the
Subject-cross-attention worsens the CLIP-I score as features from MLLM are in-
sufficient to accurately reproduce subject details. This quantitative ablation lines
up with our intuition: our multi-modal decoder and its context-cross-attention
provide vital image features and serve as a foundation. Subject-cross-attention
and iterative masking help in subject detail accuracy and background quality
respectively.

B3. More Results

In Tab. 1, we show detailed quantitative results for the DreamBooth dataset.
From Fig. 3 to Fig. 8, we provide additional qualitative results on various subjects
and prompts. Reference subject images are on the left. In the rest columns, we
provide generated renditions. Fig. 3 to Fig. 6 are about context editing and Fig. 7
and Fig. 8 are about texture editing.

C. Discussions

C1. Social Impact

While tuning-based personalization models are largely inaccessible to most peo-
ple because of computation resource limits, our method of open-vocab tuning-
free personalization model helps democratize such models to everyday users with
a significantly improved quality. However, it also bears the potential risk of being
exploited for the creation of deceptive content or the propagation of misinforma-
tion. To address this concern, we have specifically designed our training process
to exclude person-related subjects and focus on generic objects. This intentional



‘ Ours [P-adapter Blip-diffusion
‘DINO CLIP-I CLIP-T{.) CLIP—T(t)‘CLIP—T(C) CLIP—T(t)‘CLIP—T(c) CLIP-T{y

backpack |[0.590 0.861 0.350 0.338 0.342 0.337 0.324 0.292
backpack2|0.438 0.698 0.361 0.351 0.357 0.365 0.323 0.296

boot 0.502 0.819 0.346 0.345 0.330 0.325 0.287 0.277
bowl 0.621 0.699 0.350 0.338 0.300 0.339 0.249 0.257
can 0.657 0.749 0.361 0.321 0.355 0.347 0.310 0.294

candle 0.474 0.734 0.361 0.353 0.348 0.330 0.329 0.297
cartoon |0.574 0.794 0.305 0.312 0.284 0.278 0.255 0.248

cat 0.813 0.840 0.354 0.339 0.330 0.300 0.320 0.261
cat2 0.750 0.845 0.358 0.345 0.327 0.310 0.292 0.263
clock 0.679 0.866 0.335 0.341 0.305 0.324 0.322 0.270
dog 0.725 0.863 0.342 0.334 0.328 0.308 0.302 0.261
dog2 0.652 0.863 0.338 0.335 0.322 0.301 0.302 0.260
dog3 0.609 0.799 0.342 0.345 0.326 0.304 0.303 0.257
dogb 0.574 0.761 0.344 0.340 0.298 0.279 0.324 0.257
dogb 0.713 0.857 0.332 0.324 0.320 0.300 0.282 0.253
dog7 0.709 0.850 0.338 0.338 0.325 0.287 0.305 0.248
dog8 0.654 0.842 0.337 0.333 0.316 0.289 0.306 0.246

plushie 0.620 0.781 0.367 0.334 0.341 0.315 0.304 0.287
plushie2 |0.491 0.754 0.372 0.333 0.340 0.336 0.326 0.299
plushie3 |0.621 0.794 0.366 0.323 0.343 0.317 0.289 0.271
poop 0.533 0.732 0.345 0.339 0.335 0.338 0.327 0.291
sneaker |0.665 0.814 0.350 0.347 0.333 0.312 0.276 0.256
sneaker2 |0.704 0.824 0.340 0.346 0.325 0.305 0.269 0.264
sunglasses| 0.655 0.851 0.349 0.344 0.339 0.348 0.299 0.293
teapot 0.642 0.852 0.383 0.361 0.366 0.359 0.294 0.288

toyl 0.508 0.765 0.341 0.306 0.332 0.292 0.292 0.258
toy2 0.627 0.821 0.334 0.310 0.320 0.328 0.287 0.260
toy3 0.532 0.741 0.348 0.313 0.337 0.311 0.292 0.266
vase 0.593 0.815 0.358 0.339 0.338 0.356 0.295 0.299

Average |0.618 0.803 0.348 0.335 0.330 0.319 0.300 0.271

Table 1: Quantitative details on DreamBooth datasets. We add 10 new prompts focus-
ing on texture editing to calculate CLIP-T(;). These prompts are: A sculpture of a label
made of (Lego/Paper/Gold/Wood/silver/green jade/glass/stone/sketch/Minecraft).
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Fig. 1: Uncurated random renderings from our model and baselines. IP-Adapter failed
in capturing car structures, despite increasing its scale from default 0.6 to 0.85. Our
results have better detail accuracy, more diverse composition, and favorable quality
than the baselines.



IP-Adapter

BLIP-diffusion

Fig. 2: Uncurated random renderings from our model and baselines. IP-adapter gen-
erates inaccurate color patterns, even with an increased scale(weight) to 0.85. Since
it does not distinguish background from foreground, some results failed to follow the
"garden with flower" in the prompt. Our results have more accurate details with much
better backgrounds.
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Fig. 3: Additional results from our model. Change context.
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Fig. 4: Additional results from our model. Change context.
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Fig. 5: Additional results from our model. Change context.
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Fig. 6: Additional results from our model. Change context.



sketch comic art green jade bronze

Fig. 7: Additional results from our model. Change texture.
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Fig. 8: Additional results from our model. Change texture.
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limitation reduces the model’s ability to generate convincing counterfeit images
where individuals are central elements. To ensure the integrity of content gen-
erated by our model, we advise a thorough examination of its outputs before
deploying our model in consumer-facing applications.

C2. Failure Examples

Fig. 9: Failure cases. The text messages displayed on the bowl and can appear dis-
torted or missing in the resulting images, a flaw inherited from SD v1.5. This version
is notably challenged in its ability to reproduce text with accuracy.

We also noticed that some subjects are much easier to learn than others
[4]. For example, the model generates high-quality results for dogs and cats
with consistent identity and almost identical details. Our improvement against
baselines [4] [7] starts to be more noticeable for rare subjects like shoes and
robots. Occasionally, as shown in Fig. 9, with subjects that are rarer especially
accompanied by text, the model is unable to fully capture its details.

C3. About User Study

We design 9 questions: 6 for recontextualization task (3 about subject fidelity, 3
about background-prompt fidelity) and 3 for texture editing task. Nine ratings
per user and a total of 774 ratings were collected. A sample is shown below:

Which one is
your favorite?

subject

) P2
Abird as a =
plushie
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