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Abstract. In this paper, we present MoMA: an open-vocabulary, training-
free personalized image model that boasts flexible zero-shot capabilities.
As foundational text-to-image models rapidly evolve, the demand for
robust image-to-image translation grows. Addressing this need, MoMA
specializes in subject-driven personalized image generation. Utilizing an
open-source, Multimodal Large Language Model (MLLM), we train MoMA
to serve a dual role as both a feature extractor and a generator. This ap-
proach effectively synergizes reference image and text prompt informa-
tion to produce valuable image features, facilitating an image diffusion
model. To better leverage the generated features, we further introduce
a novel self-attention shortcut method that efficiently transfers image
features to an image diffusion model, improving the resemblance of the
target object in generated images. Remarkably, as a tuning-free plug-
and-play module, our model requires only a single reference image and
outperforms existing methods in generating images with high detail fi-
delity, enhanced identity-preservation and prompt faithfulness. We com-
mit to making our work open-source, thereby providing universal access
to these advancements. Project page
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1 Introduction

Image generation technology has seen remarkable advancements with the emer-
gence of large-scale text-to-image diffusion models such as GLIDE [19], DALL-E
2 [25], Imagen [29], Stable Diffusion [27], eDiff-I [4]. These models enable users to
generate vivid images from a diverse set of text prompts. Despite their effective-
ness, textual descriptions often fall short in expressing detailed visual features,
leading to the rise of image-conditioned generation works like Kandinsky [26],
Stable Unclip [27, 31], which utilize images as inputs to create variations that
maintain the visual components of the reference.

A natural progression in this field is subject-driven generation or image per-
sonalization. Initial efforts in this domain involve inverting input images into
textual representations and employing learnable text tokens to denote target
concepts. For instance, DreamBooth [28] fine-tunes the entire diffusion model to
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Fig. 1: Example images generated by our open-vocabulary personalization model.
With just one image of a subject (circled in blue), our model can generate text-
aligned, identity-preserved new images of the same subject. Our model supports both
re-contextualization where the same subject is located in a new environment, as shown
in green, and changing the texture of the subject itself, as shown in red.

learn a unique identifier for specific subjects. Textual-Inversion [9] inverts the in-
put images to a unique textual embedding and learns the embedding-image map-
ping during finetuning. Subsequent approaches, such as Custom Diffusion [15],
have optimized this process by focusing on tuning only cross-attention layers to
reduce computational costs. Techniques like Low-Rank Adaptation (LoRA) [12]
and SVDiff [10] further minimized trainable parameters, enhancing fine-tuning
efficiency. However, these methods, regardless of their accuracy, require exten-
sive resources for per-instance tuning and model storage, limiting their practical
application.

Tuning-free approaches have gained prominence for addressing these limita-
tions. For example, IP-Adapter [37] leverages a unique cross-attention mecha-
nism to differentiate text and image features, facilitating the injection of refer-
ence images as visual prompts. Nevertheless, it faces notable constraints, partic-
ularly in modifying textures. Methods like InstantID [32], InstantBooth [30], and
PhotoVerse [6], while maintaining identity coherence, are confined to specific do-
mains such as human faces or cats. Recent innovations have employed transform-
ers to integrate visual concepts with text prompts, as seen in BLIP-Diffusion [17]
and KOSMOS-G [21], which extract identity information and combine it with
text prompts via cross-attention. These approaches, although effective in texture
modification, often result in significant detail errors in a tuning-free setting and
require extra tuning for optimal outcomes with target objects.

In response to these challenges, this paper introduces a novel, open-vocabulary,
and tuning-free image personalization model that excels in detail fidelity, ob-
ject identity resemblance, and coherent textual prompt integration. Our model
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harnesses the capabilities of Multimodal Large Language Models (MLLMs) to
seamlessly blend text prompts with visual features of the target object, enabling
alterations in both the background context and object texture. In addition, our
newly proposed self-attention shortcut significantly enhances the detail quality
with minimal computational overhead.

Built upon Stable Diffusion [27] and LLaVA [?, 18], MoMA has been rig-
orously evaluated on various tasks with a wide array of images and dynamic
prompts:

– For exact-object recontextualization tasks, it demonstrates superior detail
accuracy and faithfulness to the target object across varied backgrounds.

– For texture modification tasks, our method adeptly alters the texture of
target objects as dictated by text prompts while preserving unmentioned
visual features.

– Our model achieves the above performance through extensive pre-training,
eliminating the need for tuning at the evaluation stage.

2 Related work

2.1 Text-to-Image Diffusion Models.

Text-to-image diffusion models have become the forefront of image generation
technology, garnering widespread interest for their exceptional capabilities in
recent years. These models typically utilize a pre-trained language decoder to
transform text prompts into latent representations that guide the diffusion pro-
cess for generating or editing images. Notable models like GLIDE [19] and
DisCo [33] leverage text-guided diffusion architectures and CLIP [24] guidance
to enhance the fidelity and relevance of the generated images. Similarly, Stable
Diffusion [27] stands out by executing the diffusion process in latent image space,
thus significantly lowering computational demands. It was further advanced by
Stable Diffusion XL(SDXL) [23], which introduced a larger UNet and an addi-
tional text encoder for improved textual influence on the images. Also, diffu-
sion models have shown remarkable efficiency in capturing data distributions for
image synthesis, with applications expanding by integrating transformer-based
architectures [22]. The advent of text-guided image synthesis, mainly through
models like Stable Diffusion, highlights significant advancements in achieving
top-tier results in text-to-image synthesis tasks. Stable Diffusion, a prominent
latent diffusion model, operates within a latent space defined by a pre-trained
autoencoder, enabling efficient handling of semantic features and visual patterns
for enhanced image synthesis.

2.2 Personalized Image Synthesis.

Recently, personalization has become an emerging factor in the vision and graph-
ics community. Previous researchers have explored optimization-based approaches,
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such as Textual Inversion [9] and DreamBooth [28]. Later works found it’s suf-
ficient to just update cross-attention modules in the diffusion unet. Various pa-
rameter efficient optimization methods were then developed to further speed up
tuning, such as LoRA [12] and SVDiff [10].

The drawback for these methods is they require fine-tuning for each new
reference image, which is computationally expensive and time-consuming. More
recent efforts attempt to get rid of per-object tuning such as [13, 30, 35], which
pre-train the diffusion model on domain-specific images, such as cat and hu-
man face images. These models provide class-specific prior for generation thus
require less tuning within that domain. However, they are constrained to the
trained class and are not able to generalize to other subjects. Another category
of works [3, 7, 17] focuses on more general open-vocabulary data. AnyDoor [7]
and BreakTheScene [3] generate new images of the same object under various
backgrounds but fail in changing textures. More related to our work, BLIP-
Diffusion [17] uses a pre-trained transformer feature extractor and works on a
wide range of subjects, however, its results contain abundant details mistakes
and require few-step tuning to achieve good quality results. We posit that this is
due to the lengthy information path negatively impacting the quality of image
features. IP-adapter [37], as a lightweight plug-and-play model, directly injects
the visual feature of the reference image into the UNet and achieves promising
performance. However, the migrated image features can hardly interact with
target prompts. This traps into a trade-off between prompt fidelity and image
fidelity, especially when the prompt requests for drastic context changing or tex-
ture editing: higher strength results in better subject details at the cost of worse
prompt faithfulness.

Nevertheless, these methods all suffer from achieving identity preservation,
edibility, generalization ability and high fidelity simultaneously. Our method,
however, is able to make progress in those key directions within the single input
image and tuning-free domain.

3 Method

In this section, we first introduce some preliminaries about text-to-image diffu-
sion models and multmodal LLMs. Then, we depict in detail the motivation and
the design of the proposed multimodal LLM adapter.

3.1 Preliminaries.

Text-to-Image Diffusion Models Text-to-image diffusion models generate
images that align with the textual description by gradually denoising a random
sample drawn from a Gaussian distribution. Our work is established on text-to-
image Latent Diffusion Models (LDM), which perform the diffusion process in
latent space, making it more practical and computationally efficient. Given an
input image x, LDM first extracts the latent feature z = E(x) with a well-trained
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Fig. 2: Model structure. (1) On top-left, we adopt a generative multimodal image
decoder to extract semantic features and modify them by the target prompt. These
features are projected to text space and then injected into a pretrained frozen UNet
with decoupled context cross-attentions as illustrated in light red. (2) On bottom-
left, to further improve detail accuracy, we forward the clear reference image ( t =
0) to the same UNet and extract self-attention features. These �ne-grained features
contain detailed information about the subject and are injected into UNet through
decoupled object cross-attention layers as illustrated in orange. (3) The model is trained
using a two-staged training pipeline: we �rst train the multimodal decoder (multimodal
generative learning), then jointly optimize newly added attention modules in UNet.

encoder. During training, the noisy latent variables zt is obtained by gradually
adding noises toz for t steps, LDM optimizes the following objective:

L = Ezt ;t;C;" �N (0 ;1)

h
k" � " � (zt ; t; C )k2

2

i
; (1)

where C denotes the textual embedding of prompts extracted by a pre-trained
CLIP text encoder.

LDM is commonly parameterized as an UNet model. We employ the pre-
trained Stable Di�usion as the LDM, where the UNet model has cross-attention
and self-attention layers in di�erent resolutions. Given the image featuresZ as
query and the textual embeddingC as key, the output of cross-attentionZ 0 can
be de�ned by the following equation:

Z 0 = Attn (Q; K; V ); (2)

where Q = ZWq, K = CWk , V = CWv are the query, key, and values matrices
of the attention operation respectively, and Wq, Wk , Wv are the weight matrices
of the trainable linear projection layers.

Multimodal LLM (MLLM) The �eld of natural language processing (NLP)
has undergone a revolutionary shift with the emergence of large language models
(LLMs). These models, distinguished by their comprehensive training across var-
ied datasets, demonstrate extraordinary pro�ciency in a range of linguistic tasks.
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Bene�ting from robust pre-training methodologies, pioneering models, such as
ChatGPT-Vision [1], Mini-GPT4 [38], CogVLM [34], and LLaVA [18], have set
the stage for more sophisticated iterations in the multimodal �eld. These itera-
tions notably integrate visual tasks into the LLM framework, and have proven
to be exceptional in vision-related tasks, including vision-question-answering,
visual-grounding, and visual-segmentation.

Among these MLLMs, LLaVA [18] stands out as an open-source Large Lan-
guage and Vision Assistant, synergizing a vision encoder with an LLM for
comprehensive visual and language understanding. LLaVA capitalizes on the
strengths of both the pre-trained LLM and a vision transformer image encoder.
This model skillfully processes images in tandem with language instructions, de-
livering responses in natural language, thereby bridging the gap between vision
and linguistic comprehension.

3.2 Methodology

We present MoMA, a multimodal LLM adapter enhanced by �ne-grained fea-
ture transfer. The overall architecture is demonstrated in Figure 2. Our method
consists of three parts: (1) a generative multimodal decoder is utilized to extract
image features from the reference image and edit it following the target prompt,
yield the contextualized image feature; (2) in the meantime, we replace the back-
ground of the original image by white color, leaving only object pixels, leveraging
the original UNet's self-attention layers to extract the object image feature; (3)
�nally, during the new image generation process, we injected the contextualized
image features and the object image features into the UNet di�usion model with
the dedicatedly trained context-cross-attention layers and object-cross-attention
layers, respectively.

Multimodal Generative Image-feature Decoder We introduce a multi-
modal generative image-feature decoder, which actively generates target image
features by combining visual information from the reference image and textual
information from text prompt. Practically, we adapt a pre-trained MLLM, specif-
ically LLaVA-7B, to serve as our generative multimodal decoder. As shown in
Fig. 2 upper-left branch, given a reference imageI ref and its object maskM ref ,
we get a white-background reference image byI wb

ref = I ref � M ref .
We construct an instruction sequence as the input to MLLM: " < f ref > An

image of< label > . Describe< P tgt > ", where label is the subject keyword (e.g.
cat, car, etc.), and Ptgt the target prompt.

A learnable token is appended at the end of the instruction sequence. Af-
ter forwarding the MLLM, the embedding corresponding to this learnable token
is the output of our multimodal image-feature decoder. We call it decoder as,
intuitively, it is trained to combine visual features with the target prompt in
a generative manner and output an image embedding. By design, the MLLM
image-feature decoder edits the background-excluded image feature ofI wb

ref fol-
lowing a background-included target prompt Ptgt that describes an entire image.
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Fig. 3: Multimodal Generative Learning and iterative Self-Attention Masking

The generated image feature from the multimodal image-feature decoder is
then converted into a sequence of embedding inR768 with length N (we use
N = 4 in this work) through a linear layer. Inspired by IP-Adapter [37], the
embedding sequence is then integrated into the pre-trained UNet model with
decoupled cross-attention as shown in Fig. 2 upper-right branch.

Self-Attention Feature Transfer To further enhance the detail faithfulness,
we involve image self-attention features and apply a masking mechanism. Specif-
ically, the same pre-trained UNet is leveraged as the self-attention feature ex-
tractor. As shown in Fig. 2 lower branch, I wb

ref is forwarded through the di�usion
UNet with t = 0 as timestep andlabel as text condition. Features at each self-
attention layer are collected and transferred into the main UNet model by the
adapted modules with decoupled self-attention.

The self-attention feature transfer is an e�ective information shortcut as the
extracted feature ci carries �ne-grained details. However, directly applying it
will cause interference between the backgrounds ofI wb

ref and I gen . To address
this issue, we present a self-attention masking procedure. Ideally, we want only
the features of the foreground inI wb

ref to be injected into the foreground of I gen .
The features of the background inI wb

ref should be eliminated and the background
of I gen should remain una�ected by the self-attention feature transfer. We apply
a masking mechanism using the reference image maskM ref and the generated
image maskM gen . The output of our modi�ed self-attention is:

Znew = Attn (Q; K; V ) + � � Attn (Q; K 0; V 0; M ref ) � M gen � � (3)

where � is a learnable parameter.K 0 and V 0 are the key and values calculated
from the extracted self-attention feature ci by K 0 = ci W 0

k and V 0 = ci W 0
v . Here,

W 0
k , W 0

v are the weight matrices of the newly introduced decoupled subject-
cross-attention projections. The reference image maskM ref is applied inside of
Attn in the form of the attention mask, and the generation maskM gen is applied
through an element-wise product.� is a strength scalar for additional controls.

During training, the model is optimized to reconstruct the background-included
reference imageI ref . The white-background reference imageI wb

ref and the tar-
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get image I ref share the same mask, soM ref = M gen . During inference, the
ground truth M ref is available but the ground truth M gen isn't. We use the
cross-attention map corresponding to the subjectlabel to approximate M gen .
Speci�cally, as shown in Fig. 3 (b), during each denoising step, the attention map
of label from each cross-attention layer is extracted and averaged intoM gen ( t ) .
We use it to approximate M gen in the next denoising step.

Multimodal Generative Learning and Di�usion Learning. Unlike pre-
vious works that extract the image features of the subject as it is, we generate
image features that are well-modi�ed following the target text prompt. Previous
works, like IP-Adapter, inject image features into the cross-attention layers of
the UNet without interacting with the target prompt. This is problematic, es-
pecially when the target prompt involves texture-changing the subject. On the
other hand, our multimodal image-feature decoder imagines the full image given
a white-background object image and a text prompt describing the full image.
which dramatically improves model performance, especially in changing subject
textures. It ensures the output preserves the identity of the target object while
respecting the text prompt. To achieve the best model performance, we propose
a two-staged pre-training strategy.

First, we propose aMultimodal Generative Learning Stage , where we
pre-train the multimodal image-feature decoder such that it learns to compose
image features of the subject with the target prompt and output the CLIP
embedding of the target image. To this end, we need to take advantage of the
generative capability of the MLLM: while initially trained to generate text, we
adapt it to generate image embeddings. As shown in Figure 3 (a),I wb

ref is encoded
by the MLLM vision encoder and combined with its caption Pref , together with a
learnable token, into a prompt instruction. This sequence is fed into the MLLM:
a 15-layer transformer. The output of the learnable token is trained to match the
CLIP image embedding of the original reference imageI ref . Once being well-
trained, our MLLM will generate prompt-contexualized image embeddings. The
loss function of this stage is formulated as:

L MLLM =

 MLLM

�
CLIP

�
I wb

ref

�
; Pref ; Token

�
� CLIP (I ref )


 2

2
(4)

Second, we design aDi�usion Learning Stage that faithfully converts
the contextualized image embeddings to an image. During this stage, we freeze
MLLM and pre-trained di�usion model and optimize only the decoupled subject
and contextual attentions and their linear mappings. The model is trained on
the OpenImage dataset, using the same training objective as shown in Eq. (1).

Classi�er-free guidance (CFG) [11, 37] improves di�usion generaton quality.
However, we �nd it better to only enable it for the context-cross-attention side
and not on the subject-cross-attention side. Speci�cally, in the second training
stage, to enable CFG on the context-cross-attention side, we randomly replacing
the contextualized feature with an all-zero image embedding.
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Fig. 4: Zero-shot new context. Visualization of our generated samples for various im-
ages and prompts. Exact subject with a di�erent context.

4 Experiments

4.1 Training and Implementation Detail

To train our model, we construct a dataset of 282K image/caption/image-mask
triplets from the OpenImage-V7 [16] dataset. We use BLIP-2 OPT6.7B to gen-
erate captions [17] for the images, then remove human-related subjects and �lter
out color, shape, and texture keywords. We use the subject mask provided in
OpenImage asM ref . Evaluation images do not come with a mask, so we use
SAM [14] to extract main objects and build masks thereafter. We use Stable
Di�usion v1.5 [27] with RealisticVision [29] checkpoint as our foundation di�u-
sion model. We load LLaVA-7B as our MLLM decoder in stage-one training. In
stage-two training, we load IP-Adapter [37] checkpoints to initialize our context
cross-attention layers, and zero-initialize our object cross-attention layers. We
evaluate the model using various images and prompts.

We present qualitative examples to illustrate the e�ectiveness of our model.
In Fig. 4, the target prompts specify a novel contextual environment. Our model
seamlessly generates a high-quality background while precisely situating the
same object within this new setting. In Fig. 5, the prompts indicate a change in
texture. Our model showcases its ability to render realistic textures in response
to the textual cues, adeptly altering speci�ed visual elements while leaving other
identity aspects of the image una�ected.

Qualitative Comparison. We conducted a comparative analysis to evaluate
the performance of our method against existing tuning-free open-vocabulary
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