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1 More Discussion about Latent Distillation

1.1 A Recap of Differentiable Image Parameterizations

Images are conventionally parameterized as matrices of pixel values, with each
pixel defined by its RGB intensities. However, in specific application contexts,
this parametrization may not be the most efficient. Indeed, it is feasible to opt
for a new set of parameters and establish a mapping relationship between these
parameters and the image. Subsequently, we can compute an objective function
leveraging the image, and if this mapping is differentiable, the objective function
can facilitate efficacious updates to our selected novel parameters. The frame-
work above is referred to as Differentiable Image Parameterizations [9], as is
shown in Fig. 1.

1.2 Understanding Latent Distillation from Differentiable Image
Parameterizations Perspective

Similarly, Latent Distillation can also be considered a novel form of differentiable
image parameterizations, where we map the image x to a DG discriminative
model’s parameters θ. We exploit the perception capability of the DG model Pθ

to corrupt the image x and subsequently extract the loss LLD through a LDM for
backpropagation, thereby updating the input parameters θ. Our method process
shares similarities with other applications of differentiable image parameteriza-
tions, as it involves manipulating the attributes of the image to obtain high-
quality results. However, in our method, the manipulation of image attributes is
not the ultimate goal. Instead, it necessitates continuous improvement of the DG
model’s perception capability. By continuously propagating meaningful gradient
information to minimize the objective function given by LDM, we can ultimately
achieve a highly generalizable DG model.
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Algorithm 1: DomainFusion
Input: A latent diffusion model ϕ, the initialized DG model θ, the number of

epochs Ne, the generation interval Itv, the number of candidates Nc,
the weight in sampling strategy λs, the weight of loss λ1, λ2, λ3.

Output: The trained DG model θ.

1 Initialize generate-dataset ← raw-dataset;
2 for i← 1 to Ne do
3 loss← 0; lLD ← 0;
4 if i%Itv == 0 then
5 foreach generate-minibatch do
6 foreach (x, y) in generate-minibatch do
7 candidates = ldm(x, y,Nc);
8 decompose x into style (µ0, σ0) and content c0;
9 decompose candidates into style (µ, σ) and content c;

10 c∗ ← max
j

λscos(feature c0, feature c∗) + (1−

λs)confidence(c
∗, y, θ);

11 µ∗, σ∗ ← max
j

KL(µ0, µj) +KL(σ0, σj);

12 xgen ← AdaIN(µ∗, σ∗, c∗);
13 x← xgen;
14 lLD ← lLD + λ2LD(x, y, θ, ϕ);

15 loss← loss+ λ1lraw;
16 loss← loss+ λ3lgen;
17 update θ;

18 return θ

Algorithm 2: LD
Input: An input image x, the label y, the DG model θ, a latent diffusion

model ϕ.
Output: the LD loss.

1 x← confidence(x, y, θ) · x; lLD ← 0;
2 for i← 1 to T do
3 Sample t;
4 Sample ϵ;
5 xt =

√
ᾱtx+

√
1− ᾱtϵ;

6 lLD ← lLD + w[t] ∥ϵ− ϵθ (xt, ck)∥2

7 return lLD
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Fig. 1: The framework of Differentiable Image Parameterizations.

2 Pseudocode of DomainFusion

To present the algorithmic details of DomainFusion more clearly, we provide the
following pseudocode in Alg 1 and Alg 2. Specifically, Alg 1 presents the overall
architecture of DomainFusion and describes how DomainFusion trains the DG
model by extracting loss from three aspects: the loss from the raw dataset, the
loss from Latent Distillation, and the loss from online lightweight augmentation.
Additionally, Alg 2 outlines the specific process of Latent Distillation, which
involves extracting the Latent Distillation (LD) loss from the LDM using the
given image and DG model.

3 Computational Costs Analysis

We provide computational costs analysis of our methods and other diffusion-
based DG methods DSI [15] and CDGA [11] in Tab. 1. For DSI [15] and CDGA [11],
we followed the experimental settings of their respective papers. Both DSI [15]
and CDGA [11] use stable diffusion v1-4 according to their corresponding pa-
pers, and our method also employs the same LDM. Experiments are conducted
on the Clipart domain of the DomainNet dataset. All computational costs were
measured in terms of NVIDIA Tesla V100 GPU days.

For the finetuning time, we evaluated the time overhead based on the open-
source DSI code [15]. DSI [15] requires finetuning a separate LDM on each of the
five source domains. The total finetuning dataset size achieves 538,446 images.
This process consumed approximately 22.44 GPU days, indicating a significant
computational cost.

For the generation time, it can be determined based on the parameters of
the generation process and the number of generated samples, as all three meth-
ods employ the same LDM. Regarding the generated sample quantity, DSI [15]
requires generating over 244,000 images, CDGA [11] requires generating over 4
million images, while our method only needs to generate 120,000 images, signif-
icantly fewer than the former two methods. The reasons that we generate much
smaller images than other methods are as follows. Firstly, we adopt an online gen-
eration strategy, deviating from the conventional offline generation approaches
employed in other methods. Besides, in our framework the generation process
is executed every T epochs, as opposed to being performed at every epoch.
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Table 1: Computational costs analysis in GPU days with single NVIDIA Tesla V100
on DomainNet.

Algorithm finetuning↓ generation↓ total↓

DSI [15] 22.44 7.94 30.38
CDGA [11] 0 161.11 161.11

ours 0 2.19 2.19

Thirdly, by incorporating Latent Distillation and the efficient sampling strat-
egy, our model swiftly attains good generalization capabilities. Consequently,
the number of training iterations is reduced compared to other methods, further
diminishing the quantity of generated samples. As for the generation parame-
ters, both DSI [15] and CDGA [11] employ 50 denoising steps. In contrast, our
method utilizes a smaller number of denoising steps, thereby reducing the gen-
eration time per individual image. The reason for using fewer denoising steps
is twofold. Firstly, it allows for the utilization of the latent knowledge in LDM
through Latent Distillation. Secondly, a sampling strategy is employed to de-
compose the styles and contents of the candidates. This approach enables us to
achieve satisfactory DG performance without placing excessively high demands
on the quality of samples generated by LDM. As a result, fewer denoising steps
are employed to further reduce computational costs and improve efficiency. Con-
sequently, our method exhibits significantly lower generation time compared to
the previous two methods.

For the training time, it is challenging to make a fair comparison as the first
two methods lack sufficiently open-source DG training code. As for our approach,
we employ a relatively fixed batch size and number of epochs. Additionally, we
only sample one image from every three generated images for augmentation.
Consequently, we typically complete all training processes, excluding generation,
within 0.4 GPU days using a single NVIDIA Tesla V100. If parallelized across
multiple GPUs, obtaining results within several hours is feasible. Therefore, our
computational costs are entirely affordable.

4 Experimental Settings

4.1 Settings and Datasets

Following DomainBed [4], we conducted a series of experiments on five promi-
nent real-world benchmark datasets: PACS [7], VLCS [3], OfficeHome [14], Ter-
raIncognita [1], and DomainNet [10]. To ensure a fair and consistent comparison,
we follow DomainBed’s [4] established training and evaluation protocol. In this
protocol, we designate one domain as the target, while the remaining domains
serve as source domains. The performance of domain generalization is evaluated
individually on each domain and then averaged across all domains. Model selec-
tion is conducted using the training-domain validation approach, where 20% of
the source domain data is used for validation.
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4.2 Hyperparameter tuning

Algorithm-Specific Hyperparameters. In DomainFusion, our algorithm-
specific hyperparameters can be categorized into several components. Firstly,
we have the generation parameters for Stable Diffusion, namely the guidance
scale, and guidance strength. For these parameters, we adopt the common prac-
tice used in Stable Diffusion pipelines and employ the default values without
conducting any tuning. The second component comprises factors such as the
candidate number and loss weights. Due to limitations in computational re-
sources, we only performed a search for the candidate number within the range
of [1, 3, 5]. Other hyperparameters related to stable diffusion were not subjected
to tuning in our experiments. Hence, in theory, there is untapped potential for
further enhancing the performance of our algorithm.
Algorithm-Agnostic Hyperparameters. In DomainFusion, the algorithm-
agnostic hyperparameters we employ primarily consist of learning parameters,
including batch size, learning rate, weight decay, and the number of epochs. For
the learning rate, we searched within the range of [1e-4, 3e-4, 5e-4, 7e-4, 9e-4, 1e-
3]. As for the other parameters, we generally used default values, with a batch size
of 16, weight decay of 5e-4, and 120 epochs. In theory, by exploring a wider range
of hyperparameter values and conducting more comprehensive optimization, it
is possible to unlock better results and maximize the algorithm’s capabilities.

4.3 Implementation Details

For the latent diffusion model, we employ the stable diffusion v1-4 model. Specifi-
cally, we utilize the image-to-image pipeline for image generation and loss extrac-
tion, where the input image size is set to 320×320, which greatly boosts algorithm
training speed and reduces computational overhead, and other hyperparameters
are set to their default values as specified by stable diffusion. For domain gen-
eralization, we utilize ResNet-50 pre-trained on ImageNet and RegNet-Y-16GF
pre-trained using SWAG as our backbone models. We employ the Adam opti-
mizer and cosine learning rate schedule during training. For algorithm-specific
parameters, the candidate number N = 3, the interval of generation epochs
T = 5. The three coefficients of loss are λ1 = 1, λ2 = 0.5, and λ3 = 0.5, which
are decided based on empirical observations and the scale of the loss. Moreover,
λ is 0.4 for c∗.

5 Additional Analysis and Discussion

5.1 Other Ablation Study

Effects of the Sampling Strategy. Tab. 2 demonstrates the effect of the sam-
pling strategy. Including the sampling strategy led to a significant enhancement
of 1.7% in accuracy compared to the exclusion version, thereby indicating the
effectiveness of the sampling strategy.
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Table 2: Effects of the Sampling Strategy and Synthetic Dataset Updating.

Sampling Updating Art Clipart Product Real Avg.

% ! 79.4 71.8 87.5 88.2 81.7
! % 76.7 68.9 85.4 87.2 79.6
! ! 81.2 73.9 88.5 90.1 83.4

Table 3: Effects of the Candidate Number.

Candidate Number Art Clipart Product Real Avg.

N = 1 79.4 71.8 87.5 88.2 81.7
N = 3 81.2 73.9 88.5 90.1 83.4
N = 5 80.4 72.7 87.8 89.3 82.6

Effects of the Candidate Number. Tab. 3 presents the impact of the number
of candidates, denoted as N , on the results. We considered N = 1, and N = 5. In
the implementation, N is primarily adjusted by the number of images generated
for each prompt in the stable diffusion pipeline. Generally, utilizing more than
one candidate tends to yield better results compared to using a single candidate.
Effects of Synthetic Dataset Updating in Augmentation. We also provide
an ablation study on the effect of synthetic dataset updating in our augmenta-
tion, where we only generate a fixed synthetic dataset on the first epoch, instead
of updating it in every generation epoch. As is shown in Tab. 2, The updating of
the synthetic dataset resulted in a 2.8% improvement in the DG performance,
thereby validating its efficacy.

5.2 More Visualization Results

Visualization of Generated Samples and LD Noise. We present more vi-
sualization results of the evolution of generated samples and their corresponding
LD noise images in Fig. 3. It can be observed that as the synthetic dataset is con-
tinuously updated, the generated samples exhibit cross-domain phenomena. This
allows for the retention of a certain degree of content similarity while introducing
new styles, thereby serving as evidence of the effectiveness of our method. More-
over, the corresponding LD noise has the ability to disregard domain-specific
features such as backgrounds, demonstrating the strong generalization capabil-
ity of LD noise. This can be observed more clearly in Fig. 4.
Visualization of LD Noise on images with complex backgrounds. To
further validate the generalization capability of LD noise, we selected samples
with complex backgrounds and observed the performance of LD noise under
the influence of additional domain-specific feature interference. As illustrated
in Fig. 4, for images with more complex backgrounds, LD noise patterns can
also extract semantic information while disregarding the background, further
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Table 4: Comparison with other corruptions in office-home.

Corruption Type Art Clipart Product Real Avg.

Ours w/o LD 73.6 71.2 80.7 88.7 78.6
Gaussian blur 80.9 72.6 89.5 89.5 83.1
Pepper noise 78.3 72.4 87.1 88.9 81.7

Random mask 77.0 68.2 82.9 86.2 78.6
Ours 81.2 73.9 88.5 90.1 83.4

confirming the effectiveness of the LD method for providing useful information
to benefit DG tasks.

5.3 Comparison with other corruption methods.

To further illustrate the effectiveness of our corruption of reducing contrast in
Latent Distillation, we also compare it with some other corruption methods like
blurring and noise and random masking. Experimental results demonstrate that
our corruption is more effective than other corruptions, as shown in Tab. 4.
Moreover, we find that our corruption preserves structure information and ex-
tracts useful LDM prior, while random masking destroys such information and
undermines the LDM prior, as demonstrated by visualization in Fig. 2.

6 Comparison with Diffusion Classifier

In addition to diffusion-based DG methods, we have also observed the existence
of some diffusion-based classification methods [2,6]. To provide a comprehensive
demonstration of the effectiveness of our approach, we also compared our method
with these diffusion-based classification methods as below.
A Recap of Diffusion Classifier. For image classification tasks, the funda-
mental requirement is to compute the log-likelihood over class labels {yi}. Un-
fortunately, diffusion models do not produce exact log-likelihoods(i.e. directly
computing log pϕ (x | y = yi) is intractable) [5]. However, recent research [2, 6]
has provided compelling evidence that log pϕ (x | y = yi) can be estimated using
LDiff. This is attributed to a profound interrelation between the log-likelihood
over its variational lower bound (ELBO) and LDiff. Specifically, the relationship
can be articulated as follows:

log pϕ (x | y) ≥ ELBO

≈ −Et,ϵ

[
w(t) ∥ϵ̂ϕ (xt; y; t)− ϵ∥22

]
+ C

= −LDiff + C

(1)

where C is a constant independent of the class labels y. Therefore, −LDiff
can be employed as a proxy to estimate the log-likelihood over class labels
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(a) Random masking image and LDM prior. (b) Contrast reduction image and LDM prior.

Fig. 2: Contrast Reduction preserves structure information

log pϕ (x | y) [2,6], thereby transforming diffusion models into a potential classi-
fier.
Limitations of Diffusion Classifier. Current attempts such as diffusion clas-
sifier [2, 6] give score vectors based on the denoising loss, but the effectiveness
of such approaches is limited as they match the image with all category la-
bels, which includes inaccurate estimations and leads to confusing results. We
substantiate this claim in Fig. 5 that latent diffusion can merely present accu-
rate prediction on matched text-image pairs and fails on mismatched scenarios,
where we visualize the score vectors of these approaches using cross-attention
maps obtained by DAAM [12]. It can be observed that latent diffusion fails to
comprehend mismatched image-text pairs, resulting in noisy score estimations.
Experiment Results of Diffusion Classifier. Two existing methods employ
latent diffusion models as a classifier, we denote them as Diffusion Classifier [6]
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Fig. 3: More visualization results of generated samples and LD noise, with the left sec-
tion being the evolution of generated samples and the right section being corresponding
LD noise.

Fig. 4: More visualization results of LD noise on images with complex backgrounds.
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Fig. 5: DAAM visualization of Diffusion Classifier.

Table 5: Comparison with DG methods. The DG accuracy on five domain general-
ization benchmarks is presented with the best results highlighted in bold. The results
denoted by † correspond to the reported numbers from DomainBed [4].

Algorithm PACS VLCS OfficeHome TerraInc DomainNet Avg.

Diffusion Classifier [13] 47.0 40.6 26.8 13.5 10.8 27.7
DiffusionNet [8] 23.8 0.8 15.5 8.5 0.3 9.8
ERM† [13] 85.5 77.5 66.5 46.1 40.9 63.3
Ours 90.0 79.2 72.4 51.1 44.6 67.5

and DiffusionNet [2] respectively. Therefore, we also conduct experiments to
compare DomainFusion with them. To ensure fairness, we constrain all three
approaches to use stable diffusion and employ the same latent diffusion model
parameters. The experimental results are presented in Tab. 5. The findings in-
dicate that both the Diffusion Classifier and DiffusionNet do not exhibit high
performance as DG image classifiers.
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