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The supplementary material includes details on the implementation of the
interaction synthesis model and the scene-aware interaction synthesis pipeline,
details of the evaluation metrics and baselines. We also encourage readers to
watch our supplementary video for more qualitative results.

1 Implementation Details

Data Representation. To ease the training, the motion representation is
converted to a canonicalized coordinate frame, following prior work [3,5, 8].
Specifically, given a sequence of object and human poses X;, X5, ..., X1, we
apply a rotation around the up axis (+2z) to the motion sequence such that the
first frame’s human body left axis (the direction of a vector from the root joint
to the left hip joint) is aligned with +x axis. Also, we apply a translation to
transform the root joint position of the human to be at x = 0,y = 0. In addition,
to improve the robustness of the model for different object geometry inputs with
various orientations, we employ a strategy that randomly samples a frame from
a sequence and uses the object geometry of the selected frame as input geometry
condition.

Model Architectures. Our denoising network employs a transformer-based
model architecture with four self-attention blocks. Each self-attention block
consists of a multi-head attention layer and a position-wise feed-forward layer.
The number of attention heads in the self-attention layer is 4. The dimension of
the key, query, and value in the self-attention block is 256. Our model is trained
on motion data with a window size of 120 in 30 fps.

Training Details. We use PyTorch [6] to implement our interaction synthesis
model. We use Adam optimizer [2| and start the training with a learning rate
0.0001 and a batch size 32. The training takes approximately 35 hours to converge
using a single NVIDIA Titan RTX GPU.

Different Guidance Terms. In the sampling process of the trained diffusion
model, we apply different guidance terms to enforce contact constraints to
improve the realism of the generated interactions. As described in the paper, we
use reconstruction guidance formulated as follows,

7~'0 :+0 —OzEnV-,-"F(f'Q). (1)
F consists of three terms determined by the equation below,
Fall = >\1Fcontact + )\2Ffeet + /\3Fobj- (2)

1 indicates equal contribution.
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Fig. 1: Extracting the object waypoints from the language description and the 3D
scene.

The loss weight for each term is determined by first experimenting with different
values for a single guidance term and then adding all the terms together. We
empirically use a = 1le”, A\; = 1, Ay = 100, A3 = 30 in our experiments.

2 Details of Interaction Synthesis in 3D Scenes

Sparse Waypoints Generation. Given a language description and a 3D scene
point cloud with semantic labels, we first extract the target 3D position and then
leverage the functions provided by the Habitat [4] to plan a collision-free path.
We use an example to illustrate the process of extracting waypoints in Figure 1.
Currently, the primitive functions consist of sampling a point near an object,
sampling a point on the top surface of an object, and sampling a point under an
object. This set of primitive functions can be enriched to support more complex
language descriptions.

Heuristics for Preparing Waypoints Input Conditions. The waypoints
extracted using Habitat do not include the corresponding time step information.
To utilize these waypoints as input conditions for our interaction synthesis model,
we design a heuristic-based strategy to assign appropriate frames to the waypoints
such that we can have a series of waypoints distributed every 30 frames.

We start by adding 20 uniformly distributed points between every two way-
points. We compute the Euclidian distance of each pair with consecutive points
denoted as di,ds, ...,dny—_1, where IN represents the number of all the waypoints
after the insertion operation. We then define a distance range [dpin, dmax] and
iterate through the distance sequence. We accumulate the distance values and add
the point p; to our final waypoints list if there exists > _ dn > dumin, S ;dn <
dmax, Where j denotes the frame index of the previous added waypoint.

Data Preparation. We use the 3D scenes of the Replica dataset [9] to evaluate
the scene-aware interaction synthesis pipeline. We focus on the evaluation of
long-term interaction synthesis, thus, we discard the small-sized scenes that are
not suitable for long-term sequence evaluation. To prepare the evaluation dataset
for long-term interaction synthesis, we generate 20 sequences for each pair of the
language description and the 3D scene. We then apply our heuristic-based strategy
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described above to prepare input waypoint conditions and discard the sequences
with a duration of less than 8 seconds. Finally, we obtained 165 sequences of two
different scenes for evaluation. Other 3D scene datasets like HM3D [7] can also
be processed using the same approach and directly used in our current pipeline.
Long Sequence Generation. Our interaction synthesis model is trained on
motion data with a window size of 120 frames. To generate long-term interactions
consisting of multiple windows, we adopt an interpolation strategy to smoothly
connect two consecutive windows following prior work [11]. We use 10 frames as
overlap frames for two consecutive windows. For a generated motion sequence
X{“l, X§71, - Xffl of window k—1 and X ¥, X% ..., X% of window k, we apply
interpolation on the last 10 frames of the previous window Xijy, e X;‘l and
the first 10 frames of the current window X¥, ..., X¥. Specifically, we apply linear
interpolation for the human joint positions and object positions and spherical
linear interpolation (slerp) for human joint rotation and object rotation defined
as follows.

P, =lerp(as, PFZ o), PF),t =1,2,..,10, (3)
Qt = slerp(at,Ql%:l(loit),Qf),t = 1727“'110’ (4)

In the above equations, P, represents the human joint positions and object
positions, Q; represents human joint rotation and object rotation, and the
blending weights a; are linearly decaying weights from 1 to 0.

3 Details of Evaluation Metrics

The standard text-to-motion task was explored using datasets like HumanML3D [1],
which exhibit a distribution significantly different from that of the FullBody-
Manipulation dataset. As a result, we cannot directly utilize their pre-trained
motion and text encoders for computing R-precision and FID. Instead, we train
related feature extractors using the FullBodyManipulation dataset for evaluation
purposes.

Motion Autoencoder Training. Following T2M [1], we first train a motion
autoencoder to represent a window of motion using latent vectors. This autoen-
coder comprises an encoder and a decoder, both adopting a temporal convolution
model architecture. Specifically, we use global joint positions as our data represen-
tation. We canonicalize the sequence of 3D joint positions by aligning the facing
direction of the first frame to a consistent direction similar to prior work [8].
Although we experimented with other data representations, such as combinations
of joint rotation and positions, we found that representing both led to jittery
reconstructed motions. Consequently, we solely utilize 3D joint positions for data
representation based on empirical evidence.

Training Feature Extractors using Contrastive Loss. With the pre-trained
motion autoencoder, we then train a motion feature extractor and a text feature
extractor using contrastive loss following prior work [1]. We adopt a GRU-based
model architecture for both extractors to process encoded motion vectors and
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Fig. 2: Qualitative Comparisons with Baselines.

input text, respectively. The design of the contrastive loss aims to reduce the
feature distance between paired text and motion while increasing it between
unpaired data. Employing the trained motion autoencoder, motion feature ex-
tractor, and text feature extractor, we compute R-precision and FID following
prior work on text-to-motion task [1].

4 Details of Baselines

In this section, we elaborate on how we adapt different methods to our problem
setting as baselines and present extensive experiment analysis for each approach.
We showcase some qualitative comparisons with baselines in Figure 2 and com-
parisons with OMOMO ablations in Figure 3. We encourage readers to watch
our supplementary video for qualitative results.
InterDiff. InterDiff [12] addresses the task of predicting future human-object
interactions based on the previous 10 frames. This task differs from ours, which
synthesizes interactions based on the initial state, text, and sparse waypoints. To
align InterDiff with our setting, we enhanced their model with text and sparse
waypoint embeddings. Although we attempted to use only the initial frame’s
interaction state to align with our setting, we encountered training stability issues
and thus continued using the past 10 frames, following InterDiff’s original setup.
The input conditions are entangled in InterDiff since InterDiff sums up all
the conditional embeddings as a single embedding vector. This might be the
major reason that the generated results of InterDiff ignore the text and waypoint
conditions. In addition, typical artifacts in the results of InterDiff include feet-
floor penetration and severe sliding, leading to unrealistic interaction generations.
Please watch our supplementary video for the qualitative comparisons.
MDM. MDM [10] focuses on synthesizing human motions from language de-
scriptions, unlike our task, which involves synthesizing both human and object
motions and incorporates conditions like sparse waypoints. To adapt MDM to
our task, we incorporated our object motion representation, employing a basis
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Fig. 3: Qualltatlve Comparisons with OMOMO Ablations.

point set (BPS) representation and an MLP to derive a low-dimensional input
vector. We also included sparse waypoint embeddings and extended the model’s
outputs to include object rotation and positions.

MDM struggles to generate human and object motions in contact because of
the lack of contact constraints. In addition, MDM applies waypoint conditions
by projecting all the sparse waypoints to a single conditional vector, which is less
effective compared to our mechanism used in CHOIS. Also, MDM suffers from
feet-floating artifacts. Please watch our supplementary video for the qualitative
comparisons.

OMOMO Ablations. OMOMO [3] is designed to synthesize human motions
from a complete sequence of object states, which is less complex than our task of
synthesizing both object and human motions while adhering to conditions such
as text and sparse waypoints. For thorough comparisons, we adapted OMOMO
into different variants: Lin-OMOMO, Pred-OMOMO, and GT-OMOMO. It
is important to note that Pred-OMOMO and GT-OMOMO are not strictly
baselines, as Pred-OMOMO incorporates our proposed object synthesis module,
and GT-OMOMO relies on ground truth object motions.

Lin-OMOMO cannot generate realistic human motion trajectories because
of the unrealistic object motion trajectory. Compared to Lin-OMOMO, Pred-
OMOMO can synthesize more realistic object motions because of our carefully
designed object motion synthesis module, and thus result in more plausible human
motions in interaction. However, since Pred-OMOMO includes three stages, there
would be accumulation errors introduced in each stage, leading to unrealistic hand
joint predictions which further leads to artifacts such as hand-object penetration.
GT-OMOMO provides perfect object geometry states, but it still cannot prevent
unrealistic hand predictions and suffers from feet-floating issues. Furthermore, all
of these OMOMO variants cannot generate release motions, as they are based on
a strict assumption that once the contact frame is detected, the following frames
will be in contact until the end frame. Conversely, our CHOIS model is capable
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of generating motions with realistic contact and release behaviors. Please watch
our supplementary video for the qualitative comparisons.

5 Discussions and Limitations

Our approach has a few limitations. First, due to the lack of detailed finger
movement data in the FullBodyManipulation dataset, our method cannot pro-
duce accurate hand interactions involving finger motions. Second, it does not
incorporate physical principles, which may result in objects exhibiting slightly
unnatural movements before contact with a human in certain sequences. Third,
our framework of synthesizing long-term interactions in 3D environments cur-
rently only allows for interactions with a single object and does not support
interactions involving multiple objects. To enable such multi-object interactions,
integration with a scene-aware navigation model is necessary.
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