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Abstract. Audio-driven 3D facial animation aims to map input audio
to realistic facial motion. Despite significant progress, limitations arise
from inconsistent 3D annotations, restricting previous models to train-
ing on specific annotations and thereby constraining the training scale.
In this work, we present UniTalker, a unified model featuring a multi-
head architecture designed to effectively leverage datasets with varied
annotations. To enhance training stability and ensure consistency among
multi-head outputs, we employ three training strategies, namely, PCA,
model warm-up, and pivot identity embedding. To expand the training
scale and diversity, we assemble A2F-Bench, comprising five publicly
available datasets and three newly curated datasets. These datasets con-
tain a wide range of audio domains, covering multilingual speech voices
and songs, thereby scaling the training data from commonly employed
datasets, typically less than 1 hour, to 18.5 hours. With a single trained
UniTalker model, we achieve substantial lip vertex error reductions of
9.2% for BIWI dataset and 13.7% for Vocaset. Additionally, the pre-
trained UniTalker exhibits promise as the foundation model for audio-
driven facial animation tasks. Fine-tuning the pre-trained UniTalker on
seen datasets further enhances performance on each dataset, with an
average error reduction of 6.3% on A2F-Bench. Moreover, fine-tuning
UniTalker on an unseen dataset with only half the data surpasses prior
state-of-the-art models trained on the full dataset. The code and dataset
are available at the project pageﬂ
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1 Introduction

Realistic facial animation synchronized with voice is crucial in human-related
animation [2}(7,[33/[38] and simulation [6,/14,/48]. Traditional methods involve
vision-based facial performance capture or labor-intensive handcrafted work by
artists. Recent neural network advancements enable expressive 3D facial ani-
mation based on vocal audio, categorized as vertex-based and parameter-based
models. Bao et al. |5] showcased that a personalized model, i.e., a model tai-
lored to an individual and trained with approximately 3,000 utterances, can
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Fig. 1: Left: UniTalker aims to learn from diverse datasets in a unified manner. It takes
multilingual, multi-vocal-type audios as input and outputs various 3D facial annotation
conventions simultaneously. Right: Finetuning UniTalker on each dataset consistently
shows lower lip vertex error (LVE) than training the model on the dataset, leading to
an average LVE drop of 6.3%. Refer to Tab. [5| for comprehensive numerical results.
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yield reasonably good results when using the pre-trained speech model . A
larger dataset of 10,000 utterances further improved performance . It implies
that non-personalized models would require an even larger dataset to attain op-
timal performance. However, existing datasets like BIWI or Vocaset |15
typically contain less than 1,000 utterances. To train a robust and generailizable
audio-to-face model, an appealing solution is to scale up to a larger dataset by
assembling existing datasets, similar to recent studies . Yet, there are two
main challenges: inconsistent data annotation and insufficient data variety.

To effectively exploit multiple datasets with inconsistent data annotation,
we propose UniTalker, a multi-head model that learns from multiple datasets in
a unified manner. However, a straightforward multi-head design faces two pri-
mary challenges, notably training instability and dataset bias. (1) As shown in
Fig.[l]and Tab. [l diverse datasets adhere to distinct annotations. Vertex-based
methods handle thousands of 3D coordinates, while parameter-based methods
deal with only a few hundred parameters, leading to different training difficulty.
To address this, we employ Principal Component Analysis for vertex-based an-
notations to reduce the representation dimension, thus balancing the trainable
parameters of different motion decoder heads. (2) Existing audio-to-face meth-
ods often embed speaker identity during training, directly applying it to multi-
ple datasets introduces annotation bias. As there are no shared speakers across
datasets with different annotations, dataset bias will leak to the identity embed-
ding module. Inspired by classifier-free guidance [19], we devise Pivot Identity
Embedding to mitigate the biases between different motion decoder heads, where
a pseudo identity is created and probable to be chosen during training.

With the designed unified model, increasing the scale of training necessitates
both the quantity and diversity of datasets. Although there are some publicly
available audio-to-face datasets, current datasets predominantly focus on En-
glish content and primarily feature a small number of speakers. When dealing
with cross-language scenarios, pronunciation and mouth shapes may lack direct
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Table 1: Overview of audio-driven 3D facial datasets. ID refers to dataset
identifiers. N denotes the annotation dimension. E, C, M stands for English, Chinese
and Multilingual. #Seq. and #Subj. means the number of sequences and subjects.

Dataset 1D N GT Type Acquisition Language Audio #Seq. Duration FPS #Subj. Accessible
BIWT |17 DO 23,370x3 Vertices 4D Scan E Speech 238 0.33h 25 6 v
Vocaset |15 D1 5,023x3  Vertices 4D Scan E Speech 473 0.56h 60 12 v
Multiface(Meshtalk) |45 |D2 6,172x3  Vertices 4D Scan B Speech 612 0.67Th 30 13 v
3D-ETF (HDTF) |32] |D3 52 BS 3D fitting E Speech 2,039  5.49h 30 141 v
3D-ETF (RAVDESS) 32| | D4 52 BS 3D fitting E Speech 1,440  1.48h 30 24 v
Talkshow [49 D8 413 FLAME 3D fitting E Speech 17,110  38.6h 30 4 v
BEAT |27 D9 52 BS ARKit M Speech 2,508 76h 60 30 v
RenderMe-360 |30 - 52 FLAME 4D Scan C,E  Speech 18,000  25h 30 500 X
MMFace4D (43 - 35,709x3 Vertices 4D Scan C Speech 35,904 36h 30 431 X
Song2face |22 - 51 BS ARKit M Song - 1.93h - 7 X
Ours(Faceforensics++) D5 413 FLAME 3D fitting M Speech 1,714  3.65h 30 719 v
Ours(Speech) D6 51 BS ARKit C Speech 789 1.24h 60 8 v
Ours(Song) D7 51 BS ARKit M Song 1,349 5.11h 60 11 v

counterparts in English (e.g., jiao in Chinese phonetics). Furthermore, certain
sounds, especially in musical content like American TV shows, require exagger-
ated mouth movements not commonly found in regular speech. The lack of such
data challenges trained models to accurately reproduce corresponding mouth
shapes. To enrich both sound types and mouth shapes, we curated a multilin-
gual and multi-vocal-type dataset. The dataset comprises 1.4 hours of Chinese
speech and 5.1 hours of multilingual songs. To increase the diversity of speakers,
we annotated the 2D face video dataset FaceForensics++ [36], contributing addi-
tional 3.6 hours of multilingual speech from over 700 individuals. Combining five
existing datasets with three newly curated ones, we assembled A2F-Bench. It
contains 934 speakers and 8,654 sequences, with a total duration of 18.53 hours.

Leveraging the proposed unified model alongside datasets, a single trained
UniTalker achieves lower lip vertex error (LVE) than previous state-of-the-art [31],
demonstrating reductions from 4.25 x10™* to 3.86 x10~* for BIWI and 9.63
x1076 m? to 8.30 x10~% m? for Vocaset. Dataset-specific fine-tuning further
enhances the performance and results in an average error reduction of 6.3% on
A2F-Bench. To demonstrate the generalizability of pre-trained UniTalker, we in-
troduce a practical yet under-explored task, Annotation Transfer, which involves
transferring to an unseen annotation convention with limited data. Compared
with fine-tuning the commonly adopted audio encoder [13], fine-tuning UniTalker
requires less than half the data to achieve comparable performance.

Our contributions are three-folds: (1) We introduce a multi-head model that
integrates diverse datasets and annotation types within a unified framework for
3D facial animation. Our model surpasses existing state-of-the-art with higher
accuracy and faster inference speeds. (2) We demonstrate that pre-trained UniTalker
can serve as a foundation model for audio-to-face tasks. Fine-tuning on pre-
trained UniTalker enhances performance on both seen and unseen annotations,
especially when the data scale is limited. (3) We curate A2F-Bench, a large-scale
dataset comprising five released high-quality datasets and three newly assembled
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ones. A2F-Bench enriches the diversity of audio-to-face data and offers a more
comprehensive benchmark for audio-to-face methods.

2 Related Work

Audio-Driven 3D Facial Animation. Early works utilise non-parametric au-
dio features like linear predictive coding (LPC) [23] and Mel Frequency Cepstrum
Coefficient (MFCC) [15,137,[42] and regress facial motion from these features
with CNN |[23], LSTM [37] and RNN [40|. Recent works [16}31,39]/46] adopt
self-supervised pre-trained speech models like Wav2vec 2.0 [4]|13], Hubert [21]
and Wavlm [11] to extract audio features, greatly enhancing performance and re-
ducing the data requirements. Faceformer [16] and Codetalker [46] model audio-
driven facial animation as an auto-regressive problem while Emotalk [32] and
Selftalk |31] model it as regressive. More recently, diffusion models are incorpo-
rated for speech-driven 3D facial animation [39,52] and improve the diversity of
the generated animation. Despite achieving realistic facial animation in recent
advances, one single model usually focuses on audios of a single domain, e.g.,
English speech, and outputs one facial animation representation, e.g., vertices of
one topology. A unified model is desired that has robust performance in various
audio domains, e.g., multilingual speeches and songs, and outputs various 3D
representation types, e.g., blendshapes and vertices.

Audio-Driven 3D Facial Datasets. Existing publicly available audio-visual
datasets focus on English speeches and conversations. As listed in Tab. [T} vertex-
based datasets that are registered from 4D scans feature short duration and
few subjects like BIWI, Vocaset and Multiface. 3D-ETF [32] is annotated with
pseudo ground truth 52 ARkit blendshape weights from 2D videos [28,51]. It
enlarges the available data scale for the audio-to-face generation task. However,
3D-ETF focuses on English content. The two large-scale datasets, Talkshow and
BEAT exhibit audio-annotation misalignment and inaccurate annotation, not
suitable for audio-to-face generation. RenderMe-360 |30], MMFace4D [43] and
Song2face [22]| are not publicly accessible. In summary, there is a lack of non-
English audio-visual data and song-to-face data for academic study.

3 Methods

3.1 Formulation

Let M! . = (m,...,m}) be a sequence of face motion, where m? denotes the
face motion at ¢-th frame following the i-th annotation convention. For vertex-
based annotations, m! € R3V denotes the displacement of V vertices at ¢-th
frame over a neutral-face template. For parameter-based annotations, mé € RY
denotes the P parameters at t-th frame. Let Aj.7.4 be the input audio, where
d is the audio samples aligned with one frame. The goal in this paper can be
expressed as follows: Given an input audio Aj.7.4, the model needs to map it
into face motion denoted by every desired annotation, i.e., M’LT, Vi < N, where
N is the number of face annotation types involved in the training process.
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3.2 Unified Multi-Head Model

As shown in Fig. [2] our unified multi-head audio-to-face model, namely UniTalker,
follows an encoder-decoder architecture. Given an input audio, the audio encoder
initially transforms it into contextualized audio features. Subsequently, the fre-
quency adaptor adapts these audio features via temporal linear interpolation to
match the frequency of output face motion. The motion decoder maps the in-
terpolated audio features into motion hidden states. Finally, the motion hidden
states are decoded onto each annotation through the respective decoder head.
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Fig. 2: UniTalker architecture. UniTalker adopts vertices PCA to balance the an-
notation dimension across datasets, uses decoder warm-up to stablize training, and
develops a pivot identity embedding to mitigate dataset bias.

Audio Encoder. We adopt the state-of-the-art pre-trained speech model [11}[13]
for the audio encoder. Pre-trained audio encoders have been extensively proved
to be effective in audio-driven 3D facial animation |5,/16}311/32,[39,46]. The audio
encoder consists of a temporal convolution network (TCN) and a multi-layer
transformer encoder. TCN converts the raw audio waveform A.7.4 into feature
vectors with frequency of 50 Hz and the transformer encodes the feature vectors
into contextualized audio representations.

Frequency Adaptor. To address varying annotation frequencies across multi-
ple datasets, we incorporate a frequency adaptor into our model. This adaptor
performs linear interpolation, aligning audio features from 50 Hz to the frequency
of output face motion. In contrast to prior methods [16L/46], we reposition the
frequency adaptor behind the transformer encoder. This adjustment ensures the
frequency of the transformer input in training stage is aligned with that in pre-
training stage. Hence, the pre-trained weights of the audio encoder are better
utilised. The result is enhanced convergence and improved model precision, as
evidenced in Supplementary Materials.

Non-autoregressive Motion Decoder. Faceformer [16] and CodeTalker [46]
have formulated audio-to-face generation as an auto-regression task. It involves
a motion encoder to project the preceding predicted motion into motion em-
beddings. The decoder uses both the motion embeddings and contextualized
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Fig. 3: Effect of PIE. Without PIE, Fig.4: Comparison between finetuning
the model generates unnatural face Wav2vec2-xlsr-53 and UniTalker-L-
motion when input identity and out- [D1-D7] on DO. The x-axis is in log-scale.
put annotation mismatch.

audio representations to predict the face motion at the next frame. Other works
adopt non-autoregressive models, employing transformer and TCN for
the motion decoder. We observe that removing autoregression from FaceFormer
brings 30 times faster inference speed and does not adversely affect precision
for either BIWI or Vocaset. UniTalker adopts TCN for the motion decoder as it
exhibits better precision for multi-head training. Please refer to Supplementary
Materials for detailed results.

Identity Embedding. To model the speaking styles of different individuals,
face motion generation is conditioned on the input identity label, as shown in
Fig. [2] The speakers in different datasets are exclusive to each other, implying
that each motion decoder head is trained within a specific subset of speakers
and audios. As a result, the decoder head of one annotation does not necessarily
output natural face motion when the input identity label and audio belong to an-
other annotation. Fig. [3|shows that the model generates satisfactory face motion
only when conditioned on an identity label from the corresponding annotation.
Unnatural face motion, e.g., weird mouth shape and self-intersection may be
generated when input identity and motion decoder head mismatch (Cross ID
inference). Inspired by classifier-free diffusion guidance [19]|, we propose Pivot
Identity Embedding (PIE) to mitigate the annotation biases. Specifically, we
introduce an additional pivot identity that does not belong to any datasets, as
shown in Fig. |2l During training, we replace the ground truth (GT) identity
label with this pivot identity label with a probability of 10%. Fig. |3| shows that
UniTalker exhibits the ability to generate satisfactory face motion regardless of
the identity label used for conditioning.

3.3 Unified Multi-Head Training

Improving Training Stability. A vanilla multi-head model (shown in Supple-
mentary Materials) associates each annotation convention with one output head.
However, the vanilla multi-head model fails to gain advantages from increased
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Fig.5: The effect of PCA and DW. LVE values are evaluated on test set at
100th epoch. Training with both PCA and DW ensures training stability across various
settings. Removing either strategy harms training robustness.

data size. We hypothesize that the difference in annotation dimensions results
in different difficulties of training convergence. For example, BIWI and Vocaset
possess 23,370 and 5,023 vertices, respectively. Previous studies [16,46] have
chosen distinct hyperparameters for these datasets. We conducted systematical
experiments for the two datasets, across different decoder channels and decoder
architectures, using the same audio encoder adopted in FaceFormer [16]. As
shown in Fig. the model precision is highly related to the hyperparameters
and the optimal hyperparameters for the two datasets are different.

To train the multi-head model stably, we employ Principal Component Anal-
ysis (PCA) for each vertex-based annotation. This process reduces the output
dimension and maintain consistent output head dimensions for each vertex-based
annotation. Restricted by memory limit, we employ Incremental Principal Com-
ponents Analysis (I-PCA) [35] as an approximation of PCA. It reduces the di-
mension of motion representation from 3V to L = 512, where V denotes the
vertex number and L denotes the number of the preserved principle compo-
nents. Each decoder head for vertices is then replaced with a decoder head for
PCA values. The PCA values y pc 4 and vertices y,, are linked through the PCA
components W%, according to Eq. .

Vo =¥pca x Wi (1)

We further stabilize the multi-head training by adopting a two-stage train-
ing scheme [44]. In the first stage, we freeze the weights of the pre-trained audio
encoder and only update the weights of the decoder. This stage, named Decoder
Warm-up (DW), gradually aligns the convergence state of the randomly initial-
ized decoder to that of the pre-trained audio encoder. In the second stage, both
the audio encoder and the motion decoder are updated simultaneously.

Fig. [p|illustrates the effect of PCA and DW. With both strategies, the model
converges across various scenarios, including training on single and multiple
datasets, employing either TCN or transformer architectures for motion decoder,
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and covering a wide range of decoder channel options. Fig. shows that the
vanilla model collapses in many settings and the optimal setting for BIWI and
Vocaset is different. Removing either PCA or DW will deteriorate training sta-
bility, especially for multi-dataset training, as shown in Fig. and Fig.
Training Loss. As shown in Fig. [2] the model predicts PCA values ypcoa for
vertex-based annotations, blendshape weights and pose vectors yy for parameter-
based annotations. We can derive vertices y,, for every annotation through differ-
entiable computation. We apply mean squared error (MSE) on both the model
output and the derived vertices, as indicated by Eq. ,

EZZ(S’m}’v)‘Fa'l(}A’PCAaYPCA)+ﬁ'l($’97)’9)a (2>
where v = 0.01 and 8 = 0.0001 in our training.

3.4 UniTalker as a Foundation Model

Our UniTalker model could output different types of face annotations. In real-
wold scenarios, new annotation conventions often arise, and the available data
is typically limited. In such cases, the UniTalker model needs to be transferred
onto the new annotations. Previous works [16,[39}/46] adopts pre-trained audio
encoders to decrease the data requirement. In this work, we replace the weights of
audio encoder with the weights of pre-trained UniTalker, and find that UniTalker
can further decrease half of the data requirement on unseen datasets, as evi-
denced in Fig. [ and discussed in Sec. Additionally, we randomly select only
one sequence from Vocaset, which is less than 10 seconds. We fine-tune UniTalker
with limited trainable parameters on this single sequence and find that the tuned
model can still output satisfactory results (see Supplementary Materials). Note
that Vocaset is excluded from the pre-training datasets in this experiment.

4 Experiments and Results

4.1 Datasets: A2F-Bench

Tab. [1] presents a summary of the datasets. To assemble A2F-Bench, we first
select five widely used 3D audio-visual datasets, namely BIWI [17], Vocaset [15],
Multiface [45], 3D-ETF-HDTF [32] and 3D-ETF-RAVDESS [32]. Additionally,
to increase the number of speakers, we clean the multilingual 2D faceforensics++
dataset |36] and label speaker’s faces with FLAME [24] parameters using 3D
face reconstruction [25//29]. To enhance the model’s proficiency with non-English
speech and songs, we collect a dataset consisting of speeches from eight native
Chinese speakers and a dataset comprising multilingual songs from eleven pro-
fessional singers and label them with ARKit blendshape weights. We have made
experiments on larger datasets like BEAT [27] and TalkShow [49|, and find they
exhibit audio-annotation misalignment and inaccurate annotation. Hence, they
are not included in UniTalker training. For the sake of simplicity, we refer to
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each dataset as D0, D1, and so on as in Tab. [I} Consistent with previous stud-
ies |16}/32,/46], we downsample annotations originally collected at 60 fps to 30
fps. BIWI is maintained at 25 fps. The assembled A2F-Bench consists of 934
speakers and 8,654 sequences, with a total duration of 18.53 hours, featuring
diverse sound types and mouth shapes. Refer to Supplementary Materials for
detailed dataset description.

4.2 Implementation Details

We adopt two multilingual pre-trained audio encoders for UniTalker, i.e., Wavlm-
base-plus [10] for UniTalker-Base model and Wav2vec2-xlsr-53 [12] for UniTalker-
Large model. The effect of the audio encoder is detailed in Sec.[5] UniTalker refers
to UniTalker-Large by default, unless explicitly stated. We train each version of
the model on both individual datasets and A2F-Bench. For instance, UniTalker-
B-[DO] refers to UniTalker-Base trained on BIWI dataset. UniTalker-B-[D0-D7]
and UniTalker-L-[D0-D7] refers to Unitalker-Base and UniTalker-Large trained
on the entire A2F-Bench, respectively. We use Adam optimizer with a constant
learning rate of 0.0001. We train 100 epochs for each model. It takes 2 days to
train UniTalker-L-[D0-D7] on a single NVIDIA V100.

4.3 Comparison with Prior Works

Quantitative Evaluation. We compare UniTalker with four methods: Face-
Former |16], CodeTalker [46], SelfTalk [31] and FaceDiffuser [39]. FaceFormer and
CodeTalker adopt Wav2vec2-base-960h [3] as their audio encoder. Both meth-
ods employ autoregressive decoder and exhibit slow inference. SelfTalk adopts
Wav2vec2-large-xlsr-53-English [18] as the audio encoder. FaceDiffuser adopts
Hubert-base-1s960 |20] as the audio encoder. The inference on FaceDiffuser is
extremely slow since it adopts the diffusion mechanism and its inference sched-
uler has 500 steps. In case of BIWI, we directly evaluate their released models.
For Vocaset, we retrain and test these methods using their official codebases, as
they did not report the quantitative results.

We adopt lip vertex error (LVE) to measure lip synchronization, which is
commonly used in prior works [16,39/46]. LVE is computed as the average over all
frames of maximal L2 error of the lip vertices to the ground truth. Following |39],
we measure mean vertex error by computing the mean Euclidean distance w.r.t.
the ground truth across all vertices (MVE) and across the upper face (UFVE).
Following [46], we adopt upper-face dynamics deviation (FDD) to measure the
variation of upper facial dynamics for a motion sequence in comparison with
that of the ground truth. We also list the trainable parameters and inference
time of a 10-seconds audio on a single NVIDIA V100.

According to Tab. 2| UniTalker-B-[D0| and UniTalker-B-[D1] shows lower
LVE, than FaceFormer and CodeTalker on BIWI and Vocaset, respectively.
With the addition of more training data, UniTalker-B-[D0-D7] get a perfor-
mance bonus for both datasets and beats all prior works on both datasets in
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Table 2: Quantitative results on BIWI-Test-A and VOCA-Test. Best values are bolded.

Dataset Method LVE | MVE | UFVE | FDD | Params Time

x107* x1073 x1073 x107° M s
FaceFormer 4.9836 7.2750 6.9081 4.0062 109 0.705

CodeTalker 4.7914 7.3784 7.0050 4.2147 561 4.4
SelfTalk 4.2485 6.9152 6.5428 3.5851 539 0.071
BIWI FaceDiffuser 4.2985 6.8088 6.6220 3.9101 189 16.50
UniTalker-B-[DO0] 4.3681 6.8948 6.6277 4.6789 92 0.024
UniTalker-B-[D0-D7]| 4.0804 6.6458 6.3774 5.0438 92 0.024
UniTalker-L-[D0-D7] 3.8587 6.4166 6.1483 5.2307 313 0.054
LVE | MVE | UFVE| FDD | Params Time

x107° m? x107%m x1073m x107"m? M s
FaceFormer 1.1696 0.6364 0.4972 2.4812 92 0.624
CodeTalker 1.1182 0.5750 0.4708 1.2594 315 3.464
SelfTalk 0.9626 0.5665 0.4805 1.0511 450 0.053
Vocaset FaceDiffuser 0.9684 0.5768 0.4772 1.7335 89 13.08
UniTalker-B-|D1] 0.9381 0.5695 0.4829 1.2115 92 0.022
UniTalker-B-[DO-D7]  0.8136 0.5338 0.4494 1.3962 92 0.022
UniTalker-L-[D0-D7]| 0.8303 0.5524 0.4756 1.5206 313 0.053

regards to LVE, MVE and UFVE, with less parameters and much faster in-
ference speed. UniTalker-L-[D0-D7] push LVE, MVE and UFVE even lower on
BIWI. Compared with prior state-of-the-art model, i.e., SelfTalk [31], UniTalker-
B-[D0-D7] leads to LVE reductions of 4.0% for BIWI and 15.5% for Vocaset.
UniTalker-L-[D0-D7| leads to reductions of 9.2% for BIWI and 13.7% for Vo-
caset. SelfTalk shows the best FDD on both datasets, indicating the best pre-
diction of statistics of facial motion velocity. Note that although FDD and
UFVE are computed over the same upper face region, they show inconsistent
results. We argue that UFVE better reflects the temporal consistency with the
ground truth. e.g., for t€[0, 2x], std(cos(t)) — std(sin(t)) = 0, implies FDD = 0
and f027r||cos(t) — sin(t)||2dt = 4/2 indicates large UFVE. Notably, diverse data
leads to worse FDD, possibly due to the increased diversity of facial motion
statistics as shown in Fig. @ For instance, D1 (Vocaset) shows little motion
variation in the upper face region while D4 (3DETF-RAVDESS) and D7 (Mul-
tilingual Songs) exhibit rich motion variation. At inference, the model trained
on diverse datasets tends to predict average motion variation due to the weak
correlation between audio and the motion of upper face.

Qualitative Evaluation. Corroborating the quantitative results above, we plot
the mean and standard deviation of the motion velocity, and the mean of the
Euclidean distance between the generated sequences and the reference sequence.
According to Fig. [6D] SelfTalk predicts closest velocity mean and standard de-
viation maps to the ground truth, which is consistent with the FDD order in
Tab.[2] The error map indicates UniTalker gain the best precision, which is con-
sistent with the LVE, MVE and UFVE results. Interestingly, prior works show
much larger error in the neck part than UniTalker.

User Study. We conducted user study to qualitativly compare UniTalker with
prior works, FaceFormer, CodeTalker and SelfTalk. FaceDiffuser [39] reported
worse qualitative results than FaceFormer and CodeTalker, so it is not selected
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Fig.6: (a) The standard deviation of facial motion within each training set. The
upper face of D1(Vocaset) shows little motion variation and is close to static. (b) The
temporal statistics (mean and standard deviation) of adjacent-frame motion variation
and the mean of per-frame predicted-to-GT Euclidean distance within a sequence.

Table 3: The support rate for UniTalker over its competitors.

Method \ Realistic Lip Sync Emotion
Ours vs. FaceFormer 74.7% 76.6% 78.2%
Ours vs. CodeTalker 71.8% 77.1% 80.7%
Ours vs. SelfTalker 72.5% 75.0% 82.1%

for comparison. Our selected audios for user study cover a wide range of scenar-
ios, including different languages, audio types, emotional expressions, and audio
sources (human voices and generated audios from text-to-speech models). In our
Supplementary Materials, we provide a demo video to illustrate the performance
of UniTalker under these scenarios. For each comparison pair, the output from
UniTalker and its competitors were randomly placed at left or right. Users par-
ticipating in the study were asked to answer three questions for every comparison
pair: (1) which side appears more realistic, (2) which side demonstrates better lip
synchronization with the audio, and (3) which side more effectively conveys the
emotion in the audio. We collected 868 answers, with 308, 280 and 280 responses
compared with Faceformer, CodeTalker and SelfTalk, respectively. Tab. 3] in-
dicates that UniTalker achieves higher support rate across all three questions.

4.4 Comparison With Data Preprocessing

To train on multiple datasets, one straightforward approach is to preprocess dif-
ferent annotations in the datasets into one unified annotation through either 3D
morphable model [24] fitting or mesh retopology [1]. While both methods re-
quire pre-selected corresponding facial keypoints, UniTalker does not. Moreover,
the preprocessing approach limits future data expansion. When a new released
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Table 4: We compare LVE of UniTalker and that of data preprocessing approach,
under different training dataset settings. The LVE values are evaluated on D1(VOCA-
Test) and expressed in 107% m?. The first row indicates the training datasets.

Method ‘ D1 Do-D1 Do0-D2 D0-D3 D0-D4 DO0-D5 DO0-D6 DO0-D7
Preprocessing |9.1528 9.4856 8.2400 8.0779 8.4730 8.7049 8.4748 8.7532
UniTalker 9.1528 8.7353 7.9243 8.4495 8.2336 8.0785 8.4192 8.3035

dataset adheres to a different annotation, preprocessing approach needs to con-
vert the new annotation into the required format. While for UniTalker, one can
simply plug new decoder heads into UniTalker and train it with existing datasets
or solely with new ones, avoiding retopology or fitting process.

To quantitatively compare the preprocessing approach with UniTalker, we
preprocess all the annotations in [D0-D7| into FLAME vertices, namely [DO-
D7]-FLAME, and train a one-head model on this dataset. Specifically, for vertex-
based datasets like DO (BIWI) and D2 (Multiface), we convert the vertices into
FLAME topology through standard retopology method. The error between the
original vertices and converted vertices is evaluated with chamfer distance and
has an average value of 0.2 mm. For D3, D4, D6 and D7, we convert the ARKkit
blendshape weights into FLAME vertices with the aid of the released blend-
shape [26] with ARkit semantics and FLAME topology. For D5, we convert
FLAME parameters into vertices using FLAME model [24].

The one-head model only outputs annotation of FLAME vertices. We com-
pare the performance on D1 (VOCA-Test), which originally has FLAME topol-
ogy. Tab. [4 shows that UniTalker achieves lower LVE in most dataset settings
than the one-head model trained on [D0-D7]-FLAME. Interestingly, the lowest
LVE occurs in different dataset settings for these two approaches. Tab. [4] reveals
that the unified training framework does take advantages of the multi-head de-
sign. UniTalker is not only versatile due to its multi-annotation output, but also
shows better precision than data preprocessing approach.

4.5 Effect of Scaled-up Datasets

We train UniTalker on each individual dataset and get eight models, denoted
as L-[D*]. We evaluate LVE of each model on its corresponding test set. After
that, we evaluate LVE of UniTalker-|D0-D7] on every test set. As shown in
Tab. [ the one UniTalker model beats the individual models on most dataset.
For small-scale datasets like BIWI and Vocaset, UniTalker leads to over 9%
decrease in LVE. However, the performance improvement is not achieved on
all datasets. As the audio domains differ largely among A2F-Bench, UniTalker
needs to balance the performance across datasets. For D3 (3D-ETF-HDTF),
which already contains 5.49 hours of audios, UniTalker does not lead to better
precision. For D6 (Chinese speech), UniTalker results in higher LVE because the
proportion of Chinese speeches in A2F-Bench is small.
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Table 5: Quantitative comparison between single dataset training and mixed dataset
training. The metric is LVE. L-[D*] denotes the eight individual models trained on each
dataset. L-[D0-D7] denotes UniTalker-Large trained on A2F-Bench. L-FT denotes the
eight models finetuned from L-[D0-D7]. LVE is in 10™* for D0, 107® m? for D1-D3 and
10=° m? for D4-D7.

Do D1 D2 D3 D4 D5 De6 D7

Method ‘ 0.33h 0.56h 0.67h 5.49h 1.48h 3.65h 1.24h 5.11h

L-[D¥]
L-[D0-D7]
L-FT

4.279 9.153 8.881 8.445 1.370 2.040 1.043 1.235
3.85919 5% 8.30319 3 8.64815 5y 8.99176. 5% 1.326]3 29, 2.05670 5% 1.14579 77 1.21114 99
3.816111% 8.060l129 8.5615 59 8.417|l0.3% 1.300529 1.848lg .4y 0.998]4 3% 1.17814 6%

4.6 Taking UniTalker as a Foundation Model

Fine-tuning UniTalker on Seen Annotations. UniTalker is motivated to
improve the overall performance and needs to consider the trade-off in perfor-
mance across different datasets. To get consistent improvement on every dataset,
we fine-tune UniTalker on each individual dataset and get eight fine-tuned mod-
els, denoted as L-FT. As evidenced by Tab. [5] this fine-tuning process further
enhances performance on every dataset. Compared with L-[D*], L-FT leads to
better precision across all datasets, including the hard-case datasets like D4 with
emotional speeches [28] and D7 with songs. The largest two LVE reductions are
11.9% on D1 and 10.8% on DO0. The average LVE drop across datasets is 6.3%.
Fine-tuning UniTalker on Unseen Annotations. We train UniTalker-
[D1-D7] and fine-tune it on DO (BIWI). As a comparison, we directly fine-tune
Wav2vec2-xlsr-53 [12] on D0. When fine-tuning UniTalker-[D1-D7], we only keep
the weights of UniTalker encoder and reinitialize the weights of decoder, to en-
sure fair comparison. The original DO training set contains 190 sequences, with
32 utterances for each speaker and 2 utterances missing. We iteratively discard
half of the training set, leaving 96, 48, 24, 12 and 6 sequences. The smallest subset
contains only one utterance per speaker, and the utterance content is identical
across all speakers. We fine-tune UniTalker-[D1-D7] and Wav2vec2-xlsr-53 on D0
and each subset. Fig. 4| shows that fine-tuning UniTalker-[D1-D7] always yields
better precision. It requires less than half of the data to get comparable per-
formance. Moreover, fine-tuning UniTalker on DO0-half, achieves lower LVE, i.e.,
4.197x10~* than that of previous state-of-the-art model |31] trained on DO-full,
i.e., 4.249x1074.

5 Ablation Study

To analyse the effects of the different components of UniTalker, we conducted
ablation studies in terms of audio encoder, motion decoder and the frequency
adaptor. Please refer to Supplementary Materials for the latter two.

Effect of Pre-trained Audio Encoder. Bao et al. |5] shows that the self-
supervised pre-trained audio features substantially boost the performance for
audio-driven facial animation, compared with handcrafted features. Based on
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Table 6: The effect of pre-trained audio encoders. The first row indicates the test
dataset. LVE is in 107" for DO, 107% m? for D1-D3 and 10~° m? for D4-D7.

Audio Encoder ‘ DO D1 D2 D3 D4 D5 D6 D7

Wav2Vec2-Base-960h [3]]4.491 9.916 9.887 9.812 1.585 2.217 1.351 1.409
WavLM-Base |11] 4.033 8.269 9.253 9.117 1.417 2.044 1.184 1.340
WavLM-Base-Plus [10] |4.080 8.136 9.776 9.053 1.392 1.975 1.158 1.264
Wav2Vec-XLSR-53 |12] [3.859 8.303 8.648 8.991 1.326 2.056 1.145 1.211

this observation, we investigate the effect of different pre-trained audio en-
coders. Wav2vec2-base-960h [31/4] is pre-trained on 960 hours of English speech.
Wavlm-base [9] is pre-trained on the same dataset with different pre-training
method. Wavlm-base-plus [10] has the same model size with Wav2vec2-base-
960h and Wavlm-base, but is pre-trained on 94k hours of audios in 23 lan-
guages. Wav2vec2-xlsr-53 [12,|13] is a larger audio encoder and pre-trained on
56k hours of audios in 53 languages. We train UniTalker on A2F-Bench, based
on these four audio encoders and report LVE on each test set. As shown in
Tab. [6] UniTalker based on Wav2vec2-base-960h shows suboptimal performance.
Wavlm-base shows significant improvement over Wav2vec2-base-960h due to
better pre-training method. With scaled-up pre-training data, Wavlm-base-plus
shows better performance over Wavlm-base. Benifit from the diversity of pre-
training data and larger capacity, Wav2vec2-xlsr-53 leads to an overall perfor-
mance improvement. Tab. [6] shows that the downstream UniTalker precision is
largely affected by the pre-trained audio encoder from three aspects, including
the pre-training method, the scale and diversity of pre-training dataset and the
capacity of pre-training backbone.

6 Conclusion and Discussion

We propose UniTalker, which effectively exploits the existing datasets with in-
consistent annotation format. The model precision benefits from the increased
scale and diversity of A2F-Bench. The experiment shows that the pre-trained
UniTalker has the potential to serve as a foundation model for more audio-to-face
tasks, especially when the data is scarce.

Limitations and Future Works. Tab.[Elindicates that UniTalker shows better
precision on most datasets than the corresponding individual models. However,
achieving consistent improvement over every dataset requires dataset-specific
fine-tuning. The potential for enhancing model capacity to alleviate performance
trade-offs across diverse datasets remains an open problem. Meanwhile, Fig. [4]in-
dicates that the pre-trained UniTalker exhibits promise as the foundation model
for audio-driven facial animation tasks. Nonetheless, the data scale used for
UniTalker, i.e., 18.53 hours, is still considerably smaller than that used for train-
ing the audio encoder, i.e., 56k hours. Exploring the utilization of large-scale
datasets with suboptimal data quality, such as BEAT and Talkshow, represents a
promising future direction. Applying UniTalker to 2D facial animation [34/41//47]
to enhance consistency under large head poses is also a worthwhile pursuit.
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