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Abstract. Scanned point clouds are often sparse and incomplete due
to the limited field of view of sensing devices, significantly impeding the
performance of downstream applications. Therefore, the task of point
cloud completion is introduced to obtain a dense and complete point
cloud from the incomplete input. The fundamental challenges in tackling
this task involve accurately inferring the missing shapes and upsampling
them to higher densities. In this paper, we propose a novel approach to
address this task, which formulates the completion task as a dual prob-
lem: a feature-wise extrapolation problem where the shape features of
the partial point cloud are extrapolated to outlier regions for the re-
covery of missing portions, and a feature-wise interpolation problem to
achieve point cloud upsampling. Based on these, we propose the EINet,
a new point cloud completion paradigm with a novel Extrapolation mod-
ule that can predict the missing shapes for the partial point cloud and a
newly designed Interpolation module to upsample the point cloud. Ex-
tensive evaluation results demonstrate that EINet achieves compelling
performance compared to previous state-of-the-art methods. The code is
open-sourced at https://github.com/corecai163/EINet.

1 Introduction

Due to their simplicity in depicting high-resolution 3D objects, point clouds
have been widely used across various 3D applications, including autonomous
driving [14, 38], robotics [21], and 3D object classification [11, 20, 26, 34]. How-
ever, acquired point clouds are usually sparse and incomplete, lacking crucial
details due to limited scanning viewpoints and restricted fields of view of the
sensing devices. This incompleteness can substantially impede the performance
of various downstream applications [15, 22, 39, 43, 45]. To address this issue, the
task of point cloud completion has been introduced, which aims to reconstruct
the missing shape and generate a dense and complete output. However, this
task is notably challenging given the fact that the shape of the missing portion
is usually unknown.
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Fig. 1: Distinguishing between approaches for predicting the missing shape features, we
illustrate three categories: a) MLP-Based, b) Transformer-Based, and c) The proposed
Extrapolation-Based method.

The overarching idea to address this task involves leveraging the partially
observed point cloud to infer the missing parts, resulting in the creation of a
coarse but complete seed point cloud, which is subsequently upsampled to a
denser and complete output. As a result, many distinct foundational models
have been introduced in line with this idea [8,24,25,36,37,45]. These models can
be broadly classified into three categories based on their approaches to seed point
cloud generation: 3D Convolution-Based, MLP-Based, and Transformer-Based.

3D Convolution-Based methods [5,7,31,45] initially transform the input point
cloud into voxels and employ robust 3D convolution techniques to propagate
features to the empty voxels. However, 3D convolution operations are computa-
tionally intensive, and these methods are often limited by the number of voxels
used, resulting in the loss of detailed geometric structure during the voxelization
process. Conversely, MLP-Based methods process the points directly by first
extracting a global shape feature from the incomplete point cloud and subse-
quently employing MLP layers to split this global shape feature into multiple
seed points [37, 40] or features [1, 24, 30] to cover the missing portion (Figure
1a). Nevertheless, the extracted global feature contains only partial information
representing an incomplete shape. Thus, these methods struggle to construct in-
tricate details of the missing portion and tend to produce ambiguous seed points.
In contrast, recent Transformer-Based methods [12, 25, 35, 36, 44] have achieved
promising completion quality. They reframe the point cloud completion task
as a set-to-set translation problem, where they first extract point proxies from
the input partial point cloud and then employ a transformer encoder-decoder
architecture to predict the proxies of the missing area, which is then used to
reconstruct the output partial point cloud (Figure 1b).

Different from previous works, our innovation to solve this challenging prob-
lem comes from a deep insight into inferring the missing shapes given partial
observations. Since the partial observations and the missing shapes together con-
stitute the complete point clouds, they should inherently be highly correlated.
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Instead of utilizing the transformer to capture the relation as in a set-to-set trans-
lation task, we present a unique viewpoint to tackle this problem: although it is
evident that the partial shape is not linearly correlated with the missing shape in
the coordinate space due to the complex shapes of point clouds, it is possible to
map them into a high-dimensional feature space that can establish linear corre-
lation. This insight led us to believe that the completion process can be achieved
through a simple extrapolation operation in the feature space. Thus, we present
a novel point cloud completion paradigm by reformulating the shape completion
process as a feature space extrapolation problem, where we linearly extrapo-
late existing features extracted from the partial point cloud into new regions in
the feature space to obtain the features of the missing portion, as illustrated in
Figure 1c. Furthermore, to increase the density of the point cloud, we reframe
the upsampling process as a feature space interpolation problem, where existing
features are adaptively interpolated into inner areas based on their surrounding
features to generate new points. But, the success of the proposed extrapolation
or interpolation operation hinges upon a fundamental prerequisite – the exis-
tence of features within a linear-addable feature space. This condition enables
straightforward feature-wise addition and subtraction operations, facilitating the
seamless application of these techniques. To ensure this condition, we introduce
the Mapping Constraints, a paired set of mapping and reverse mapping func-
tions that transform the shape features into a linear-addable feature space and
subsequently restore them to their original space.

Following this novel paradigm, we introduce EINet, a straightforward yet
effective point cloud completion network. EINet comprises newly designed Pre-
dictive Linear Extrapolation modules, Seed Feature Propagation modules, and
Adaptive Interpolation modules. To validate the performance of the proposed
EINet, we evaluate it on three standard datasets: PCN [37], ShapeNet-55/34 [36],
and KITTI [6]. The experimental results demonstrate the effectiveness of EINet
by achieving promising performance even comparable to previous state-of-the-art
(SOTA) methods. In summary, our main contributions are as follows:

1. We introduce a novel paradigm for solving the point cloud completion task,
where the extrapolation operation is used to reconstruct the missing shape
and the interpolation operation is used to upsample the coarse point cloud.

2. We propose EINet, with carefully designed Predictive Linear Extrapolation
module and Adaptive Interpolation modules to achieve point cloud comple-
tion.

3. We evaluate the proposed method on multiple datasets and show that the
proposed EINet achieves competitive performance compared to previous
foundation methods.

2 Related Work

Traditional approaches to 3D shape completion rely on geometric rules [9, 16,
18, 42] or template matching [10, 13, 17, 23] for inferring missing components.
These methods typically assume the presence of a smooth 3D shape surface or
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rely on comprehensive shape datasets, making them vulnerable to novel objects
and environmental noise. Early deep learning methods [5, 7, 31, 45] adopt voxel
grids to represent 3D objects. These methods utilize the strong capabilities of 3D
convolutions to propagate and infer missing information, achieving remarkable
performance in 3D shape completion. Nevertheless, voxelization has its limita-
tions, as it sacrifices finer details in the 3D shape and substantially escalates
memory usage when increasing the voxel grid’s resolution.

Recent advancements in deep neural networks have led to methods that di-
rectly manipulate raw point cloud data [2,19,20,41]. Based on these techniques,
Yuan et al . introduced PCN [37], a novel coarse-to-fine point cloud completion
network. It first extracts a global shape code to describe the coarse structure
of the input points. Subsequently, it generates an initial coarse but complete
point cloud from the global shape code, followed by processing it through a
folding-based upsampling block to create a denser point cloud. But folding-based
upsampling blocks may not effectively reconstruct the upsampled point cloud,
potentially leading to the loss of crucial geometric details. Recognizing this lim-
itation, methods like SA-Net [27] have extended the upsampling process into
multiple stages by introducing hierarchical folding blocks. This has triggered a
series of following works aimed at designing increasingly proficient upsampling
blocks. For instance, Xiang et al . devised SnowFlakeNet [30], with well-crafted
Snowflake Point Deconvolution blocks designed to better preserve local geometric
details. Additionally, FBNet [32] and SeedFormer [44] have made notable con-
tributions by introducing the Feedback-Aware Completion block and Upsample
Transformers, respectively, to refine and upsample coarse point clouds.

Different from previous methods, PoinTr [36] explores a new approach for
point cloud completion via reformulating this task as a set-to-set translation
problem, where they use a Set Transformer encoder-decoder architecture for
generating the proxies of missing regions based on the proxies of existing re-
gions. Following this idea, ProxyFormer [12] introduces the missing part sen-
sitive transformer, which converts random normal distribution into reasonable
position information and uses proxy alignment to refine the missing proxies.
SDNet [4] proposed two sub-networks to refine both the partial inputs and the
partial regions reconstructed by the Set Transformer. AdaPoinTr [35] introduced
an adaptive query generation mechanism to deal with diverse situations and an
auxiliary denoising task is designed to effectively make the optimization more
stable and efficient.

3 Proposed Method

We follow the previous coarse-to-fine pipeline [30,44] to achieve point cloud com-
pletion. Specifically, when provided with an incomplete point cloud P ∈ RN×3,
our initial objective is to infer the missing shapes and generate a seed point
cloud S ∈ RN2×3, along with seed features SF ∈ RN2×C . Then, we progressively
upsample the seed point cloud to the target resolution, resulting in a complete
and densely populated output point cloud O ∈ RN3×3. To realize these ideas,
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Fig. 2: The overall pipeline of the proposed network. a) The architecture for the feature
extractor. b) The architecture for the extrapolation module. We use the extrapolation
module to generate the missing points and features, which are then merged with the
input partial point cloud to obtain a coarse but complete seed point cloud.

our approach, EINet, comprises three key components: 1) the feature extractor,
2) the extrapolation module, and 3) the interpolation module. Figure 2 provides
an overall illustration of the network architecture.

3.1 Feature Extractor

The feature extractor aims to subsample a set of partial seed points Pp ∈ RN0×3

and their corresponding features Fp ∈ RN0×C . We follow the previous work
[30,44] and leverage the capabilities of both the Set Abstraction (SA) layer [20],
and the Point Transformer (PT) [41] to extract multi-resolution partial point
clouds and features, as illustrated in Figure 2a. The Set Abstraction layer em-
ploys FPS layers to downsample a cluster of points and utilizes MLPs with max
pooling layers to extract permutation-invariant features. Meanwhile, the Point
Transformer layer enhances the local shape context [30]. Multiple layers of Set
Abstraction and Point Transformer are sequentially stacked together to capture
the partial features. They are designed to represent the local structures of the
partial point cloud. The feature extractor also extracts the global shape feature
denoted as G ∈ R1×C1, which serves as additional guidance in the subsequent
Extrapolation Module.

3.2 Extrapolation Module

The extrapolation module is introduced to infer the features of missing regions
based on the previously extracted partial features. As visualized in Figure 2b,
the key idea of this extrapolation module is quite straightforward. Given a set
of partial features Fc ∈ RN1×2C obtained from an incomplete point cloud, a
predictive linear extrapolation is employed to extend the existing features
into the new region of the feature space.

Nonetheless, it is important to emphasize that the success of the linear ex-
trapolation method hinges on the additivity of the features. In order to fulfill this
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prerequisite, we have designed the alignment mapping layer, which maps the
input partial features into a feature space so that mapped features are amenable
to linear addition. Specifically, it is an encoder EN with a three-layer MLP to
transform the partial features into the feature space, denoted as F ′

c = EN(Fc, G),
where F ′

c ∈ RN1×C
2 . Next, we execute the extrapolation operation to derive the

new shape feature in the feature space as follows:

wscale,Wcenter = MLP(G),

F ′
new = F ′

c + wscale(F
′
c −Wcenter)−Avg(F ′

c),
(1)

where wscale ∈ R and Wcenter ∈ R1×C
2 are predicted extrapolation parameters,

and Avg(F ′
c) ∈ R1×C

2 calculates the mean value of input features. This equation
means that we extrapolate the current features to obtain new features based on
the predictive centers and scales. Then, a reverse mapping layer DE, which is
another three-layer MLP decoder, is used to map the extrapolated features back
into the original feature space, leading to Fnew = DE(F ′

new, G).
Once the features of the missing portion are obtained, we employ a Decon-

volution layer to upsample the feature and obtain Fe ∈ RN0×C and then use
an MLP to predict the coordinates: Pe = MLP(Fe). Finally, the extrapolated
features and coordinates are concatenated with the partial points, resulting in a
coarse but complete seed point cloud S with associated seed features SF .

3.3 Interpolation Module

Given complete seed point clouds, our next objective is to gradually upsample
them to the target resolution. We formulate this process as an interpolation
problem, wherein we aim to predict a set of unique interpolation coefficients.
These coefficients are employed to combine the point features within a local
region and generate new point features.

However, unlike the extrapolation module, the upsampling task places a
stronger emphasis on local details to represent the underlying surface accurately
and avoid outlier points. To achieve this, we introduce the Seed Feature Propaga-
tion module, which integrates shape features from the seed points. Then, guided
by these propagated features, the Adaptive Interpolation module has been de-
vised to predict the interpolation coefficients for generating new features. Figure
3a shows the architecture of the Interpolation Module.

Seed Feature Propagation Given an input coarse point cloud P l and corre-
sponding feature set F l, where l indicates the upsampling step (e.g ., l = 0 means
seed point cloud), the Seed Feature Propagation module aims to propagate shape
features from seed points into the input coarse point cloud. Previous feature
propagation methods [20, 44] use only the coordinates differences as weights to
merge nearby seed features, which overlooks the local feature context. Thus, we
proposed to use both the coordinates differences and the feature differences to
enrich the local context and offer regional insights.
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Fig. 3: The network architecture for the adaptive interpolation module. PE means the
Point Proxy [36] Embedding.

Especially, for each point pi ∈ P l, we first calculate the coordinate differences
dij between its k nearest seed points sj ∈ S. Here dij = Concat(psij , ||psij ||2),
with psij = pi − sj , where j ∈ NSk(i) and NSk(i) represents the index of k
nearest points of pi in seed points S (with a default value of k = 8). Next, an
MLP M is employed to map the coordinate difference into the feature space and
serve as the positional embedding.

Similarly, we calculate the feature differences via subtraction relation within
the local neighbor features of the seed points and apply the channel-wise cross
attention to predict the propagation weights:

qi = Linear(fi); kj = Linear(sfj);

wij = σ(MLP(qi − kj +M(dij))
(2)

where fi ∈ F l, sfj ∈ SF , j ∈ NSk(i), dij is the coordinate differences, and σ is
the softmax function so that

∑
j wij = 1. The propagated feature PF l

i is then
derived as follows:

vj = Linear(sfj); PF l
i = F l

i +
∑
j

wij(vj +M(dij)) (3)

Then a cross attention layer is applied to merge the propagated feature with the
coarse input feature: PF l = CrossAttention(PF l, F l, F l).

Finally, inspired by SnowFlake [30] we employ an MLP to extract the low-
level coordinate features. These features are then grouped using max pooling and
combined with the propagated features as depicted in Figure 3a. An additional
MLP is employed to generate the guidance feature, denoted as Q, which serves
as local shape guidance in the interpolation module.

Adaptive Interpolation The adaptive interpolation block achieves upsam-
pling via interpolating the coarse feature F l by adaptively predicting a set of
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interpolation coefficients. Similar to the extrapolation module, the initial step
is to map the coarse point features into a linearly additive feature space using
the local shape guidance provided by Q. This mapping is achieved as follows:
F ′l = EN(F l, Q).

Then, to predict the interpolation coefficients, we also borrow ideas from
point transformer [41] via applying channel-wise cross attention on F ′l. However,
it has been observed that relying solely on these mapped features does not suffice
to generate well-distributed points. This is because a uniform feature distribution
within the linearly additive feature space may become non-uniform once these
features are mapped back to the original feature space.

To this end, an additional guidance strategy is required to enhance the pro-
posed feature space interpolation approach. Especially, we incorporate the point
proxies [36] in the original feature space as additional interpolation guidance de-
noted as Proxy Embedding. Note that the proxy embedding PE is constructed
by incorporating positional information into PF l [36]. Figure 3b illustrates the
architecture design of the proposed adaptive interpolation module.

Given local shape guidance qi ∈ Q and the mapped feature f ′
i ∈ F ′l for

each point pi ∈ P l, we first calculate its feature differences dfij via subtraction
relation within its k neighbor points:

qi = Linear(qi); kj = Linear(f ′
j); dfij = qi − kj (4)

where j ∈ NNk(i) and NNk(i) represents the k nearest points of pi in P l. Then
similar to the feature difference we calculate the proxy differences peij as follows:
peij = pei − pej , where j ∈ NNk(i).

The feature differences and the point proxy differences are combined together
to estimate the interpolation coefficient: wij = σ(DeConv(MLP(dfij + peij))
where σ is the softmax function so that

∑
j wij = 1; j ∈ NNk(i) and DeConv is

the 1D deconvolution layer to generate multiple sets of coefficients.
Then, we proceed to interpolate the neighboring features of pi based on the

predicted coefficients wij . Each interpolated feature F ′l+1 is calculated as follows:

vj = Linear(f ′
j); F ′l+1

i = F ′l
i +

K∑
j=0

wij(vj + peij) (5)

Finally, the interpolated feature is mapped back to the original feature space
through the decoder F l+1 = DE(F ′l+1, Q).

3.4 Upsampling via Interpolation Modules

After obtaining the newly interpolated features, we then employ another MLP
to predict the point coordinates: P l+1 = P l + MLP(F ′l+1). It’s worth noting
that these interpolated features, along with the coordinates, can serve as input
for the following interpolation modules. Thus, we can stack multiple adaptive
interpolation modules together to effectively achieve varying upsampling ratios
and generate a complete and densely populated output point cloud O.
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3.5 Loss Function

Following previous methods, we use Chamfer Distance (CD) as loss functions to
supervise the coarse-to-fine completion steps and train our network. However,
another concern lies in accurately mapping the extrapolated features back into
the original feature space through the proposed reverse mapping function. To ad-
dress this, we introduce a Mapping Constraint as an additional loss function.
For instance, given the partial features Fp, our target is to have Fp be identical
to DE(EN(Fp)). Thus, the mapping constraint loss is devised as follows:

LMC = ||Fp − DE(EN(Fp))|| (6)

To sum up, the total loss function used in training is defined as follows:

L = Lseed + αLupsample + β
∑

LMC (7)

where Lseed calculates the chamfer loss between the seed point cloud and ground
truth, Lupsample calculates the chamfer loss for each upsampling step, and

∑
LMC

indicates the Mapping Constraints across all Extrapolation and Interpolation
modules. The hyperparameters α and β are designed for balancing the weights
of these components.

4 Experiments

4.1 Datasets and Evaluation Metrics

The PCN dataset was first introduced in [37]. It contains 30,974 distinct shapes
collected from the ShapeNet dataset [3]. The complete point clouds are cre-
ated by uniformly sampling 16,384 points from original 3D meshes, while the
partial point clouds are generated by back-projecting 2.5D depth images into
the 3D space from various viewpoints. In summary, it consists of 28,974 train-
ing samples, 800 validation samples, and 1,200 testing samples. Furthermore,
since incomplete point clouds may have different numbers of points, we follow
previous methods by resampling them to a fixed number of 2,048 points. The
ShapeNet-55/34 datasets, introduced in PoinTr [36], are also derived from the
ShapeNet dataset [3] by uniformly sampling 8,192 points from original meshes.
The ShapeNet-55 subset contains 55 categories with 41,952 training shapes and
10,518 testing shapes. Conversely, ShapeNet-34 subset comprises 46,765 shapes
across 34 categories for training, and the testing set contains 5,705 shapes, which
is further divided into two segments: one with 3,400 shapes from 34 seen classes
and another with 2,305 shapes from 21 unseen classes. In accordance with previ-
ous approaches, the models are evaluated on point clouds with varying missing
ratios, e.g., 25%, 50%, and 75%, corresponding to three levels of completion task
difficulty: simple (S), moderate (M), and hard (H), respectively. The KITTI
dataset [6] is also included in the experiment to evaluate the robustness of the
proposed method on real-collected point clouds. This dataset is gathered from an
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Table 1: Point cloud completion results on the PCN dataset compared to previous al-
gorithms (CD-L1 ×10−3). Bolded text means the best performance and the underlined
text means the second-best.

Methods Average Plane Cabinet Car Chair Lamp Couch Table Watercraft

FoldingNet [33] 14.31 9.49 15.80 12.61 15.55 16.41 15.97 13.65 14.99
TopNet [24] 12.15 7.61 13.31 10.90 13.82 14.44 14.78 11.22 11.12
PCN [37] 9.64 5.50 22.70 10.63 8.70 11.0 11.34 11.68 8.59
GR-Net [31] 8.83 6.45 10.37 9.45 9.41 7.96 10.51 8.44 8.04
PMP [28] 8.73 5.65 11.24 9.64 9.51 6.95 10.83 8.72 7.25
NSFA [29] 8.06 4.76 10.18 8.63 8.53 7.03 10.53 7.35 7.48
SnowFlake [30] 7.21 4.29 9.16 8.08 7.89 6.07 9.23 6.55 6.40
PoinTr [36] 7.26 4.05 9.34 7.97 7.92 6.40 9.29 6.66 6.47
AdaPoinTr [35] 6.53 3.68 8.82 7.47 6.85 5.47 8.35 5.80 5.76
FBNet [32] 6.94 3.99 9.05 7.90 7.38 5.82 8.85 6.35 6.18
ProxyFormer [12] 6.77 4.01 9.01 7.88 7.11 5.35 8.77 6.03 5.98
SeedFormer [44] 6.74 3.85 9.05 8.06 7.06 5.21 8.85 6.05 5.85
Ours 6.63 3.96 8.81 7.74 6.93 5.03 8.80 6.15 5.57

autonomous driving platform, and due to the limited viewpoints of the LiDAR
scanner, the collected point clouds exhibit natural incompleteness and sparsity.
Following previous approaches, a sequence of Velodyne scans is extracted from
the KITTI dataset, with the focus solely on point clouds within the object bound-
ing boxes labeled as cars. In total, the KITTI dataset comprises 2,483 partial
point clouds without ground truth.

For PCN and ShapeNet datasets, we follow previous methods by employing
three widely used metrics: CD-L1, CD-L2, and F1-Score@1% to obtain a
thorough assessment of the performance of the proposed method. Note that
smaller values of the CD metric indicate better performance, while for the F1-
Score, larger values are indicative of better results. For the KITTI dataset, we
employ Fidelity and Minimal Matching Distance (MMD) as evaluation metrics.
Since there is no ground truth available, it is important to note that these two
metrics serve as general indicators, and a lower/higher score does not necessarily
equate to better performance.

4.2 Implementation Details

The feature extractor implemented in this paper contains two layers of set ab-
straction with point transformers, subsampling N0 = 512 and N1 = 128 partial
points, followed by one layer of global max-pooling to extract the global shape
feature G with a channel C1 = 512. Subsequently, the extrapolation module
generates an extrapolated point cloud comprising N0 = 512 points, which will
be merged with the partial seeds to generate an initial seed point cloud S with
N2 = 1024 points. Then the interpolation modules progressively upsample the
coarse point cloud P 0 = S, yielding dense point clouds P 1,P 2,O, where O repre-
sents the final predicted point cloud with the required resolution. The number of
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Input GRNet SnowFlake SeedFormer AdaPoinTr Ours Ground Truth

Fig. 4: The point cloud completion results of different methods on the PCN dataset.
Notably, we see that our method is able to reconstruct the missing component with
better shapes, e.g . couch boundary and chair legs. Please zoom in for more details.

Table 2: Quantitative results on Seen ShapeNet-34 test set and Unseen ShapeNet-21
test set (CD-L2 ×10−3).

Seen ShapeNet-34 Unseen ShapeNet-21
Method CD-S CD-M CD-H CD-avg F1 CD-S CD-M CD-H CD-avg F1
FoldingNet [33] 1.86 1.81 3.38 2.35 0.139 2.76 2.74 5.36 3.62 0.095
PCN [37] 1.87 1.81 2.97 2.22 0.154 3.17 3.08 5.29 3.85 0.101
TopNet [24] 1.77 1.61 3.54 2.31 0.171 2.62 2.43 5.44 3.5 0.121
GRNet [31] 1.26 1.39 2.57 1.74 0.251 1.85 2.25 4.87 2.99 0.216
PoinTr [36] 0.76 1.05 1.88 1.23 0.421 1.04 1.67 3.44 2.05 0.384
AdaPoinTr [35] 0.48 0.63 1.07 0.73 0.469 0.61 0.96 2.11 1.23 0.416
SnowFlake [30] 0.6 0.86 1.5 0.99 0.422 0.88 1.46 2.92 1.75 0.388
ProxyFormer [12] 0.44 0.67 1.33 0.81 0.466 0.60 1.13 2.54 1.42 0.415
SDNet [4] 0.49 0.67 1.27 0.81 0.535 0.64 1.02 2.32 1.33 0.503
SeedFormer [44] 0.48 0.7 1.3 0.83 0.452 0.61 1.07 2.35 1.34 0.402
Ours 0.46 0.68 1.24 0.79 0.446 0.59 1.01 2.19 1.26 0.413

feature channels C remains fixed at 128 for all extrapolation and interpolation
modules. Besides, throughout our experiments, the hyperparameters α and β
consistently maintain values of 1 and 0.01.

Our network is implemented using PyTorch with Nvidia CUDAs and is
trained from scratch in an end-to-end manner. Specifically, we set the total
number of training epochs to 400, employing a batch size of 64. We utilize the
AdamW optimization algorithm to train the network, with an initial learning
rate of 0.0016, which is gradually reduced by a factor of 0.2 every 100 epochs.
The training process is executed on four Nvidia V100 32G GPUs and costs ap-
proximately 2 days for PCN and ShapeNet-55/34 dataset.

4.3 Experiment Results

We first evaluate the performance of the proposed EINet on the PCN dataset and
compare it with previous SOTA methods. Table 1 presents the results of different
methods. Notably, our method achieves an outstanding average CD-L1 score of
6.63×10−3, showcasing a significant improvement over the performance of prior
foundation methods like PoinTr [36], PCN [37], TopNet [24]. Such performance is
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Table 3: Quantitative results of different methods on the ShapeNet-55 benchmark
dataset (CD-L2 ×10−3).

Table Chair Air- Car Sofa Bird Bag Rem- Key- Roc- CD CD CD CD F-
Method plane house ote board ket S M H Avg Score
FoldingNet 2.53 2.81 1.43 1.98 2.48 4.71 2.79 1.44 1.24 1.48 2.67 2.66 4.05 3.12 0.082
PCN 2.13 2.29 1.02 1.85 2.06 4.5 2.86 1.33 0.89 1.32 1.94 1.96 4.08 2.66 0.133
TopNet 2.21 2.53 1.14 2.18 2.36 4.83 2.93 1.49 0.95 1.32 2.26 2.16 4.3 2.91 0.126
GRNet 1.63 1.88 1.02 1.64 1.72 2.97 2.06 1.09 0.89 1.03 1.35 1.71 2.85 1.97 0.238
Snowflake 0.98 1.12 0.54 0.98 1.02 1.93 1.08 0.57 0.48 0.61 0.7 1.06 1.96 1.24 0.398
PoinTr 0.81 0.95 0.44 0.91 0.79 1.86 0.93 0.53 0.38 0.57 0.58 0.88 1.79 1.09 0.464
AdaPoinTr 0.62 0.69 0.33 0.81 0.63 1.33 0.68 0.38 0.33 0.34 0.49 0.69 1.24 0.81 0.503
ProxyFormer 0.70 0.83 0.34 0.78 0.69 - - - - - 0.49 0.75 1.55 0.93 0.483
SeedFormer 0.72 0.81 0.4 0.89 0.71 - - - - - 0.5 0.77 1.49 0.92 0.472
Ours 0.66 0.79 0.41 0.84 0.69 1.49 0.73 0.42 0.33 0.49 0.49 0.75 1.46 0.90 0.432

even competitive to recent SOTA algorithms like SeedFormer [44] and AdaPoinTr
[35]. Then, Figure 4 includes several visual examples of the completion results.
From the figure, it becomes evident that our proposed algorithm can correctly
generate shape details for the missing parts. In contrast, other algorithms, such as
SnowFlake and SeedFormer, may generate ambiguous shapes, often accompanied
by a considerable number of outliers. For example, in the second row of Figure
4, our method can reconstruct the missing chair legs with better shapes, while
for comparison, SnowFlake generates only ambiguous shapes for the legs and
SeedFormer tends to generate many noise points.

Then, to showcase the generalization capability of the proposed method,
we perform additional experiments on the ShapeNet-55/34 dataset. In Tables
3 and 2, we present the performance of EINet on the ShapeNet-55/34 dataset.
Impressively, our method achieves an average CD-L2 score of 0.90 × 10−3 on
the ShapeNet-55 dataset, demonstrating a remarkable advancement over the
performance of previous counterparts. Furthermore, even when dealing with the
most challenging ShapeNet-34 seen and ShapeNet-21 unseen dataset, our method
shows quite a robust performance. For example, we achieve an average CD-L2
score of 0.79× 10−3 on seen data and an average CD-L2 score of 1.26× 10−3 on
unseen data.

Finally, we examine the robustness of the proposed EINet on the real-world
KITTI dataset. As the KITTI dataset contains only real-collected Lidar point
clouds, we do not have ground-truth point clouds for training. Instead, we use
a pre-trained model on the PCN car dataset and directly test it on the KITTI
dataset. Table 4 shows the quantitative completion results, and Figure 5a shows
some visual examples. We see that our method achieves an average Fidelity score
of 1.48 and an average MMD of 0.512, showing robust performance comparable
to previous foundation models like PCN and PoinTr. Besides, from the visual
examples, we see that the previous set-to-set translation method PoinTr [36]
tends to generate outlier points. This is because PoinTr directly merges input
with output, and the input partial point cloud does not match the generated
point cloud, resulting in discontinuities. In contrast, our method can generate
cleaner point clouds and reconstruct better structure of the cars.
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Table 4: Quantitative results on the KITTI dataset.

Method PCN GR-Net PoinTr AdaPoinTr ProxyFormer SeedFormer Ours
FD (×10−3) 2.235 0.816 0.00 0.237 0.00 0.151 1.48
MMD (×10−3) 1.366 0.568 0.526 0.392 0.508 0.516 0.512

PoinTr OursInput

(a) Visual comparisons of generated point
clouds on the KITTI dataset. Our results con-
tain fewer outliers than PoinTr’s [36].

Input

SnowFlakeGround Truth Ours
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(b) The visualization of generated seed point
clouds from different methods. Please zoom in for
details.

Fig. 5: The visual comparisons on the KITTI dataset and the quality of generated
seed point clouds on the PCN dataset.

4.4 Ablation Study

Since we introduce a new paradigm for the point cloud completion task, to obtain
a better understanding of the proposed method, we perform several ablation
studies on the model complexity and the effectiveness of each component on the
PCN dataset.

Quality of Seeds: Since the extrapolation module is one of the key designs
of the proposed EINet, we then visualize the generated seed points to under-
stand the effectiveness of the extrapolation module. Besides, we also present the
corresponding dense outcomes, in order to elucidate the quality of the upsam-
pling stage. Figure 5b illustrates the seed point clouds and the dense points
generated by different methods on one sample in the PCN dataset. In contrast
to the SnowFlake [30], wherein seed points encompass only ambiguous shapes,
our generated seed points are imbued with intricate shape details. While Seed-
Former [44] can produce commendable seeds, its final completion result exhibits
many noise points. This underscores the superiority of the proposed Interpola-
tion module, which excels in generating a complete point cloud with clear borders
and well-defined shapes.

Model Complexity: One major concern is the model complexity of the pro-
posed method. Thus, we evaluate its number of trainable parameters (Params)
and the real inference speed (pc/s, point clouds per second) with a batch size
of 1 compared to previous methods. This experiment is conducted on an RTX
A4000 GPU and Table 5a shows the result. Our model achieves a testing speed
of 21 pc/s and its size is quite small with only 2.80 M trainable parameters,
which is almost 10 times smaller than PointTr with 28.9 M parameters.

Architecture Design: Furthermore, we investigate the importance of the
different components designed in this paper. To begin with, we ablate the fea-
ture propagation module by switching it with the three nearest-neighbor based
feature propagation layer [20, 44]. Then, we remove the Extrapolation-Based
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Table 5: Ablation study on the model complexity and network design.

Methods Params Speed CDPCN

PCN [37] 5.04 241 9.64
SnowFlake [30] 19.30 59 7.21
PoinTr [36] 28.9 48 7.26
SeedFormer [44] 3.24 18 6.74
Ours 2.80 21 6.63
(a) Model complexity of different methods. We
report the number of parameters (M) and the
testing speed (pc/s).

Module Combination
Feature Propagation ✓ ✓ ✓
Extrapolation Module ✓ ✓ ✓
Mapping Constraints ✓ ✓ ✓
CD-L1 (×10−3) 6.87 7.02 6.69 6.63

(b) Effectiveness of different components.

seed generation head and substitute it with the SnowFlake’s seed generation
head [30]. Finally, we study the effect of the proposed Mapping Constraints. As
depicted in Table 5b, the optimal performance is attained when all the designed
modules are applied. Especially, we observe a notable performance drop when
the Feature Propagation module is removed, where the CD-L1 increases from
6.63 × 10−3 to 6.87 × 10−3. Furthermore, without the Extrapolation module,
we observe that the performance further drops to 7.02 × 10−3, which proves
the effectiveness of the proposed extrapolation strategy. Finally, the proposed
Mapping Constraints also play an important role, with which the performance
improves from 6.69× 10−3 to 6.63× 10−3.

5 Conclusion and Disscussion

In this paper, we contribute a new algorithm for the point cloud completion
task. Especially we introduced a novel paradigm that reframes the shape com-
pletion task as an extrapolation problem and the point cloud upsampling as an
interpolation problem. Based on this paradigm, we designed the EINet, which
integrates newly proposed Extrapolation and Interpolation modules to generate
the missing shape features and upsample the point cloud in the feature space.
The experiment results on multiple datasets prove the effectiveness of the pro-
posed method.

Limitations and Future Work: Point cloud completion is an important re-
search problem and can benefit many downstream applications. A limitation of
current research is its focus on objects without background scenes, which makes
it challenging to apply to real point cloud data collected in large environments,
such as the KITTI dataset. Another concern is the assumption that the input
point cloud is clean and contains little noise. In reality, noise can significantly
affect the overall shape quality, especially when the input is sparse, resulting in
degraded performance. Therefore, an interesting direction for future research is
to design a pipeline for completing point clouds of large, real scenes with var-
ious objects and backgrounds. Additionally, another promising direction is to
increase the robustness of point cloud completion algorithms.
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