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Abstract. Text-to-image diffusion models have shown remarkable suc-
cess in synthesizing photo-realistic images. Apart from creative applica-
tions, can we use such models to synthesize samples that aid the few-shot
training of discriminative models? In this work, we propose AlignDiff, a
general framework for synthesizing training images and masks for few-
shot segmentation. We identify two crucial misalignments that arise when
utilizing pre-trained diffusion models in segmentation tasks, which need
to be addressed to create realistic training samples and align the syn-
thetic data distribution with the real training distribution: 1) instance-
level misalignment, where generated samples of rare categories are of-
ten misaligned with target tasks) and 2) annotation-level misalignment,
where diffusion models are limited to generating images without pixel-
level annotations. AlignDiff overcomes both challenges by leveraging a
few real samples to guide the generation, thus improving novel IoU over
baseline methods in few-shot segmentation and generalized few-shot seg-
mentation on Pascal-5i and COCO-20i by up to 80%. Notably, AlignDiff
is capable of augmenting the learning of out-of-distribution uncommon
categories on FSS-1000, while naïve diffusion model generates samples
that diminish segmentation performance.

Keywords: Semantic Segmentation · Text-to-Image Diffusion · Data
Synthesis

1 Introduction

Few-shot semantic segmentation has recently attracted increasing attention [17,
20, 28], given that it copes with the scarcity of (pixel-level) densely annotated
data in practical scenarios. Existing efforts have primarily focused on either
designing specialized architectures in low-data regimes [5,29] or employing data
augmentation to produce variations of the provided data [20]. However, these
methods struggle to improve performance, as they ultimately rely on the small
number of support samples that often do not faithfully represent the real data
distribution. A promising approach is to leverage general-purpose text-to-image
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Fig. 1: While it is tempting to use images synthesized from text-to-image diffusion
models such as Stable Diffusion [23] to train segmentation models, text-conditioned
generated images often fail to represent the desired distributions of uncommon classes.
Naively using these samples leads to training distributions that are misaligned to
the target data distribution, where samples are often degenerate for rare categories
and there is no pixel-level annotation. AlignDiff gracefully addresses both issues by
conditioning the generative process using a few real training samples, leading to an
aligned synthetic distribution for training.

diffusion models to synthesize additional examples that are not biased to the
support sample distribution, thereby improving few-shot segmentation models.

Trained on a large corpus of image-text pairs, large-scale text-to-image diffu-
sion image generation models [23,25] have shown remarkable success in creative
applications. However, the naïve use of diffusion models to generate examples for
training segmentation models leads to misalignments between the generated
sample distribution and the target data distribution. There are two dimensions
of misalignment. 1) Instance-level. Simple text conditioning may fail to syn-
thesize images of rare categories (illustrated in Fig. 1). We define this issue
as Out-Of-Distribution (OOD) generation, which means generated samples are
misaligned with real data. We will define OOD generation quantitatively in the
experiment section. 2) Annotation-level. Segmentation models need accurate
pixel-level mask annotation, whereas existing diffusion models [23] are limited to
only generating images.

To address these challenges, we introduce the Alignment Diffusion (Align-
Diff) framework which is based on the key insight that the few-shot support
data can be leveraged to align the generation process with the real distribution.
Specifically, to address the instance-level misalignment, we propose normalized
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masked textual inversion. Our method learns an instance-specific word embed-
ding from as few as a single image-mask pair, which ensures consistency with
the given real examples. Empirically, our method works on OOD generation
scenarios in which existing methods [6, 23] fail. To generate accurate pixel-level
annotations, we design an efficient mask generation approach by taking inspi-
ration from semi-supervised learning, where we perform few-shot conditioning
of the mask generation process on few novel samples. We formulate the mask
generation process as a process to refine noisy masks from a few examples of
high-quality masks. Empirically, our approach is much more efficient than previ-
ous methods to extract masks from diffusion models [31] with on-par accuracy.

In sum, our contributions are as follows. 1) To improve instance-level align-
ment and handle OOD generation, we propose normalized masked textual inver-
sion that conditions the generation process using as few as one novel sample. To
the best of our knowledge, we are the first method that uses Stable Diffusion to
improve few-shot segmentation on the challenging FSS-1000 dataset [12]; while
samples synthesized with plain text conditioning diminish segmentation perfor-
mance by over 10%. 2) To improve annotation-level alignment, we propose a
novel mask-generation pipeline to guide mask generation conditioning on a few
real samples. Compared to previous methods [31], our proposed method reduces
the mask generation time from an average of 40 seconds per image [31] to 0.5 sec-
onds with similar mask quality. 3) We carry out extensive experiments and show
that our method can be easily combined with existing few-shot segmentation
methods as an augmented data source to achieve state-of-the-art performance
on both few-shot segmentation and the more challenging generalized few-shot
segmentation.

2 Related Work

Semantic Segmentation. Semantic segmentation is a dense vision task as-
signing a semantic label to each pixel in an image. Learning-based semantic
segmentation methods can roughly be categorized into two paradigms: per-pixel
classification and mask classification. Long et al . [16] proposed the diagram for
treating semantic segmentation as a per-pixel classification problem for Convo-
lutional Neural Networks (CNNs). Later works then investigated different archi-
tectural improvements [2, 3, 34] and applications in 3D [21, 35]. More recently,
an alternative paradigm, mask classification, was proposed by [4]. This line of
methods uses a detect-first-recognize-later paradigm. Since AlignDiff is a model-
agnostic data synthesis method, works in designing network architectures for
semantic segmentation are orthogonal to our method.

Few-Shot Semantic Segmentation. To allow segmentation models to op-
erate in the low-data regime, Few-shot Semantic Segmentation (FSS) methods
study how to predict segmentation masks of novel classes using only a few train-
ing examples of the novel class. Many methods [5, 17, 29, 30, 32] and even spe-
cialized datasets such as FSS-1000 [12] have been proposed to investigate this
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problem. Besides metric learning [5, 29, 30], recent works also exploit test-time
optimization [5, 17] for few-shot segmentation.

Similar to conventional semantic segmentation, AlignDiff is orthogonal to
work in FSS as it can be used to augment any proposed architecture in FSS.

Generalized Few-Shot Semantic Segmentation. Recently, generalized
few-shot semantic segmentation (GFSS) had been proposed [28] as a more chal-
lenging task setting than vanilla few-shot segmentation methods. Compared to
few-shot segmentation which produces novel-class-only binary masks, general-
ized few-shot segmentation tasks models to segment both base and novel classes
within query images. Among recent works [1, 18,20,22,28], Tian et al . [28] pro-
posed to approach this problem using the test-time optimization scheme from
few-shot segmentation, while later works [1, 18, 20] found that fine-tuning the
models with few-shot continual learning techniques attain promising perfor-
mance. We apply AlignDiff to this challenging task setting by combining it with
GAPS [20], a recent work on GFSS. Closely related to our work, AnomalyDiffu-
sion [11] learns embedding of defects to generate defective samples with masks of
defects, but it requires abundant normal samples, does not consider background
context, and generate defects only at certain locations, which is not applicable
for general segmentation settings.

Text-to-Image-Mask Generation. Some recent works [14,19,31] attempt
to modify text-to-image synthesis models into text-to-image-mask synthesis mod-
els for training segmentation models. Li et al . [14] was first in the line and
proposed grounded diffusion (GD), a zero-shot segmenter for stable diffusion
model [23]. However, the mask quality from GD [14] is not ideal, as we quanti-
tatively verified in experiments. Wu et al . [31] proposed to use the intermediate
attention maps in the diffusion models to generate coarse masks, which are then
refined with a noise learning process. Though DiffuMask [31] generates masks of
good quality, it requires heavy manual prompt engineering and its noise learn-
ing process is very time-consuming. Specifically, since DiffuMask requires full
training of a segmentation model for cross-validation on every category, which
results in amortized cost of 40 seconds per generation of an image-mask pair.
In stark contrast, AlignDiff generates high-quality masks with on-par accuracy
as DiffuMask and much better efficiency - averaging 0.5 seconds per image. Fi-
nally, Nguyen et al . [19] proposed to use diffuison to distill datasets, but requires
significant amount of data for training. In addition, these works [14, 19, 31] are
vulnerable to the drawback in Fig. 1 and may generate unfaithful samples for
out-of-distribution rare categories.

3 Method

3.1 Preliminary: Text-to-Image Diffusion Models

Our method is based on Stable Diffusion [23], which is an instance of the latent
diffusion models that performs diffusion in the latent space with text condition-
ing. Given a text description v = (v1, v2, . . . , vn), where vi are token embedding
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Fig. 2: System overview of AlignDiff. We propose a Normalized Masked Textual Inver-
sion method (Sec. 3.4) to condition the generative process based on as few as a single
image, which inverses an image-mask pair to an instance-specific textual embedding.
For pixel-level annotation generation, we propose a semi-supervised process that uses
both synthetic samples and real samples to generate high-quality masks (Sec. 3.5).

encoded by a text encoding network from texts, starting from XT ∼ N (0, I),
the diffusion sampling process at each step is given by,

xt−1 =
1√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t,v)

)
+ σtz , (1)

where αt and ᾱt are constants regulating the denoising schedule, ϵθ is a denoising
U-Net [9] parameterized by θ, σt is a constant standard deviation, and z ∼
N (0, I).

Let ϵ ∼ N (0, I) and xt =
√
ᾱtx0 +

√
1− ᾱtϵ be a noisy version of original

image x0. The training process is then given by,

Ex0,ϵ∼N (0,I),t,v

[∥∥ϵ− ϵθ(xt, t,v)
∥∥2
2

]
. (2)

3.2 Problem Formulation

Let X ⊂ RH×W×3 be the set of RGB images, C ⊂ N be a set of indexed cat-
egories, My be the name of the category, and YC ⊂ RH×W×|C| be a set of
label masks. Following existing work on general few-shot semantic segmenta-
tion [17,20,28], we split the set of possible categories into CB , a set of base cate-
gories, and CN , a set of novel categories. We further assume that the base image-
mask dataset DB has abundant examples and the novel image-mask dataset DN

has only a few examples per category (i.e., |DB | ≫ |DN |).
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The goal of this paper is to synthesize training examples of novel categories
to augment few-shot learning. More formally, we want to design a synthesis
function Φ(My,DN ) → X × YC that generates synthetic samples to augment
DN using both texts My and real samples DN . Note that this is different from
previous text-to-image-mask works [14, 31], which focuses on using texts (My)
only. In summary, AlignDiff focuses on conditioning the generative process using
DN to align the synthetic data distribution to the real data distribution.

3.3 Method Overview

The insights and contributions of AlignDiff are centered at how to condition
the generative process using available real samples to align generated
data distribution with real distribution, where we make full utilization of
both images and masks of novel samples. Fig. 2 provides a high-level overview of
AlignDiff. In Sec. 3.4, we discuss how to handle out-of-distribution generation for
rare categories using a few novel samples via normalized masked textual inver-
sion. In Sec. 3.5, we describe how we relate mask generation to semi-supervised
learning and describe a novel technique to use DN to bootstrap such a process,
which is shown to be much more efficient than existing method [31] with on-par
accuracy.

3.4 Aligned Image Generation via Normalized Masked Textual
Inversion

Vanilla large-scale text-to-image diffusion models are not appropriate to be di-
rectly used to generate training samples. The reasons are two-fold: 1) text-to-
image synthesis models may completely fail for OOD generation of uncommon
categories (e.g., samples in Fig. 1), and 2) text-conditioned synthetic samples
may not be diverse. For instance, images generated with text prompts ‘a photo
of a sofa’ share a similar pattern of straight upfront views of sofas (upper right
corner of Fig. 2), which fails to capture the viewport variations and occlusion
like the real-world samples (upper left corner of Fig. 2).

Existing methods [31] approach these two issues via prompt engineering,
where hundreds of intra-class vocabularies are manually added to increase data
diversity. However, such a method does not scale and it may not handle OOD
generation. To address these challenges without handcrafted engineering, we
propose normalized masked textual inversion. Given an image-mask pair (x, y)
and its class name My, AlignDiff optimizes for instance-specific textual embed-
dings for provided instances, which serve as an implicit language description
of properties of the novel object in x (e.g., color, the environment it is placed
in, orientation, occlusion, etc.). Compared to existing methods for personalizing
diffusion models [6,24], which requires at least 5 close-up images of objects, our
normalized masked inversion takes advantage of masks and works with as few
as a single image where the object may occupy a small region.

More concretely, we denote the instance-specific embedding as v∗ to describe
the instance in x and use it as an adjective (e.g., text prompt ‘A photo of a v∗
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Fig. 3: Comparison between our proposed Normalized Masked Textual Inversion in
AlignDiff, Naïve Textual Inversion, and plain text conditioning. Text-conditioned sam-
ples exhibit variance in texture and lighting conditioning, but may lack geometric vari-
ations and realistic scene layout. Naïve textual inversion captures the realistic scene
layout, but often leads to undesired attention of unrelated background when the novel
object occupies only a small portion of the image. Note how our proposed Normalized
Masked Textual Inversion can successfully generates synthetic samples in such scenario.

sofa’ would generate a specific variant of sofa of v∗). To learn the instance-specific
embedding v∗, we first use the pre-trained text encoder to map prompt ‘A photo
of a My’ to get the language embedding V = (v1, . . . , vj−1, vj , vj+1, . . . , vn).
Here, vj denotes the embedding vector that the determiner ‘a’ maps to. We
then modify this vector to insert the instance embedding to create a new vec-
tor, V∗ = (v1, . . . , vj−1, vj , v∗, vj+1, . . . , vn), where v∗ serves as the adjective
description. This is similar to adjective token learning in DreamBooth [24] and
is different from textual inversion [6] where the trainable embedding is the noun.
We empirically found that treating the learnable embedding as an adjective leads
to a faster and more stable training convergence (illustrated in Fig. 3).

The optimization goal of the vanilla textual inversion is given by a modifica-
tion of Eq. 2, where the only trainable parameter is the embedding v∗. However,
this is inappropriate for few-shot segmentation because the loss is distributed
evenly across the entire image. For training samples where the objects of in-
terest occupy only a small portion of the image, using simple textual inversion
results in the generation of images with an unwanted focus on background. To
amend this issue, we propose to mask and balance the loss of foreground and
background using the provided mask,

v∗ = argmin
v∗

E(x,y),ϵ∼N (0,I),t,v

[∑
yi=1

∥∥ϵi − ϵθ(xt, t,v)i
∥∥2
2∑

yi=1 1

+ λ ·
∑

yi=0

∥∥ϵi − ϵθ(xt, t,v)i
∥∥2
2∑

yi=0 1

]
,

(3)

where i is the index of pixels in the image, yi = 1 denotes foreground pixels,
yi = 0 denotes background pixels, and λ is a hyperparameter used to balance the
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foreground and background loss. Compared to naïvely masking the loss with fore-
ground masks, Eq. 3 also captures background context such as the surrounding
environment and occlusion (an illustration is given in Fig. 2, where the image-
conditioned sample shows similar structure to the provided sample). After v∗ is
optimized, we store v∗ to a bank of embedding and sample it along with plain
text encodings to generate samples, as illustrated in Fig. 2.

3.5 Aligning Mask Generation via Few-shot Conditioning

A critical component of adapting diffusion models for segmentation training
sample synthesis is to generate accurate masks. To exploit the internal represen-
tations of Diffusion models for such a purpose, Hertz et al . [8] proposed to extract
image-text cross-attentions and use the response to category names as masks.
However, such attention maps are often imprecise (illustrated in the supplemen-
tary material), necessitating mask refinement and filtering techniques. Recently,
Wu et al . [31] attempted to address this issue by introducing a noise learning
process. Though this approach generates masks of good quality, it requires full
training of segmentation models for every category, which is prohibitively expen-
sive and empirically takes 1 GPU day for a few thousand synthetic samples.

AlignDiff builds upon the work of Hertz et al . [8] and proposes a novel tech-
nique for refining coarse masks from diffusion models. We investigate the prob-
lem from a novel perspective, where we relate the task setting to semi-supervised
learning. The key insight of AlignDiff is that the expensive noise learning pro-
cess can be largely avoided if we bootstrap the process with few-shot conditioning
with a few accurate image-mask pairs.

Algorithm 1 AlignDiff Mask Generation

Require: Coarse samples Dbad = {Ii,Mi}Ni=1

Require: Given samples Dgood = {Ii,Mi}Mi=1

Require: FSS model fθ
Require: IoU consensus threshold α

θ ← FSSCond(f,Dgood) // Condition FSS
for i from 1 to N do // Scoring

M̂i ← fθ(Ii), Ii ∈ Dbad

if IoU(M̂i,Mi) ≥ α then
Dgood ← Dgood ∪ (Ii,Mi)
Dbad ← Dbad \ (Ii,Mi)

end if
end for
θ ← FSSCond(f,Dgood) // Re-condition
for i from 1 to |Dbad| do // Re-estimate

M̂i ← fθ(Ii), Ii ∈ Dbad

Dgood ← Dgood ∪ (Ii, M̂i)
end for

Intuitively, we are given
two sets initially: Dgood, a
set of a few reference image-
mask pairs, and Dbad, a set of
many synthetic images with
coarse masks. The goal is to
refine masks in Dbad using
the high-quality masks from
Dgood. This is very similar
to the task setting in semi-
supervised learning, in which
a widely adopted paradigm is
to use knowledge from a small
set of good labeled data (com-
parable to Dgood) to augment
the learning on a larger set of
data with no label or noisy la-
bels (comparable to Dbad).

We design a mask gener-
ation process that iteratively
migrates samples from Dbad to Dgood. The detailed algorithm is given in Algo. 1.
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More specifically, the algorithm is split into two stages: a scoring stage and a
re-estimation stage. We train a few-shot segmentation (FSS) model on the base
dataset DB . During the scoring stage, we condition the FSS model using the ini-
tial Dgood, consisting of a few provided real samples. The conditioned FSS model
is then used to predict masks for all samples in Dbad. If the IoU between the
coarse masks and the pseudo annotation predicted by the FSS model exceeds a
certain threshold α, then AlignDiff deems the coarse masks as high-quality and
moves it to Dgood. In the re-estimation stage, AlignDiff reconditions the FSS
model using the expanded Dgood for a more faithful representation. The updated
FSS model is then used to generate pseudo labels for all remaining samples in
Dbad. Our semi-supervised mask generation process is much more efficient than
the previous noise learning paradigm [31], as both the FSS conditioning and
inference require no optimization.

4 Experiments

To demonstrate the efficacy of our method, we apply AlignDiff to generate data
for three commonly used few-shot segmentation datasets to augment state-of-
the-art models’ segmentation in a plug-and-play manner. We mainly use the FSS-
1000 [12] dataset, for its rich class diversity that allows us to evaluate AlignDiff
on uncommon categories.

4.1 Evaluation setup

Datasets. We follow previous literature in few-shot segmentation [29, 30, 32]
and generalized few-shot segmentation [1, 20, 28] to use the Pascal-5i and the
COCO-20i dataset in both settings. Since the FSS-1000 [12] dataset focuses on
class diversity and contain only individual class per image, it is appropriate only
for the FSS setting, following existing works [17,28,29].

Synthesizer Baselines. We use Grounded Diffusion (GD) [14] as the main
synthesis baseline. Another recent work, DiffuMask [31], (1) performs heavy
prompt engineering on the Pascal and the COCO dataset, which violates the few-
shot setting that the class information is not known beforehand; (2) requires an
expensive noise-learning process for every category, which makes comparisons
on COCO prohibitively expensive (we approximate > 80 GPU days). Given
this practical limitation, we compare the efficiency and the mask accuracy of
AlignDiff with DiffuMask only on a subset of the Pascal dataset in Table. 5.

Evaluation Protocol. The experiment on FSS follows the standard episode-
based protocol [17,30]. In both the base training and the few-shot testing stage,
the model is presented with episodes that contain a few supporting examples
and a query example. The model is tasked to perform binary segmentation of
the query sample. In our experiments, we do not modify the base training stage,
but we augment the support set DN during few-shot testing by supplying ex-
tra synthetic samples from AlignDiff, which is conditioned on DN . Results are
average across 1,000 runs. For GFSS, we follow existing work [1, 20] and first
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Table 1: Results on FSS-1000 [12] over all 240 testing categories under the 1-shot
setting. The OOD (out-of-distribution) classes are determined as classes where samples
synthesized by GD [14] diminish the performance (detailed in supplementary). Support
set source indicates how the support sets are augmented (e.g., 1R+20S means 1 real
sample with 20 synthetic samples). Using simple samples from GD [14] diminishes
the final performance due to OD generation. In contrast, our proposed normalized
masked textual inversion (T.Inv.) and semi-supervised masking (S.Mask.) in AlignDiff
consistently improve novel IoU, indicating the OOD generation capability of AlignDiff.

Synthesis Setup

Method Support Set Source Conditioning Mask Overall IoU OOD IoU

HSNet [17]

1R N/A N/A 86.5 87.5
1R+20S Text GD [14] 81.4 80.2
1R+20S Text S.Mask. (Ours) 87.2 86.9
1R+20S T.Inv. + Text (Ours) S.Mask. (Ours) 88.3 88.2

VAT [10]

1R N/A N/A 90.0 90.5
1R+20S Text GD [14] 84.7 83.5
1R+20S Text S.Mask. (Ours) 89.8 88.6
1R+20S T.Inv. + Text (Ours) S.Mask. (Ours) 90.8 90.6

train the models on DB excluding any novel samples. During few-shot learning,
DN is presented to the model for adaptation. We apply AlignDiff to synthesize
1,000 training samples per novel class to augment DN and report metrics on
both the base and the novel classes. Note that the evaluation of the validation
set is done in a single pass, which is different from the usual episode-based FSS
evaluation scheme [5,17]. The reported results are averaged across multiple folds
in a cross-validating fashion. For each fold, we average results from 5 random
runs.

4.2 Main Result - Out-of-Distribution (OOD) Generation for Rare
Categories on FSS-1000

Besides introducing more diverse samples to few-shot learning of common cat-
egories, AlignDiff is most notable for helping with Out-Of-Distribution (OOD)
generation of rare categories that plain text conditioning fails. In Tab. 1, we
investigate the efficacy of AlignDiff to handle out-of-distribution generation on
the FSS-1000 dataset [12] under the 1-shot setting. We use the HSNet [17] and
VAT [10] as the FSS baseline and apply AlignDiff to provide additional sam-
ples for the support set during the few-shot testing. Note that DiffuMask is
prohibitively expensive for this scenario since it requires training segmentation
models for every category. Thus, we compare only with GD [14].

We perform step-by-step ablations from text-conditioned diffusion [14]
to AlignDiff, which demonstrates the efficacy of our method. GD [14], which
synthesizes samples using text conditioning, fails drastically on FSS-1000. The
samples it synthesizes negatively impact the final performance. This is due to
both inaccurate instances in the images caused by plain text conditioning and
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Table 2: Comparison with state-of-the-arts on PASCAL-5i and COCO-20i

in FSS settings. Bold and underlined indicate best and the second best methods.

Method Pascal-5i 1-shot Pascal-5i 5-shot
50 51 52 53 Mean 50 51 52 53 Mean

PFENet (TPAMI’20) [29] 60.5 69.4 54.4 55.9 60.1 62.8 70.4 54.9 57.6 61.4
MLC (ICCV’21) [33] 60.8 71.3 61.5 56.9 62.6 65.8 74.9 71.4 63.1 68.8

HSNet (ICCV’21) [17] 65.7 70.3 63.2 61.9 65.3 72.0 73.6 68.7 68.4 70.7
NTRENet (CVPR’22) [15] 65.5 71.8 59.1 58.3 63.7 67.9 73.2 60.1 66.8 67.0
DCAMA (ECCV’22) [27] 62.5 70.8 64.5 56.4 63.5 70.0 73.8 66.8 65.0 68.9

VAT (ECCV’22) [10] 68.1 71.7 64.8 63.3 67.0 72.6 74.1 69.5 69.5 71.4
SCCAN (ICCV’23) [32] 69.1 74.0 66.3 61.6 67.7 71.6 75.2 69.5 66.5 70.7

SCCAN (ICCV’23) [32]+AlignDiff 71.0 74.8 66.5 63.6 69.0 72.6 75.5 70.3 68.1 71.6
COCO-20i 1-shot COCO-20i 5-shot

PFENet (TPAMI’20) [29] 34.3 33.0 32.3 30.1 32.4 38.5 38.6 38.2 34.3 37.4
MLC (ICCV’21) [33] 50.2 37.8 27.1 30.4 36.4 57.0 46.2 37.3 37.2 44.4

HSNet (ICCV’21) [17] 37.6 44.5 44.4 40.7 41.8 45.1 52.3 48.5 47.9 48.5
NTRENet (CVPR’22) [15] 38.3 40.4 39.5 38.1 39.1 42.3 44.4 44.2 41.7 43.2
DCAMA (ECCV’22) [27] 41.5 46.2 45.2 41.3 43.5 48.0 58.0 54.3 47.1 51.9

SCCAN (ICCV’23) [32] 41.7 51.3 48.4 46.7 47.0 49.0 59.3 59.4 52.7 55.1
SCCAN (ICCV’23) [32]+AlignDiff 42.1 52.5 49.0 47.8 47.9 49.3 59.9 59.5 53.0 55.4

inaccurate mask generation. When we use our proposed semi-supervised mask
generator, the overall IoU is improved since the masks provided are more accu-
rate. However, the IoU of OOD categories is still worse than conditioning using a
single real example even with accurate masks. Finally, we use full AlignDiff and
apply the normalized masked textual inversion technique. In this case, both the
overall IoU and the IoU of OOD categories surpass the original performance,
highlighting the capability of AlignDiff to generate synthetic samples for rare
out-of-distribution categories.

4.3 Few-Shot Segmentation (FSS)

In Tab. 2, we present results of combining AlignDiff with a recent method,
SCCAN [32], to tackle the few-shot segmentation tasks on the Pascal-5i and the
COCO-20i datasets. As expected, since Pascal and COCO contain only common
classes, AlignDiff successfully augments the performance on both datasets. This
marks that AlignDiff can augment state-of-the-art networks in all commonly
used datasets including Pascal-5i, COCO-20i, as well as the FSS-1000 [12] that
is challenging to simple diffusion models.

4.4 Generalized Few-Shot Segmentation (GFSS)

In Tab. 3, we report results on the challenging GFSS setting on the Pascal-5ii
dataset and the COCO-20i datasets, where the model is required to segment both
the base and novel categories. We augment several baselines with AlignDiff to
illustrate how much the AlignDiff can help improve the performance of few-shot
segmentation in a model-agnostic manner.
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Table 3: AlignDiff can be applied in a model-agnostic fashion to GFSS, where models
are required to segment both base and novel classes. AlignDiff improves underlying
models across different few-shot settings on COCO-20i and PASCAL-5i. The best re-
sults are bolded. HM stands for harmonic mean. ∗: Simple fine-tuning yields bad
performance due to catastrophic forgetting [1].

Method Base Novel HM Base Novel HM
Pascal-5i 1-shot Pascal-5i 5-shot

PIFS [1] 64.1 16.9 26.7 64.5 27.5 38.6
GFS [28] 65.7 15.1 24.6 66.1 22.4 33.5
FineTune∗ 47.2 3.9 7.2 58.7 7.7 13.6
FineTune + GD [14] 28.1 20.3 23.6 32.0 22.5 26.4
FineTune+AlignDiff 66.2(+19.0) 44.9(+41.0) 53.5(+46.3) 65.9(+7.2) 45.1(+37.4) 53.6(+40.0)
GAPS [20] 66.8 23.6 34.9 68.2 43.9 53.4
GAPS + GD† [14] 66.8 41.2 51.0 68.5 44.0 53.6
GAPS+AlignDiff [20] 67.3(+0.5) 43.3(+19.7) 52.7(+17.8) 68.4(+0.2) 47.4(+3.5) 56.0(+2.6)

COCO-20i 1-Shot COCO-20i 5-shot
PIFS [1] 40.4 10.4 16.5 41.1 18.3 25.3
GFS [28] 44.6 7.1 12.2 45.2 11.1 17.8
FineTune∗ 38.5 4.8 8.5 39.5 11.5 17.8
FineTune + GD [14] 25.8 17.2 20.6 31.9 23.6 27.2
FineTune+AlignDiff 41.7(+3.2) 22.4(+17.6) 29.1(+20.6) 41.8(+2.3) 27.9(+16.4) 33.5(+15.7)
GAPS [20] 46.8 12.7 20.0 49.1 25.8 33.8
GAPS + GD† [14] 47.1 21.8 29.9 46.5 29.0 35.7
GAPS+AlignDiff [20] 46.7(-0.1) 23.1(+10.4) 30.9(+10.9) 47.9(-1.2) 30.3(+4.5) 37.1(+3.3)

GFSS Baselines. We use three recent works [1,20,28] from GFSS as base-
lines. GFS [28] proposed the setting of GFSS, but it focuses only on test-time
optimization and does not fine-tune on DN . PIFS [1] formulates GFSS as a con-
tinual few-shot learning task and proposes to fine-tune the model using a few
novel samples. Finally, GAPS [20] views GFSS as continual learning and com-
bines memory-replay with copy-paste to further increase the GFSS performance.
In this work, we choose GAPS [20] as the main baseline due to its state-of-the-
art performance in GFSS and we treat images from AlignDiff as instances that
can be copied and pasted in GAPS.

AlignDiff consistently improves novel IoU under few-shot settings.
Across all task settings, AlignDiff is able to synthesize more diverse samples to
aid few-shot learning of novel categories. Most notably, on the impoverished 1-
shot setting, GAPS+AlignDiff improves the novel IoU by approximately 80% on
both Pascal-5ii and COCO-20i. AlignDiff also consistently outperforms GD [14].
Note that the performance gap between AlignDiff and GD is more drastic on
simple fine-tuning because GAPS [20] has built-in copy-paste for scene layout,
which highlights the potential of AlignDiff for standard segmentation
via copy-pasting generated samples.

4.5 Ablation Studies

Qualitative samples. We perform extensive visualization to demonstrate the
quality of synthetic samples that AlignDiff generates. We include some qualita-
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Provided Text-conditioned AlignDiff (Ours) Sample Mask
(Last image)

Fig. 4: Qualitative samples for AlignDiff on FSS-1000 [12]. Note how text-to-image
synthesis fails for rare classes. AlignDiff generates instances within class and with
varying lighting conditions. (From top to bottom: Samarra Mosque, phonograph, Pi-
dan, American Chameleon, and chess queen).

tive examples in Fig. 1 and Fig. 4. These qualitative examples demonstrate the
capability of AlignDiff on OOD categories from FSS-1000, where plain text con-
ditioning fails. Notice that AlignDiff is capable of picking up fine-grained details
of different types of chess in the synthesized image and textures.

Comparison with DiffuMask [31]. In Table. 5, we compare AlignDiff with
DiffuMask on the 5 classes of the Pascal-53 dataset on the GFSS setting with
GAPS [20]+AlignDiff. We empirically measure the GPU hours for synthesis and
use the final novel IoU on the GFSS task setting as a quantitative measurement
of the mask quality. We observe that the mask quality of AlignDiff and DiffuMask
is on-par with similar accuracy, whereas AlignDiff is much more efficient.

Dissection of Mask-level Alignment. Our mask-level alignment is based
on a key observation: both cross-attention maps from Diffusion and masks pre-
dicted by FSS models (conditioned on a few real images) are not perfect, but
they have different failure patterns. Cross-attention maps have strong gen-
eralizability but with unrefined boundary. Conversely, recent FSS models have
refined boundary, but lack generalizability due to the limited real samples. Our
scoring stage captures masks where both models agree on with good boundary
and intra-class variance.
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Table 4: Comparisons of different mask
generation methods using Pascal-52 cate-
gories. An off-the-shelf model trained on
abundant data [4] provides reference labels.

Method Images IoU
Coarse Attention [8, 31] All 78.6
FSS-only [5] All 88.9
AlignDiff All 92.9
Coarse Attention [8, 31] Dgood 91.4
FSS-only [5] Dgood 93.7
AlignDiff Dgood 94.2

Table 5: Comparison of AlignDiff to Dif-
fuMask [31] on mask generation on Pascal-
53 GFSS. GPU hours are reported for the
generation of masks for a total of 5 classes
with 2,000 images per class on a single
RTX3090. AlignDiff is much more efficient
with on-par efficiency.

Method GPU hrs↓ Novel IoU↑

AlignDiff 15 41.5
DiffuMask [31] 130 40.7

To validate the above claim, we perform additional experiments to evaluate
the quality of masks throughout the mask alignment process. Specifically, we
use a 2D segmentation model trained on abundant data as an oracle to provide
reference masks for data synthesized for Pascal-52. The results are presented
in Tab. 4: coarse attention maps and FSS-only are unsatisfactory due to fail-
ure modes mentioned above, but AlignDiff yields significantly improved masks.
Notably, both models generate near-perfect initial estimation for images in the
post-scoring Dgood set (Dgood here is discussed in Algo. 1).

Timing. We compare the timing of AlignDiff and DiffuMask [31] in Tab. 5.
For both methods, generating 10,000 images require ≈14 GPU hours using Stable
Diffusion [23]. For mask generation, AlignDiff’s semi-supervised pipeline only
requires single-step feedforward conditioning and inference with less than 0.3
seconds per image. DiffuMask [31] requires training of segmentation models per
category with amortized cost of ≈ 40 seconds per image.

Supplementary Material For more results, such as more iamges of gener-
ated samples and masks generated by coarse attention/AlignDiff to show mask
improvement, please refer to the supplementary material.

5 Conclusion

In this paper, we present AlignDiff, which aligns standard Diffusion models for
out-of-distribution generation and accurate pixel-level annotations. AlignDiff can
be combined with copy-paste [7, 20] and recent conditioning methods [13] to
improve general segmentations, which we leave for future research.
Limitation. Though AlignDiff can adapt to synthesize instances of rare cate-
gories that plain text conditioning fails with as few as a single image, AlignDiff
may fail on tasks with drastic domain gaps, such as medical image segmentation.
Societal Impact. AlignDiff was developed using Stable Diffusion [23], which is
trained on datasets known to contain societal biases such as gender bias [26].
Acknowledgement. This work was supported in part by NIFA Award 2020-
67021-32799 and NSF Grant 2106825. This work used NVIDIA GPU at NCSA
Delta via allocations CIS220014 and CIS230012 from the ACCESS program.
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