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Abstract. Latent Diffusion Models (LDMs) are powerful and potential
tools for facilitating generation-based methods for domain generaliza-
tion. However, existing diffusion-based DG methods are restricted to
offline augmentation using LDM and suffer from degraded performance
and prohibitive computational costs. To address these challenges, we
propose DomainFusion to simultaneously achieve knowledge extraction
in the latent space and augmentation in the pixel space of the Latent
Diffusion Model (LDM) for efficiently and sufficiently exploiting LDM.
We develop a Latent Distillation module that distills gradient priors
from LDM to guide the optimization of DG models. Moreover, we design
an online lightweight augmentation method by decomposing candidate
images into styles and contents for using LDM in a fast and online fash-
ion. Experimental results demonstrate that DomainFusion outperforms
diffusion-based methods by a large margin and achieves SOTA perfor-
mance on existing DG benchmark datasets. Remarkably, DomainFusion
can significantly reduce the number of generated images (e.g. by more
than 97% on DomainNet) without finetuning LDM.

Keywords: Domain Generalization · Latent Diffusion Models · Latent
Vision Knowledge · Data Augmentation

1 Introduction

Deep learning methods have demonstrated remarkable achievements under the
independent and identically distributed (i.i.d.) assumption on the training and
test datasets. Unfortunately, when generalized to out-of-distribution (OOD)
data, this assumption becomes inadequate and causes diminished performance
due to substantial domain shifts [32, 33, 43, 63]. To bridge domain shifts, do-
main generalization (DG) [36, 74] leverages multiple source domains to learn
domain-invariant features for generalizing to unseen target domains.
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A notable portion of DG methods neglect the scarcity of cross-domain data
and are limited in practical applications. Generation-based DG methods [62]
are effective alternatives to address the issue. Data of new domains are gener-
ated to augment the source domain, and thereby assist the model in acquiring
domain-invariant features. Latent Diffusion Models (LDMs) have been particu-
larly demonstrated effective in generating high-quality images through stable
and scalable denoising objectives [38, 46, 47, 51] and have been employed in
DSI [68] and CDGA [17]. Despite utilizing the powerful LDM and introduc-
ing massive computational costs, DSI [68] and CDGA [17] fail to yield state-of-
the-art (SOTA) performance. These diffusion-based DG methods are limited by
insufficient and inefficient utilization of LDM, as summarized below.

First, as shown in Fig. 1, the inefficient utilization of LDM results in substan-
tial computational costs. Specifically, CDGA [17] generates a massive volume of
more than 5 million synthetic images for data augmentation. The offline genera-
tion approach along with the enormous generation scale substantially increases
the training cost due to excessive computational expenses and generation time
and significantly inflated dataset size. DSI [68] is prohibitive in computational
costs since it employs an LDM for each source domain and requires fine-tuning
each LDM individually. Second, augmenting the source domain does not suffi-
ciently exploit the capability of LDM for benefiting DG. It is widely acknowl-
edged that the latent space of LDM encapsulates valuable pre-trained vision
knowledge for downstream perception tasks such as image segmentation [57] and
object detection [8]. Considering the ability of LDM to transfer images across
diverse domains without compromising the underlying semantics, we reasonably
argue that the latent space of LDM learns rich knowledge about domain-invariant
feature representation, which shows significant potential for DG tasks.

To address these limitations, we propose DomainFusion to simultaneously
achieve knowledge extraction in the latent space of LDM and augmentation in
the pixel space for DG, as shown in Fig. 1 and Fig. 3. The issues of inefficient and
insufficient utilization of LDM are addressed by augmentation in the pixel space
with online lightweight generation and knowledge extraction in the latent space
of LDM with Latent Distillation. The proposed DomainFusion achieves SOTA
performance with significantly reduced computational costs. DomainFusion is
shown to outperform state-of-the-art methods in multiple benchmark datasets
using multiple backbones and reduce the number of generated images. For ex-
ample, the number of generated images (including candidates) reduces by more
than 97% on DomainNet compared with CDGA [17].

Specifically, the online lightweight generation approach efficiently generates
batches of samples that are more suitable for DG every few epochs in training.
It substantially reduces computational costs by requiring only a shared pre-
trained LDM for all datasets and domains without extra fine-tuning. Multiple
candidate images are generated and decomposed into styles and contents such
that a new sample is formed by selecting the most distinct style and adopting
the most similar content. The Latent Distillation significantly enhances DG by
distilling visual knowledge from the latent space of LDM and utilizing it to guide
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Fig. 1: Diffusion-based DG methods DSI [68] and CDGA [17] use LDM for offline aug-
mentation only. They suffer from limitations of unaffordable costs and lagging behind
SOTA methods. Specifically, (A) DSI [68] employs a separate LDM for each source do-
main and requires finetuning all LDMs before augmentation. (B) CDGA [17] generates
more than 5 million synthetic images offline for augmentation, resulting in significant
computational costs, prolonged generation time, and significantly increased training
time of the DG model. (C) Proposed DomainFusion. To make full use of LDM’s poten-
tial and improve performance, we believe that besides augmentation, the latent space
of LDM contains valuable visual knowledge that can benefit DG. Therefore, we intro-
duce Latent Distillation to extract knowledge from the latent space to guide the DG
model. To reduce computational costs, we propose an online lightweight augmentation
approach via a sampling strategy (illustrated in Fig. 4) that significantly reduces the
number of generated samples (e.g. reduced the number of overall generated images by
more than 97% on DomainNet) utilizing only a shared LDM without any finetuning.

parameter space updates of the classification model. It establishes a connection
between the discriminative and latent diffusion parameter spaces and successfully
produces supervised signals for the DG network. The discriminative parameter
space is optimized using gradient prior derived from the latent parameter space.

The main contributions of this paper are summarized as below.

– We propose DomainFusion that simultaneously achieves knowledge extrac-
tion in the latent space and augmentation in the pixel space of the Latent
Diffusion Model (LDM) to efficiently and sufficiently exploit LDM for DG.

– We develop Latent Distillation (LD) that leverages gradient priors from the
latent space of LDM to guide the optimization of DG models.

– We design an online lightweight augmentation method that generates image
samples with distinct styles and similar contents for DG to reduce the scale
of generated images with a shared latent diffusion model without finetuning.

2 Related Work

2.1 Domain Generalization

Most domain generalization (DG) methods operate under the assumption of hav-
ing access to a sufficient amount of cross-domain data [34,35,62]. The main focus
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of these methods is to eliminate domain-specific biases and retain invariant fea-
tures across multiple source domains, including learning more generalized feature
representations [26, 39, 48, 64, 69] and optimization-based methods [2, 5, 31, 71].
Despite their success, these methods are limited by the scarcity of real-world
cross-domain data, which hinders their practical applicability [40]. The alter-
native strategy focuses on data augmentation to generate new domains and
diverse samples [22,29,30,61,66,73,75]. Recent DG methods utilize latent diffu-
sion models for data augmentation, namely CDGA [17] and DSI [68]. However,
they are inefficient in utilizing latent diffusion models and fall short of state-
of-the-art performance. CDGA [17] generates over 5 million new samples, while
DSI [68] requires a separate latent diffusion model for each domain and necessi-
tates finetuning them before offline generation. These methods incur substantial
computational costs and prolonged generation times.

2.2 Diffusion Models for Perception Vision Tasks

Diffusion models have emerged as the state-of-the-art in image generation [38,46,
47,51]. Moreover, they have proven to be successful in various perception vision
tasks, including image segmentation [57], object detection [8], monocular depth
estimation [72], and semantic correspondence [70]. Significantly, a substantial
amount of research has been dedicated to extracting valuable vision knowledge
from diffusion models. We believe that this knowledge can also benefit domain
generalization as latent diffusion models have exhibited superb generalization
capacity to transfer images to various domains while maintaining semantic in-
formation. In line with our objective of leveraging the diffusion model for domain
generalization in image classification tasks, we classify existing approaches into
two distinct groups based on their methodologies of utilizing latent diffusion
models. The first group focuses on extracting feature maps and cross-attention
maps from the denoiser to train an extra decoder for downstream tasks [70,72].
However, this approach often requires prior knowledge of image categories, which
are used as conditional inputs into the denoising process. As a result, it is not
suitable for high-level visual tasks like image classification. The second group is
based on Score Distillation Sampling (SDS) [18, 24, 42, 65], which demonstrates
good scalability. However, to the best of our knowledge, this approach is only
applicable to generative models intended for generating diffusion-like images,
which means the critical prerequisite is ensuring that the trained model shares
the same image generation objectives with latent diffusion models. Hence, we
seek to explore leveraging high-level semantic knowledge from LDM in a more
natural manner to optimize discriminative models for DG tasks.

3 Method

3.1 Preliminary of Diffusion Models

Diffusion models are generative models employing a dual-phase strategy [19]. The
forward phase, represented by {qt}t∈[0,T ], diffuses clean data x0 into noisy states
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Fig. 2: Our Latent Distillation can be divided into two parts. In the pseudo generation
part, the input image x0 is passed through the DG model θ, resulting in the confidence
f(θ) for the corresponding class. The input image x0 is then multiplied by this confi-
dence to obtain a corrupted image. In the gradient distillation part, noise ϵ is added
to the corrupted image, and then fed into the LDM. The LDM predicts the noise as ϵ̂.
We then compute the Latent Distillation (LD) loss based on ϵ̂− ϵ. Since the LD loss is
dependent on θ, backpropagation can be performed to update the DG model θ. From
an intuitive perspective, when the DG model poorly performs, it tends to generate low
confidence, resulting in a corrupted image that becomes significantly darker. Conse-
quently, LDM needs to reconstruct numerous details, leading to a large LD loss, which
guides the update of the DG model. By repetition, the DG model gradually develops
a robust understanding of various domains.

via the process q (xt | x0) = N
(
xt;αtx0, σ

2
t I
)
, with σt and α2

t = 1 − σ2
t con-

trolling noise intensity. Conversely, the reverse phase encapsulated in {pt}t∈[0,T ]

employs a neural network-based MSE denoiser [55] ϵ̂ϕ (xt, t) to denoise from
p (xT ) = N (0, I) back to the original x0 following the transitions pϕ (xt−1 | xt) =
N

(
xt−1;xt − ϵ̂ϕ (xt; t) , σ

2
t I
)
. ϵ̂ϕ (xt, t) is trained via MSE minimization with

time-dependent weighting w(t) by minimizing:

LDiff (ϕ;x) = Et,ϵ

[
w(t) ∥ϵ̂ϕ (αtx0 + αtϵ; t)− ϵ∥22

]
. (1)

3.2 Latent Distillation

Existing diffusion-based DG methods only utilize LDM for data augmentation,
which does not fully exploit the potential of LDM. As LDM can transfer im-
ages to various domains while preserving semantic information, we believe that
LDM acquires valuable vision knowledge about domain-invariant feature repre-
sentations, which can be leveraged to benefit DG discrimination tasks. However,
extracting and incorporating this visual knowledge into DG tasks pose chal-
lenges, because LDM is inherently designed for generation tasks, and is hard to
be involved in discrimination tasks.

Therefore, we propose a novel method called Latent Distillation to leverage
this latent knowledge for DG. Our primary objective is to establish a pathway
for knowledge transfer from LDM to the DG model by designing a connection
between these two tasks. To achieve this, we introduce a pseudo generation op-
eration as a bridge connecting the latent space of LDM and the parameter space
of the DG model. As depicted in Fig. 2, the pseudo generation part involves
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Fig. 3: In DomainFusion, we start with the original source dataset and the synthetic
dataset generated later for supervised training. In Latent Distillation, each image x is
fed into the DG Discriminative Network θ and weighted by the output confidence w.r.t.
its label y, which corresponds to Pseudo Generation process in Fig. 2. The corrupted
x is then added noise ϵ and passed through the latent diffusion U-Net ϕ along with
y as text prompt, resulting in predicted noise ϵ̂ϕ (xt; y; t). The discrepancy between
the predicted and real noise [ϵ̂ϕ (xt; y; t)− ϵ] is utilized to obtain LLD, which updates
the parameter space of θ by backpropagation, corresponding to Gradient Distillation
in Fig. 2. In Online Lightweight Augmentation, each image x in the current synthetic
dataset generates N candidates via LDM. Through a sampling strategy, we decom-
pose candidates into styles and contents, then select the most distinct style and the
most similar content to sample one novel image, which then replaces x in the current
synthetic dataset to form a novel synthetic dataset.

feeding the image into the DG model to obtain classification confidence for the
corresponding class. The image is then multiplied by this confidence to gener-
ate a corrupted image. It is important to note that the purpose of the pseudo
generation is not to obtain the final corrupted image, but rather to serve as a
bridge for extracting loss from the latent space of the LDM, as illustrated in
the gradient distillation part in Fig. 2. In this part, the corrupted image is first
subjected to noise addition and then passed through the LDM. We utilize the
LDM’s prediction of the difference between the added noise and the predicted
noise to calculate the Latent Distillation (LD) loss. Since the corrupted image is
dependent on the parameters of the DG model, the loss derived from the LDM
becomes a function of the DG model’s parameters, which can be used to up-
date the DG model. Besides, in Latent Distillation lower confidence scores yield
higher loss, compelling the DG model to output higher confidence scores. The
specific process is described in detail below.

The framework of Latent Distillation is elaborated on in Fig. 3. Given the
DG network θ to be trained and an image x0 with its class label y0 (note that
we employ y throughout to represent both the numeric class label within the
DG network θ and the textual class label within the latent diffusion model ϕ),
our initial step involves forwarding x0 through θ for image classification, and
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Fig. 4: In online lightweight augmentation, every T epochs, each image from the cur-
rent augmentation dataset is sequentially passed through the LDM to generate N can-
didates. A final new image is obtained based on a sampling strategy. The new augment
dataset composed of these selected images then replaces the current augment dataset.
Specifically, for the sampling strategy, the styles and content of each candidate are
computed. Then the style s∗ that is most distinct from the input image’s style and the
content c∗ that is most similar to the input image’s content are selected. These style
and content components are then combined to form the final new image.

compute the element-wise product of x0 with the confidence score corresponding
to class y0 to obtain a θ-related image x. We denote this pseudo generation
process as x = g(θ) = pθ (y | x0) δ (y0)x0. Subsequently, we feed x into the
denoising process of ϕ, and we denote the loss generated from denoising as LLD.
Note that LLD is mathematically equivalent to LDiff in Eq. 1, which yields:

LLD(ϕ;x = g(θ)) = LDiff (ϕ;x) = Et,ϵ

[
w(t) ∥ϵ̂ϕ (αtx+ αtϵ; t)− ϵ∥22

]
. (2)

We compute the gradient of LLD w.r.t. θ while omitting the U-Net Jacobian
term following the SDS setting [42]:

∇θLLD(ϕ,x = g(θ)) = Et,ϵ

[
w(t) (ϵ̂ϕ (zt; y, t)− ϵ)

∂x

∂θ

]
. (3)

∇θLLD is then used to update θ through backward propagation, as is shown in
Fig. 2 and Fig. 3. Through this approach, we establish a pathway for gradient
propagation from the latent diffusion model to the DG model.
Latent Distillation Provides Supervised Signals. We now delve into an
explanation of why LD provides supervised signals. Given an image x0, LD
corrupts the image using the confidence score predicted by the DG network θ.
In our algorithm, we employ a corruption method by confidence multiplies RGB
values, which is a kind of contrast reduction as it narrows the range between the
max and min pixel intensities. This corruption method is simple yet effective
because it reduces image details, as low-contrast images lack detail features [52],
which is also mathematically supported by image quality metrics like Laplace
Gradient and Average Gradient that assess intelligibility and details. Therefore,
when the DG network θ exhibits poorer semantic understanding, it assigns a
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lower confidence score, leading to more pronounced corruption to x0. As a result,
larger LLD is observed when the corrupted image is fed into the LDM. We
substantiate this claim with experiments in Sec. 4.4, along with more discussion
about the effectiveness of the corruption method we employed.

3.3 Online lightweight Augmentation

Existing diffusion-based DG method CDGA [17] and DSI [68] employ offline gen-
eration for data augmentation. However, they are limited by substantial com-
putational costs and unendurable generation time, with CDGA [17] generating
over 5 million synthetic samples and DSI [68] employing multiple LDMs and
requiring finetuning them individually. These methods are highly inefficient and
impractical when applied to large-scale scenarios. Thus, we propose an online
lightweight augmentation to address this.

As shown in Fig. 4, starting from the first training epoch of the DG model,
each sample involved in the training process is passed through the LDM to gen-
erate N candidate samples. Through a sampling strategy, we ultimately select
one sample from the N candidates. Consequently, in the first training epoch,
each image undergoes a one-to-one generation process to be replaced by a gen-
erated new image, resulting in the formation of a new synthetic dataset. This
synthetic dataset is updated every T epochs, wherein each image from the cur-
rent synthetic dataset is input into the LDM to obtain a new synthetic dataset.
This new synthetic dataset is then used as input for the LDM in the subsequent
augmentation epoch, repeating the aforementioned process iteratively.
Sampling Strategy. Data augmentation proves effective for DG by generating
novel samples with distribution shifts compared to the source domain data. This
allows the DG model to encounter diverse images with varying distributions
during training, preventing the model from being influenced by domain-specific
features and instead facilitating the learning of domain-invariant features. Given
our aim to achieve lightweight augmentation, it is important to consider how to
more effectively benefit DG using only a modest number of new samples.

Inspired by [9], synthetic data with similar content and distinct style can
benefit DG more effectively. Therefore, we adopt a sampling strategy to get one
sample from N candidates, as shown in Fig. 4. Given an input image x0 and
N generated candidate samples {xi}i∈[1,N ], we decompose them into content
{ci}i∈[0,N ] and style {si}i∈[1,N ] following [9], where the content ci=(xi−µi)/σi,
si has two components µi and σi, with µi=[µR

i , µ
G
i , µ

B
i ] and σi=[σR

i , σ
G
i , σ

B
i ]:

µch =

H∑
h=1

W∑
w=1

xch
hw

(HW )
, σch =

[
H∑

h=1

W∑
w=1

(xch
hw − µch)2

(HW )
+ ϵ

] 1
2

, ch = R,G,B, (4)

To select the most distinct style s∗ = [µ∗, σ∗], we apply the KL divergence
to measure their distance w.r.t. s0 by :

s∗ = argmax
si

KL(µi, µ0) +KL(σi, σ0). (5)
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Additionally, for selecting the most similar content, we employ both the co-
sine similarity and the θ classification confidence by :

c∗ = argmax
ci

λcos(fθ(ci), fθ(c0)) + (1− λ)pθ(y|ci), (6)

where fθ represents the feature map extracted by θ and λ represents a predeter-
mined constant. The feature maps extracted via DG network θ serve to assess the
low-level and high-level semantic similarity between the generated candidates’
contents and that of the input image. Furthermore, the classification confidence is
employed to ascertain whether the generated candidates’ contents have preserved
the correct class-level semantic information. Subsequently, we utilize AdaIN style
transfer [20] to sample the ultimate new sample x∗ by x∗ = σ∗c∗ + µ∗.
Comparison with Offline Augmentation of DSI and CDGA. Our method
improves the efficiency of using LDM for augmentation in several aspects. First,
we employ a sampling strategy to generate samples that are better suited for DG.
Given that LDM has encountered diverse data from various domains, we believe
it can generate cross-domain data with a wide range of styles. Through the
sampling strategy, we select the most distinct styles and transfer the most similar
content, enabling the generated samples to efficiently expand the source domain.
Consequently, our augmentation method is lightweight. Taking the DomainNet
dataset [41] as an example, we only need to generate 120k new samples including
candidates, whereas CDGA [17] requires 4 million new samples. In the same
scenario, specifically considering the generation aspect, our overall generation
scale, including candidates, is over 97% smaller than that of CDGA. Second,
due to the significantly reduced scale of our generated data, we employ an online
generation pattern to train the DG model end-to-end, further enhancing time
utilization efficiency. Third, by utilizing the sampling strategy, we eliminate the
need for multiple LDMs and finetuning, thus avoiding the lengthy finetuning
process and substantial computational costs associated with DSI [68].

3.4 Loss Extraction at Both Latent and Pixel Levels

The overall training architecture of DomainFusion is:

L = λ1Lraw + λ2Lgen + λ3LLD, (7)

where Lraw and Lgen denote the cross-entropy loss in the source dataset and the
synthesized dataset, and λ1, λ2, and λ3 are predetermined hyper-parameters.

4 Experiments

4.1 Experimental Settings

Settings and Datasets. Following DomainBed [15], we conduct a series of ex-
periments on five prominent real-world benchmark datasets: PACS [27], VLCS [12],
OfficeHome [60], TerraIncognita [3], and DomainNet [41]. To ensure a fair and
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Table 1: Comparison with DG methods. The DG accuracy on five domain general-
ization benchmarks is presented with the best results highlighted in bold. The results
denoted by † correspond to the results from DomainBed [15]. Results of other DG
methods including Fish [53], SelfReg [23], mDSDI [5], MIRO [6], Fishr [45], DSI [68],
CDGA [17] are from corresponding paper.

Algorithm PACS VLCS OfficeHome TerraInc DomainNet Avg.

Using ResNet-50 backbone: Non-generation method

ERM† [59] 85.5 77.5 66.5 46.1 40.9 63.3
MLDG† [28] 84.9 77.2 66.8 47.7 41.2 63.6
CORAL† [56] 86.2 78.8 68.7 47.6 41.5 64.5
MMD† [58] 84.7 77.5 66.3 42.2 23.4 58.8
DANN† [13] 83.6 78.6 65.9 46.7 38.3 62.6
MTL† [4] 84.6 77.2 66.4 45.6 40.6 62.9
SagNet† [37] 86.3 77.8 68.1 48.6 40.3 64.2
RSC† [21] 85.2 77.1 65.5 46.6 38.9 62.7
Fish [53] 85.5 77.8 68.6 45.1 42.7 63.9
SelfReg [23] 85.6 77.8 67.9 47.0 42.8 64.2
mDSDI [5] 86.2 79.0 69.2 48.1 42.8 65.1
MIRO [6] 85.4 79.0 70.5 50.4 44.3 65.9
Fishr [45] 85.5 77.8 68.6 47.4 41.7 64.2

Using ResNet-50 backbone: Non-diffusion-based generation method

GroupDRO† [50] 84.4 76.7 66.0 43.2 33.3 60.7
Mixup† [67] 84.6 77.4 68.1 47.9 39.2 63.4
Mixstyle‡ [75] 85.2 77.9 60.4 44.0 34.0 60.3

Using ResNet-50 backbone: Diffusion-based generation method

DSI [68] 78.3 - 67.3 - - -
CDGA [17] 88.5 78.9 68.2 - 43.1 -
Ours 90.0 79.2 72.4 51.1 44.6 67.5

Using RegNetY-16GF backbone with SWAG pre-training

ERM [59] 89.6 78.6 71.9 51.4 48.5 68.0
MIRO [6] 97.4 79.9 80.4 58.9 53.8 74.1
Ours 96.6 80.0 83.4 60.6 55.9 75.3

consistent comparison, we follow DomainBed’s training and evaluation protocol.
We provide full details in the supplementary material.

Implementation Details. For the LDM, we employ the stable diffusion v1-4
model. The batch size is set to 16 and we employ the Adam optimizer [25] and
cosine learning rate schedule. For algorithm-specific parameters, the candidate
number N = 3, the interval of generation epochs T = 5. λ1, λ2, λ3 are 1, 0.5,
and 0.5. λ is 0.4 for c∗.We provide full details in the supplementary material.
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(a) (b)

Fig. 5: Proxy A-distance (PAD) on OfficeHome. x-axis: PAD computed upon Domain-
Fusion without LD; y-axis: PAD computed upon DomainFusion with LD. We employ
the DG model to extract features across diverse domains to train a linear domain classi-
fier, and PAD is proportional to its classification accuracy. A superior DG model yields
a lower PAD, indicating its ability to extract domain-invariant features. DomainFusion
with LD demonstrates lower PAD compared to its non-LD version in both cases: (a)
PAD between the single source domain and the target domain. For example, {C}, A
denotes measuring PAD between one source domain Clipart and the target domain
Art. (b) PAD between all source domains and the target domain.

4.2 Main Results

Comparison with Domain Generalization Methods. We compare Do-
mainFusion with baseline methods and recent DG algorithms and present results
in Table 1. In the first section, we evaluated DomainFusion using the ResNet-
50 [16] architecture as the backbone. The experimental results demonstrate that
DomainFusion outperforms the current state-of-the-art methods in all bench-
mark datasets, yielding accuracy improvements of +1.5pp, +0.2pp, +1.9pp,
+0.7pp, and +0.3pp in each dataset, where ‘pp’ is short for ‘percentage point’.

In the second section of Table 1, we employ RegNet-Y-16GF [44] as the
backbone and utilize the SWAG [54] method to obtain a pre-trained model on
the ImageNet [49] dataset, aiming to investigate the maximum performance po-
tential of the DomainFusion algorithm. The experimental results convincingly
demonstrate a significant performance improvement exhibited by the Domain-
Fusion algorithm compared to ERM across all datasets. Moreover, our proposed
approach outperforms the current SOTA algorithm, MIRO [6], in all datasets
except PACS, with performance gains of +0.1pp, +3pp, +1.7pp, and +2.1pp in
VLCS, OfficeHome, TerraInc, and DomainNet, respectively. The effectiveness of
our algorithm has been substantiated through a wide range of experiments.
Comparison with Non-diffusion-based Generation Methods. Experi-
mental results demonstrate that non-diffusion-based generation methods exhibit
notable shortcomings, as they typically exhibit subpar performance and often
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(a) (b)

Fig. 6: Predicted probability and LD curve. x-axis: Log form of LLD; y-axis: Predicted
probability of real label by DG network. (a) on PACS and (b) on OfficeHome.

Table 2: Effects of Different Components in DomainFusion.

Lraw Lgen LLD Art Clipart Product Real Avg.

! % % 69.3 61.3 81.6 82.5 73.7
! % ! 77.3 66.2 84.3 85.4 78.3
! ! % 73.6 71.2 80.7 88.7 78.6
! ! ! 81.2 73.9 88.5 90.1 83.4

struggle to surpass certain baseline algorithms. Compared with non-diffusion-
based generation methods, DomainFusion demonstrates a significant improve-
ment by +4.8pp, +1.3pp, +4.3pp, +3.2pp, and +5.2pp in the 5 benchmark
datasets respectively.
Comparison with Diffusion-based Generation Methods. Both DSI [68]
and CDGA [17] require substantial computational resources, yet their perfor-
mance falls short of SOTA methods, making them cost-ineffective. DomainFusion
surpasses the reported results of other Diffusion-based DG methods in PACS,
VLCS, OfficeHome, and DomainNet.

4.3 Ablation Study

We conduct ablation study on OfficeHome based on RegNet-Y-16GF.
Effects of Different Components. Table 2 presents the impact of different
components of DomainFusion on DG performance. It is worth noting that using
only Lraw is equivalent to the ERM method. To ensure fairness, we also searched
for the parameters of the ERM method, resulting in improved ERM performance
compared to that in Table 1. As shown in Table 2, we first incorporate LD on top
of ERM and observe that the introduction of LD leads to a 4.6% improvement
in DG performance. Then, we incorporate Lgen on top of ERM to evaluate the
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effectiveness of the generation part. It is observed that Lgen improves the average
accuracy by 4.9% by generating a more diverse set of samples to augment the
source domain, resulting in a significant improvement in DG performance. How-
ever, using Lgen alone still exhibits a considerable performance gap compared to
state-of-the-art methods. To address this discrepancy, LLD bridges this gap by
further enhancing the accuracy by 4.8% compared to use Lgen solely.
Effects of Synthetic Dataset Updating in Augmentation. We ablate on
the effect of synthetic dataset updating, where we only generate a fixed synthetic
dataset on the first epoch, detailed in the supplementary material.
Effects of the Sampling Strategy. We also provide an ablation study on the
effect of the sampling strategy. Please refer to the supplementary material.
Effects of the Candidate Number. Moreover, we provide an ablation study
on the impact of the candidate number, detailed in the supplementary material.

4.4 Effectiveness Analysis of Latent Distillation

Proxy A-distance (PAD) Analysis of Latent Distillation. We compute
the Proxy A-distance (PAD) [10] to verify the effectiveness of Latent Distillation.
PAD requires extracting image features separately from the source and target
domains, labeling them as 1 and 0, and subsequently training a classifier to
discriminate between these two domains. Given a test error of ε, PAD is defined
as 2(1−2ε). A superior DG algorithm yields a lower PAD, indicating its ability to
extract domain-invariant features. Consistent with prior studies [1, 7, 10,14], we
employ DomainFusion with/without LD to extract image features from source
and target domains, labeled as 1 and 0, and train a linear SVM for classification.
As is shown in Fig. 5, we first quantify PAD between a single source domain
and the target domain, demonstrating that incorporating LD consistently yields
lower PAD values. Then we measure the PAD between all source domains and
the target domain, revealing a larger margin between the two versions, thus
validating the effectiveness of LD.
Probability-LLD Curve Analysis of Latent Distillation. According to
Sec. 3.2, LD can provide effective training signals to supervise DG model. We
substantiate this claim with experiments. As is shown in Fig. 6, on both PACS
and OfficeHome, as LLD decreases, the predicted probability of the real label by
the DG network increases significantly. Consequently, by minimizing LLD, we ef-
fectively impose a constraint on the DG network θ to assign a higher confidence
score to the real label, thereby providing supervised signal to guide θ.
Contrast Reduction Is Simple Yet Effective. Firstly, contrast reduction is
one of the typical corruptions according to [11]. Secondly, it diminishes image
intricacies, since images with diminished contrast have fewer distinguishing fea-
tures [52], which is further substantiated mathematically by metrics such as the
Laplacian Gradient and Mean Gradient, which gauge clarity and the presence
of fine details. Thirdly, it is more effective than other corruptions like blurring,
noise, and random masking, detailed in the supplementary material.
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Fig. 7: Visualization of generated samples and LD noise. The left section is online
lightweight augmentation samples and the right section is corresponding LD noise.

4.5 Visualization

Visualization of Generated Samples. Fig. 7 showcases the visualization re-
sults of the synthetic dataset generated by online lightweight augmentation at
various epochs, with each row representing the evolution of a specific image.
In terms of visual effects, it is apparent that as the synthesized dataset is up-
dated, the image sequences retain a certain degree of content similarity and also
introduce new styles, serving as evidence of the effectiveness of our method.
Visualization of LD Noise. Fig. 7 illustrates the visualization of the LD noise
for all images. We first calculate the difference between predicted denoising la-
tent and latent with noise, and then use the stable diffusion decoder to decode
this difference. It is evident that these noise patterns can also effectively capture
the high-level semantic information in the images while reducing the influence of
irrelevant domain-specific elements, such as the background. This finding demon-
strates the strong generalization capability of the latent diffusion model, as it
can extract transferable feature representations, which contribute to optimiz-
ing the DG semantic understanding network in our LD, further confirming the
effectiveness of the LD method.

5 Conclusion

In this paper, we propose a novel framework that utilizes the latent diffusion
model (LDM) in both the latent space and pixel space for domain generaliza-
tion (DG). In latent space, we propose Latent Distillation (LD) that extracts
transferable knowledge as gradient priors from the LDM to optimize the DG
model. In pixel space, we propose an online lightweight augmentation method
that significantly reduces the number of generated images and computational
costs compared with previous diffusion-based DG methods. Experimental re-
sults demonstrate that our method achieves state-of-the-art performance on DG
classification.
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