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Fig. 1: Given an audio and an image (green box), we produce animations beyond image
stylization with complex but natural dynamics, synchronized with audio at each frame.
Results were produced by our AVSyncD model trained on the proposed AVSync15.
Project webpage: https://lzhangbj.github.io/projects/asva/asva.html.

Abstract. Current visual generation methods can produce high-quality
videos guided by text prompts. However, effectively controlling object
dynamics remains a challenge. This work explores audio as a cue to gen-
erate temporally synchronized image animations. We introduce Audio-
Synchronized Visual Animation (ASVA), a task that aims to animate a
static image of an object with motions temporally guided by audio clips.
To this end, we present AVSync15, a dataset curated from VGGSound
with videos featuring synchronized audio-visual events across 15 cate-
gories. We also present a diffusion model, AVSyncD, capable of generat-
ing audio-guided animations. Extensive evaluations validate AVSync15
as a reliable benchmark for synchronized generation and demonstrate our
model’s superior performance. We further explore AVSyncD’s potential
in a variety of audio-synchronized generation tasks, from generating full
videos without a base image to controlling object motions with various
sounds. We hope our established benchmark can open new avenues for
controllable visual generation.
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1 Introduction

Generative modeling has witnessed remarkable progress recently, largely due to
the emergence of diffusion models [17,34,38]. Conditional generation and, in par-
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ticular, text-to-image generation [33,34], has been the focal point given its appli-
cation potential and availability of high-quality datasets [1,36]. This success has
also led to revived interest in video generation, such as text-to-video [5,21,37,45].
While text guidance has been thoroughly investigated, the unique advantages of
audio-visual synchrony for video generation remain underexplored. Unlike text,
which provides control over global semantics, audio offers both semantic control
on videos and precise control at each moment in time.

Most existing works on audio-to-visual generation are however either limited
to semantic control [20, 22, 39, 40], or constrained on singular scenarios such as
human talking face [9–11,28,30,49,51,52]. The former focuses on ambient audio
datasets lacking synchronization cues with environmental sounds (ranining, fire
crakcling, wind) [22] where shifting the audio temporally does not lead to major
changes in visual content. The input audio in such cases thus substitutes text to
provide only global semantics. The latter, talking faces, while synchronized, are
extremely limited in generation diversity and control.

To bridge this gap, we introduce Audio-Synchronized Visual Animation,
ASVA, a task which aims to animate objects depicted in natural static im-
ages into a video, with clear motion dynamics that are semantically aligned and
temporally synchronized with the input audio. ASVA requires a sophisticated
understanding of the audio’s temporal structure, as well as of how objects move
in synchrony with sound. Prior attempts on visual generation guided by diverse
sounds fall short in generated visual quality [23] and accurate synchronization
control [20, 48] due to two challenges: (1) the lack of high-quality training data
and benchmarks for learning audio-synchronized visual dynamics; (2) the devel-
opment of effective methods capable of generating highly synchronized video mo-
tions. Successfully addressing these challenges will expand the scope of current
video generation methods to enable more fine-grained semantic and temporal
control over the generation process via synchronized audio conditioning.

We address the first challenge by constructing a high-quality diverse dataset
with strong correlations between audio and object motions at each moment
in time. In an ideal dataset, sound sources should be easily identifiable in the
scene. Every visual motion in the video should highly correlate with the au-
dio semantically and temporally, and vice versa. Moreover, the visual content
should be of high quality for generation. However, existing audio-visual datasets
either are too noisy [7, 13], containing a large number of unassociated audio-
visual pairs [31], or predominantly featuring ambient sound categories that lack
meaningful synchronized object dynamics [22,41]. We thus curate a high-quality
dataset from VGGSound [7] by deploying an efficient two-step curation pipeline.
In the first step, we use a variety of signal processing techniques and founda-
tion models to automatically filter out videos with poor semantic alignment or
temporal synchronization, as well as those depicting static scenes or with too
fast camera motions. Then, to ensure the highest possible quality as a bench-
mark, we narrow down the dataset to sound categories with strong audio-visual
synchronization cues, and manually verify the quality of each video. We end up
obtaining AVSync15 with 15 dynamic sound classes, each with 100 examples rich
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and accurate in semantics, object dynamics, and audio-visual synchronization.
An overview of AVSync15 classes is in Figs. 2a and 2b and its comparison with
prior audio-video generation datasets is in Suppl. Sec. 5.1.

The second challenge pertains to the generation of audio-synchronized mo-
tions, which requires a detailed understanding of audio-visual correlations and
object dynamics. Take, for instance, a video featuring a dog. To generate re-
alistic video, the model is expected to not only synchronize the dog’s mouth
with the barking sound, but also accurately depict subtleties in the dog’s head
pose before and after barking. Furthermore, in a more challenging scenario, the
model should discern which object to animate to preserve semantic consistency
depending on the input sound. However, existing audio-conditioned visual gen-
eration frameworks [14, 39] primarily focus on semantic control, often encoding
the audio into a single global semantic feature and thereby neglecting the au-
dio’s temporal domain. Even recent attempts at audio-synchronized video gen-
eration [20, 23, 48] have not fully realized the potential of audio for fine-grained
temporal control, as they either rely on crude audio representations such as audio
amplitude [23], learn from weakly synchronized [22], noisy datasets [7], or ignore
object dynamics in the generation process [20, 22, 23, 48]. To this end, we intro-
duce Audio-Video Synchronized Diffusion (AVSyncD), a framework improving
a pre-trained image latent diffusion model [34] for enhanced audio guidance and
motion generation. We employ the pre-trained ImageBind [14] encoder to en-
code audio into time-aware semantic tokens, then fuse them into each frame’s
latent features. This allows for precise audio guidance on video semantics and
synchronization. To capture complex video motions, we add temporal attention
layers to the diffusion model. Finally, to ensure faithful animation of the input
image, we incorporate temporal convolutions and attention layers that always
reference the input image, i.e., first-frame lookups.

With the carefully designed dataset and architecture, we are able to train
a model specialized for ASVA and produce animations with more realistic and
audio-synchronized contents than prior works (Figs. 1 and 4). We provide thor-
ough experiments to validate the effectiveness of AVSync15 and AVSyncD and
demonstrate how to deploy AVSyncD for controllable generation, including am-
plifying audio guidance and semantic-aware object animation (Secs. 5.3 and 5.4).

2 Related Work

2.1 Controllable Visual Generation

Many conditional visual generation models based on diffusion process [17, 38]
have emerged recently. Benefiting from more efficient architecture, large-scale
training data [36], and aligned semantic space [32], Latent Diffusion Model
(LDM) [34] has achieved great success to generate realistic images conditioned
on text. This inspired researchers to explore various diffusion-based visual gen-
eration tasks, such as text-to-video [2, 5, 21, 44–46], audio-to-image [14, 39], and
audio-to-video [20, 23, 40, 48]. The architectures can be training-free [21, 23, 45],
fully-trained [5,44], or trained partially, which augments a pre-trained LDM by
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carefully adding some trainable layers [2, 20, 46]. Extensive works have also at-
tempted to control the semantics of the generated content [15, 25, 27, 50], while
how to apply control in the temporal dimension remains under-explored.

In this work, we developed an image animation model AVSyncD to control
generation semantically and temporally guided by audio. AVSyncD augments
pre-trained StableDiffusion [34] with trainable temporal layers and audio condi-
tioning mechanism, preserving training efficiency and generalizing well.

2.2 Audio-to-Video Generation

Traditionally, audio has been used as a temporal cue for talking face genera-
tion [28, 30, 49, 51, 52], where face and lip actions should be synchronized with
audio at each frame. Many works also rely on complex inputs such as 3D meshes
and human poses [28,49]. Although accurately synchronized, this line of research
is extremely limited in scenarios and cannot generate videos for diverse audios.

A series of works attempted to expand the class of audio by encoding sound
into a global semantic condition for video generation [14, 39, 40], however of-
ten overlooked the temporal aspect inherent in audio. Some recent works, al-
though divided audio features into time-aware segments as inputs [22,35], failed
to achieve promising visual quality or synchronize video motions with audios.
AADiff [23] is a training-free method re-weighting the text-image cross-attention
map in LDM using audio amplitude at each frame, however can only control
styles of each frame. TPoS [20] learns segmented audio features aligned with
CLIP [32] using sophisticated modules and training losses, and feeds them into a
pre-trained text-to-image model [34] for video generation. TempoToken [48] also
learns segmented audio features with a pre-trained audio encoder BEATs [8], and
fuses them into a pre-trained text-to-video model [44]. However, primarily fo-
cused on monotonous sound classes in Landscapes [22] or noisy audio-visual data
in VGGSound [7], these methods are limited to generating video semantics with-
out capturing the natural and synchronized dynamics of video content. Frozen
generation architectures also prevent them from generating natural motions.

To address these limitations, we introduce AVSync15, a high-quality dataset
specifically designed for ASVA. AVSync15 stands out from previous efforts by fo-
cusing on synchronization cues between audio and visual dynamics, allowing for
generating motions beyond mere visual effects. Once trained on AVSync15, our
AVSyncD can generalize to many applications to control video motions guided
by audios, on which previous methods performed poorly.

3 Audio-Synchronized Visual Animation

Formally, the Audio-Synchronized Visual Animation (ASVA) task can be posed
as follows. Given an audio clip a of length T seconds and an image x1, the goal
is to generate the future video sequence x2, . . . ,xrT (or x2:rT for short), where
r is the desired frame rate. Despite the simple formulation, this is a challenging
task as the generated video sequence should (1) be of high visual quality, (2)
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Fig. 2: (a): Overview of 15 categories in AVSync15. Categories are listed below x-
axis on the right plot. (b): Categoriy-wise averages of av-sync score ϕ, IA, and IT on
AVSync15 and equivalently sized subsets of VGGSS and AVSync-AC. Error bars for
VGGSS and AVSync-AC are obtained from 3 random splits.

be semantically aligned with the image x1 and audio a, (3) exhibit temporal
coherence and (4) natural object motions temporally synchronized with the audio
a. To facilitate research in ASVA, we introduce a new benchmark that includes
a curated high-quality dataset and a suite of evaluation metrics designed to
capture the various components of audio-synchronized generation.

3.1 AVSync15: A High-Quality Dataset for Audio Synchronized
Video Generation

Existing large-scale audio-visual datasets like VGGSound [6,7,19] and AudioSet [13]
often contain amateur videos from platforms like YouTube. These videos, while
diverse, can pose challenges for audio-synchronized video generation tasks due to
rapid scene changes, camera motion, noisy audio, or out-of-frame sound sources.
Prior work [22, 24] has addressed this by focusing on simpler videos, such as
those depicting fire crackling or weather patterns. However, such videos often
lack strong synchronization cues between audio and visual motion, making them
unsuitable for ASVA. To facilitate research in this area, we introduce a high-
quality dataset specifically designed for audio-synchronized video generation,
ensuring a close synchronization between audio and visuals. More specifically,
our selection criteria to create the dataset were: (1) High Correlation: Significant
visual changes should be closely associated with audio at each timestamp, and
vice versa. (2) Dynamic Content : We included content rich in temporal changes,
excluding ambient or monotonous classes. (3) Quality and Relevance: Both video
and audio needed to be clean, stable, and semantically aligned.
Preliminary Curation We start from VGGSound [7], a large-scale dataset with
309 diverse audio classes. Similar to VGGSoundSync [6], we first narrow down
to 149 classes with potentially clear audio-visual synchronized events, removing
ambient classes, which is referred as VGGSS. We then deploy a sequence of
automatic cleaning steps and a final manual selection step to identify appropriate
videos. The procedures are summarized below and detailed in Suppl. Sec. 5.2.
Automatic Curation We first use PySceneDetect [4] to cut videos with sharp
scene changes into different scenes, which are still likely to contain low-quality
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short clips. To maximize usage, we split each scene into 3-second clips with
0.5-second strides, and discard unsuitable clips based on the following metrics:

Raw Pixel Difference: We calculate average pixel distances between consecutive
frames and remove clips with both small and large values, likely depicting either
static or videos with excessive motion.
Image Semantics Difference: Complementing the raw pixel analysis above, we
also compute distances on CLIP [32] image features, removing videos with small
semantics changes such as zoom in/out or large semantic content transitions.
Audio Waveform Amplitude: We exclude clips whose maximum audio waveform
amplitude is low, indicating weak audio cues.
Semantic Alignment : We compute the average image-audio (IA) and image-
text (IT) alignment scores [32] in a video using ImageBind [14], removing clips
with low scores to ensure cross-modal semantic alignment.
Audio-Video Synchronization: To measure audio-visual synchronization, we fol-
low VGGSoundSync [6] to contrastively train an audio-visual synchronization
classifier on VGGSS, ending up with a comparable 40.85% test accuracy. The
model outputs an unbounded av-sync score ϕai,vj

for an audio-video pair (ai,vj).
During training, we compute ϕ for a synchronized pair (ai,vi) and its temporally-
shifted pairs from the same instance. Contrastive loss is then applied to these
shifted pairs to maximize the synchronization probability:

PSync(ai,vi) =
exp(ϕai,vi

/τ)∑
j exp(ϕai,vj/τ)

(1)

to distinguish the synchronized pair from shifted ones. We use PSync as a syn-
chronization indicator to remove low-scoring clips. When computing Psync, we
discard the temperature parameter τ used to improve training efficacy. We detail
the synchronization classifier and Psync in Suppl. Sec. 1 and Sec. 2.1, respectively.

We empirically determine metrics’ thresholds by prioritizing quality, acknowl-
edging that some acceptable clips might be discarded. After automatic curation,
we merge all continuous 3-second clips from each video and remove categories
with less than 100 examples to avoid class imbalance, resulting in AVSync-AC
(AVSync w/ Automatic Curation) with 76 categories and 39,902 examples.
Manual Curation We further select 15 diverse categories with clear audio-
visual motion cues from AVSync-AC for manual refinement. The categories range
from animals and human actions to triggered tools and musical instruments.
Manual curation once again seeks to identify appropriate videos for ASVA with
the criteria above: high correlation, dynamic content, quality and relevance.
Dataset Summary The final dataset, AVSync15, contains 90 training and 10
testing videos per category, each 2∼10 seconds long. We provide an overview
of AVSync15 in Fig. 2a. To validate our curation pipeline, we randomly sample
three 1500-video splits on the selected 15 categories from VGGSS and AVSync-
AC, and quantitatively compare them with AVSync15 in Fig. 2b and Tab. 2b.
We also compare AVSync15 with other audio-visual datasets in Suppl. Sec. 5.1.
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3.2 Evaluation Metrics

ASVA is a multi-faceted generation task, necessitating high quality at both im-
age and video level. At the image level, we follow previous conventions [3,12] to
use (1) Fréchet Inception Distance (FID) [16] to measure the quality of individ-
ual frames; (2) IA [14]/IT [47] to measure image-audio/image-text semantics
alignment on CLIP [32] space. At the video level, we use Fréchet Video Distance
(FVD) [42] to assess video quality. To measure audio-video synchronization, we
compute the following metrics with the trained synchronization classifier:
RelSync During testing, we use the ground truth audio-visual pair (a,v) as a
reference to measure synchronization of the generated video v̂ as follows:

RelSync(a, v̂,v) =
exp(ϕa,v̂)

exp(ϕa,v) + exp(ϕa,v̂)
(2)

Note that while this reference-based metric normalizes the score by the syn-
chronization of the reference pair (a,v), the metric can still be sensitive to the
quality of the reference pair. In fact, evaluating synchronization on a dataset
where even ground-truth audios and videos are ambiguously synchronized is less
informative of the model capabilities, e.g., Landscapes [22].
AlignSync The synchronization classifier is only trained on semantically-aligned
and temporally-shifted audio-video pairs sampled from the same instance (See
Suppl. Sec. 1.2). RelSync is thus implicitly conditioned on semantics alignment,
i.e., P(Sync|Align). To jointly measure semantics alignment and synchronization,
we first approximate PAlign similarly as RelSync:

PAlign(a, v̂,v1) =
1

b− 1

∑
i=2...b

exp(IAa,v̂i
)

exp(IAa,v̂i) + exp(IAa,v1)
(3)

where v1 is the first frame input for animation, and b is the number of generated
frames. The generated first frame v̂1 is eliminated because it is often a replicate
of input v1. By multiplying PAlign with RelSync, we obtain the joint score:

AlignSync(a, v̂,v) = PAlign(a, v̂,v1) · RelSync(a, v̂,v) (4)

which jointly measures semantic alignment and temporal synchronization be-
tween a and v̂.

These automated metrics are not always aligned with human preference.
We therefore conduct a user study detailed in Sec. 5.2, asking human raters to
compare videos generated by multiple models and select the best one.

4 Audio-Video Synchronized Diffusion

4.1 Preliminary: Text-to-Image Latent Diffusion

Text-to-image latent diffusion models (LDMs [34]) encode images x into a lower-
dimensional latent space z = E(x) using a pre-trained perceptual auto-encoder
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E(·), and learn the conditional distribution p(z|τ ) given a CLIP-encoded text
prompt τ . It gradually denoises latents zk, obtained by corrupting the image
latent z with Gaussian noise ϵ, over k time steps. A denoising UNet ϵθ(·) pa-
rameterized by θ is deployed to estimate the added noise ϵ by minimizing

LLDM = Ez,ϵ∼N (0,1),k

[
∥ϵ− ϵθ(z

k, k, τ )∥22
]

(5)

During inference, LDMs start from a random Gaussian noise map zK , and
iterate over K reverse diffusion steps [17, 38] to denoise the latents zk−1 =
zk − ϵθ(z

k, k, τ ), until z0 is obtained. LDMs then decode the latent into an im-
age x0 = D(z0) using the pre-trained decoder D(·). For simplicity, we refer to
the images by their latents z rather than x throughout the rest of the paper.

4.2 Proposed Architecture

In this work, we extend the capabilities of LDMs for ASVA, by focusing on learn-
ing video dynamics and temporal synchronization, unlike existing approaches [14,
39, 40] which primarily use audio to control global semantics. We propose the
Audio-Video Synchronized Diffusion model (AVSyncD), which builds upon a
pre-trained image LDM and integrates synchronized audio control and temporal
layers for improved video consistency. The major component is a UNet ϵθ aim-
ing to denoise a video instead of an image. The UNet is trained on synchronized
audio-video pairs, with the first frame z1, the corresponding audio a, and the
CLIP encoded audio category name τ as input conditions. The LDM denoising
objective in Eq. (5) is applied to the remaining frames z2:rT to be predicted.
The architecture of AVSyncD is shown in Fig. 3 and discussed below. Further
details, for example, highlighting the different attention modules used in the
architecture are described in Suppl. Sec. 3.2.
Initial-frame Conditioning To condition LDM on an input image, we feed
its latent z1 without noise into the UNet at every diffusion timestep k. For all
subsequent frames, we adhere to the original LDM, using independently sampled
noisy latents zk

2:rT as inputs and predicting the added noise ϵk.
Text Conditioning We retain the text cross-attention layers in the original
LDMs [34] (without finetuning) to condition the model on the audio category.
However, due to the limited text diversity in training, class conditioning does
not bring significant gains (see Suppl. Sec. 6.5).
Audio Conditioning To facilitate audio-synchronized generation, we condition
the generation on ImageBind audio embeddings [14]. ImageBind computes an
audio classification token, ag, representing global semantics, and local patch
tokens, af,t, across Ta timestamps. The original ImageBind only uses ag for
contrastive learning and discards af,t. However, we found these frozen local
tokens as efficient synchronization cues. We split the patch tokens temporally
into rT segments, corresponding to the same timestamps as the frames z1:rT ,
and append the global token to each. Each frame zt then learns both semantics
and synchronization guidance from its audio segment at via cross-attention [43].
In Suppl. Sec. 6.7, we compared ImageBind with CLAP and BEATs as encoders.
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Fig. 3: AVSyncD overview. Left : We use ImageBind to encode audio into semantically
aware time-dependent tokens (at)

rT
t=1 and CLIP to encode the audio category into text

embedding τ . In addition, the model receives the latent of the first frame z1, and iter-
atively denoises noisy latents of the subsequent frames zk

2:rT via reverse diffusion. The
denoising UNet, based on LDMs [34], consists of a sequence of downsampling, bottle-
neck and up-sampling blocks, with structure detailed on the right. Right : Anatomy
of a UNet block for frame zt. LDM’s original spatial conv, spatial attention and text
cross attention layers are frozen, while its spatial self-attention layers are adjusted to
first-frame spatial attentions, cross-attending to z1 instead. To learn video dynamics,
we introduce temporal attention layers, and first-frame lookup temporal convolutions
applied to input, output, and ResNet layers. We also train audio cross attentions for
audio conditioning and synchronization. Trainable layers are marked with .

Spatial Convolution The original LDM’s pre-trained spatial convolutional lay-
ers were frozen and used without modification.
First-frame Temporal Convolution Each spatial convolution block was aug-
mented with a 1D temporal convolution layer (kernel size 3) to capture temporal
dependencies. To better adhere to the starting image, z1, we adjusted the recep-
tive field at frame t to include frames (1, t − 1, t) as opposed to (t − 1, t, t + 1).
These temporal convolutions with first-frame lookup were applied to three com-
ponents in the UNet, namely the input/output conv layers and all ResNet convs.
First-frame Spatial Attention We also leveraged the pre-trained LDM’s spa-
tial self-attentions. Following [21], we modified the frozen spatial attention layers
to cross-attend to the first frame rather than self-attend to the current frame,
by computing the key-value pairs from the first frame and the queries from the
current one.
Temporal Attention To effectively model long-range visual dependencies, we
incorporated temporal attention layers [2]. Each frame index t was converted into
a sinusoidal positional embedding, added to the corresponding frame’s latents
after a learnable projection [43]. Each frame’s local representation at spatial
position (h,w), zhwt, was then updated by attending to all frames at the same
position (zhw1, zhw2, . . . ,zhw(rT )) through a standard attention mechanism.
Classifier-free Audio Guidance Classifier-free guidance [18] is a technique
used to control the impact of input prompts on the generated outputs. We ex-
tended it to amplify audio guidance for improved synchronization. To accomplish
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this, we trained the model for both audio-conditioned and unconditioned gen-
eration, by randomly replacing a with a null audio embedding, a∅, with a 20%
likelihood. a∅ was computed by encoding an all-zero audio mel spectrogram via
ImageBind. During inference, a factor η ≥ 1 controls the audio guidance:

zk−1
2:rT = (1− η) · ϵθ(zk

2:rT , k; z1,a∅, τ ) + η · ϵθ(zk
2:rT , k; z1,a, τ ) (6)

where η guides the denoising process towards latents congruent with audio-
conditioned generation and away from those of audio-unconditional generation.

5 Experiments

5.1 Implementation

Dataset We conducted experiments on three datasets. AVSync15 : Our high-
quality dataset curated from VGGSound [7], with 15 balanced categories, 1350
training videos, and 150 test videos. We also assessed our data curation pipeline
by comparing it to models trained on Landscapes, TheGreatestHits, VGGSS
and our AVSync-AC. Landscapes [22] is composed of 9 environmental sound
classes. We followed the split in [35, 48] with 900 clips for training and 100 for
testing. Since Landscapes is full of ambient sounds without synchronized video
motion, we mainly use it to evaluate visual quality. TheGreatestHits [29] is an
audio-video dataset recording humans probing environments with a drumstick,
with 733 videos for training and 244 for testing. The videos are synchronized
with audio at the moments of impact but contain lots of static moments. It also
offers limited diversity, featuring a singular motion of probing. VGGSS and our
AVSync-AC were described in Sec. 3.
Data Preprocess We sampled 2-second synchronized audio-video pairs for ex-
periments. Videos were sampled at 6 fps with 12 frames, and resized to 256×256
on AVSync15/Landscapes or 128×256 on TheGreatestHits. Following Image-
Bind [14], audios were sampled at 16kHz and converted into 128-d spectrograms.
Baselines We first adopted a simple Static baseline by repeating the input
frame into a video, then compared it to several state-of-the-art works. (1) Se-
mantic audio-to-video generation (CoDi [40]): Image, text, and audio are en-
coded into a shared CLIP [32] space and summed, then fused into a video
diffusion model trained on large-scale datasets. (2) Image-to-video generation
(VideoCrafter [5]): A superior video diffusion model however without audio in-
puts. It animates images by fusing CLIP-encoded image and text features into
the model via modality-dependent cross-attention layers. (3) Synchronized audio-
to-video generation (TPoS [20], AADiff [23], TempoToken [48]): Audio is encoded
into time-dependent segments and fused into frozen text-to-image [34] or text-
to-video [44] models. We re-implemented AADiff, and used TPoS and Tempo-
Token’s pretrained checkpoints on VGGSound and Landscapes. More details are
provided in Suppl. Sec. 4.
Training & Evaluation We adopted the pretrained Stable Diffusion-V1.5 [34]
as the diffusion model and ImageBind [14] as the audio encoder. All models
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(a) Comparison on AVSync15. AVSyncD produces synchronized dynamic motions, such as muzzle
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(b) Comparison on Landscapes. Without synchronization
cues in audio, AVSyncD still produces evolving visual ef-
fects and semantics, such as flames, waves, and lightning.
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(c) Generation by AVSyncD on The-
GreatestHits. AVSyncD generates hitting
actions at appropriate moments.

Fig. 4: Qualitative results on three datasets.

were trained using Adam optimizer with a batch size of 64 and a learning rate
of 0.0001. Besides metrics in Sec. 3.2, we also provide results using metric in [26]
in Suppl. Sec. 3.4. We evaluated on 3 clips uniformly sampled from each video.

5.2 Main Results

Dataset Comparison In Tab. 1, the Static baseline is a good indicator of
dataset attributes. It has similar IA/IT scores compared to Groundtruth, since
Static is composed of a subset of groundtruth frames, which are obviously se-
mantically aligned. FVD of Static on TheGreatestHits is relatively low, since the
TheGreatestHits contains frequent static ground truth clips without any moving
objects. More importantly, the RelSync and AlignSync of Static gradually in-
crease from AVSync15, to TheGreatestHits, to Landscapes, with those on Land-
scapes even surpassing the ground truth. The fact that static videos perform well
in terms of audio synchronization on TheGreatestHits and Landscapes datasets
testify to the superiority of AVSync15 for audio-video synchronized generation.
Model Comparison We compared to prior works on AVSync15 and Land-
scapes in Tabs. 1a and 1b and Figs. 4a and 4b. In Tab. 1a, CoDi achieves inferior
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Table 1: Quantitative results. User study shows votes on 3 metrics: image quality,
frame consistency, and synchronization. Inputs are combinations of image, text, audio.

Input Model FID↓ IA↑ IT↑ FVD↓ AlignSync↑ RelSync↑ User Study
IQ↑ FC↑ Sync↑

T+A
TPoS [20] 13.5 23.38 24.83 2671.0 19.52 42.50 - - -
TempoToken [48] 12.2 18.84 17.45 4466.4 19.74 44.05 - - -

I+T
VideoCrafter [5] 11.8 - 29.87 840.7 21.28 43.16 38 20 12

I2VD 12.1 - 30.35 398.2 21.80 43.92 62 90 91

I+T+A

CoDi [40] 14.5 28.15 23.42 1522.6 19.54 41.51 - - -
TPoS [20] 11.9 38.36 30.73 1227.8 19.67 39.62 - - -
AADiff [23] 18.8 34.23 28.97 978.0 22.11 45.48 37 4 5

AVSyncD η = 1 12.1 38.36 30.34 382.7 22.25 44.81 - - -
AVSyncD η = 4 11.7 38.53 30.45 349.1 22.62 45.52 163 186 192

AVSyncD η = 8 11.7 37.99 30.27 420.7 22.74 45.88 - - -

Static - 39.76 30.39 1220.4 21.83 43.66

Groundtruth - 40.06 30.31 - 25.04 50.00

(a) Performance on AVSync15.

Input Model FID↓ IA↑ IT↑ FVD↓ AignSync↑ RelSync↑

T+A
TPoS [20] 16.5 15.61 26.70 2081.3 23.12 48.15

TempoToken [48] 16.4 22.58 22.87 2480.0 24.21 48.65

I+T I2VD 16.7 - 22.56 539.5 24.74 49.89

I+T+A

CoDi [40] 20.5 22.63 24.23 982.9 22.63 45.48

TPoS [20] 16.2 23.52 23.20 789.6 23.51 47.05

AADiff [23] 70.7 22.07 22.92 1186.3 26.77 53.93

AVSyncD η = 1 16.5 22.29 22.81 463.1 24.81 49.96

AVSyncD η = 4 16.2 22.49 22.79 415.2 24.82 49.93

Static - 23.60 22.21 1177.5 25.79 51.59

Groundtruth - 23.65 22.08 - 25.01 50.00

(b) Performance on Landscapes.

Input Model FID↓ IA↑ IT↑ FVD↓ AignSync↑ RelSync↑

I+T I2VD 9.1 - 13.42 425.0 22.05 44.58

I+T+A
AVSyncD η = 1 9.0 11.85 13.18 313.5 22.59 45.52

AVSyncD η = 4 8.7 12.07 13.31 249.3 22.83 45.95

Static - 13.33 16.56 348.9 24.36 48.73

Groundtruth - 13.52 16.49 - 25.02 50.00

(c) Performance on TheGreatestHits.

results on almost all metrics. TPoS(I+T+A) shows strong image quality (FID),
but is worse in video quality (FVD) and synchronization (RelSync). TempoTo-
ken, on the other hand, is better at synchronization rather than visual quality,
likely due to the lack of image input. AADiff is competitive on synchronization
but extremely bad on image quality (FID). This is expected as AADiff adjusts
each frame using audio amplitude, producing visual changes that highly corre-
late to audio changes temporally but may be overwhelmed by noises, as shown in
Fig. 4a. On Landscapes, its similar FVD to Static but abnormally higher Align-
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Table 2: Effect of (a) first-frame lookups (b) data curation, evaluated on AVSync15.

FF-Conv FF-Attn FID↓ FVD↓ AignSync↑

✗ ✗ 11.8 383.3 22.19

✓ ✗ 11.6 347.4 22.24

✓ ✓ 11.8 325.6 22.33

(a)

Dataset AC MC FID↓ FVD↓ AignSync↑

VGGSS ✗ ✗ 12.9 1307.9 21.50

AVSync-AC ✓ ✗ 12.0 428.8 22.09

AVSync15 ✓ ✓ 11.8 325.6 22.33

(b)

Sync and RelSync also suggest that it only applied minor modifications to the
input image due to lack of sound changes, as shown in Fig. 4b. Without audio
input, VideoCrafter performs poorly on synchronization. It also has difficulty
faithfully adhering to the input frame, as in Fig. 4a. AVSyncD achieves the best
animation results on almost all metrics. On Landscapes, AVSyncD also performs
the best on FID and FVD, with other scores being similar to ground truth.
User Study We invited 15 participants to compare 4 animation models with
top overall performance (VideoCrafter, AADiff, I2VD, AVSyncD) on AVSync15,
based on 3 metrics in Tab. 1. The 4 models generated videos conditioned on
the same test examples (audio+image). Each test example was independently
evaluated by 2 participants to select their most preferred generation (vote) on
each metric. In total, we evaluated all 150 test examples on AVSync15, collecting
150×2=300 votes on each metric. Tab. 1a shows votes each model received.

5.3 Ablation Studies

Audio Conditioning In Tab. 1, AVSyncD outperforms I2VD, especially on
AlignSync and RelSync. AVSyncD did not improve RelSync on Landscapes prob-
ably due to the lack of synchronization cues on the dataset itself. These results
show that audio condition enhances generation quality and synchronization.
Audio Guidance Tab. 1 shows increasing the audio guidance factor η from
1 to 4 improves FID, IA, and FVD on all three datasets. As expected, au-
dio guidance also improved AlignSync and RelSync significantly on AVSync15
and TheGreatestHits, but not on the less synchronized Landscapes dataset.
Prior works [20, 23, 39] claimed that increasing audio amplitude can also lead
to stronger visual effects. We compare this approach with our audio guidance in
Fig. 5a. Audio guidance offers a better control mechanism than audio amplitude.
First-frame (FF) Lookups We validated FF Lookups by replacing them with
standard temporal convolutions or spatial self-attention in Tab. 2a.
Data Curation We compared to AVSyncD trained on random subsets from VG-
GSS and AVSync-AC with equal data scale and balanced categories in Tab. 2b.

5.4 Applications and Extensions

Animate Generated Images When lacking an image as input, we can use ex-
isting image generators to generate the image, which AVSyncD can also animate.
Fig. 5b shows animations on images generated by StableDiffusion-V1.5 [34].
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cap gun shoo+ng playing cello

(a)

frog croaking

lion roaring

playing violin

(b)

baby crying

dog barking

strike bowling

(c)

Fig. 5: (a): Effects of audio amplitude vs. classifier-free audio guidance. top: original
audio with η = 1; mid : 100× amplified audio with η = 1; bottom: original audio with
η = 8. (b): Animate generated images. (c): Animation with internet images and audios.

baby crying dog barking lion roaring cap gun shoo2ng playing cello

(a) Controllable animation with (un)related audios.

dog barking playing violin lion roaring machine gun shoo5ng

(b) Animate target objects on internet images with audios.

Fig. 6: Controllable image animation with audios. Key frames are visualized.

Animate Contents from Internet AVSyncD can also generalize well to un-
seen images and audio, as shown in Fig. 5c.
Control Animations with (Un)Related Audios We can control the motion
of an image to follow desired audio, e.g., animate a baby to not only cry but also
bark like a dog or roar like a lion, as seen in Fig. 6a. When there is no object
related to the audio, the animations do not demonstrate corresponding motion.
Animate Target Objects with Audios When multiple objects exist in the
image, a scenario not existing in training data, we can still use audios to only
animate the related target object, as shown in Fig. 6b.

6 Conclusion

We tackled the under-explored Audio-Synchronized Visual Animation task, with
an emphasis on generating videos with audio-synchronized dynamics. We con-
tributed the high-quality AVSync15 benchmark via careful data curation and
proposed the AVSyncD model to animate images with realistic motions. Due to
the scale of AVSync15, our work cannot generalize to all audio classes in the
world, which requires several orders of magnitude larger datasets. However, we
hope our research inspires further work in this direction.
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