
Object-Conditioned Energy-Based Attention Map Alignment 1

Supplementary Material

A Limitations

We list the limitations of our model as follows: (1) The effectiveness of our
method is limited by the expressive power of the standard Stable Diffusion model.
(2) Our energy-based model is conditioned on the object token s ∈ S. Typically,
|S| ≠ 0. However, when |S| = 0, it indicates that there are no objects in the
prompt, and our method is degraded to regular diffusion model generation.

B Societal Impact and Ethical Concerns

This paper introduces a novel method for aligning attention maps to improve
the compositional generation of images from text prompts, using diffusion mod-
els. Our approach aims to advance AI-assisted visual content creation in the
creative, media, and communication sectors. Although we foresee no significant
ethical issues unique to our method, it inherits general concerns associated with
generative models, such as privacy, copyright infringement, misuse for deceptive
content, and content bias.

C Object-Conditioned Energy-Based Model

In this section, we present the proof for Equ. (4). Specifically, we elaborate on
the derivation of the gradient of the log-likelihood for the EBM as defined in
Equ. (3):
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D Algorithm

Our workflow can be outlined in Algo. 1. Initially, for the first half of the de-
noising steps, the latent variable zt is updated using the gradient of the loss
function, i.e. Equ. (7). The latter half of the denoising steps follows the standard
generation process of diffusion models.
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Algorithm 1 Energy-Based Attention Map Alignment
Input: A text prompt y, a set of object tokens S, a set of modifier tokens {M(s)}s∈S ,
a pretrained Stable Diffusion model SD, total sampling steps T , an image decoder D
Output: An image x aligned with the prompt y

1: Initialize zT ∼ N (0, 1)
2: for t in T : [T/2] + 1 do
3: _, A, Ã← SD(zt, t, y)
4: Compute attention loss L according to Equ. (7)
5: z′t ← zt −∇ztL
6: zt−1,_,_← SD(z′t, t, y)
7: end for
8: for t in [T/2] : 1 do
9: zt−1,_,_← SD(zt, t, y)

10: end for
11: x← D(z0)
12: return x

E Implementation Details

Experiments were conducted on a Linux-based system equipped with 4 Nvidia
R9000 GPUs, each of them has 48GB of memory. To ensure a fair comparison
with previous methods, we utilized the official Stable Diffusion v1.4 text-to-image
model with the CLIP ViT-L/14 text encoder.

E.1 Hyperparameters

In our approach, we utilize a default fixed guidance scale of 7.5. The update step
size is selected as α = 20. We employ a DDIM sampler with a total of 50 steps.
The update of the latent variable zt is confined to the first half of the denois-
ing process, which, in this context, corresponds to the initial 25 steps. Further
discussion regarding the step size and the updated timesteps is in Appendix H.

E.2 Parser

Following [24], we utilize the spaCy parser [10], specifically employing the trans-
former based en_core_web_trf model. Initially, we identify tokens within the
prompt that are tagged as either NOUN or PNOUN , thereby constituting our
object set. Subsequently, we extract all modifiers within this set based on a
predefined set of syntactic dependencies, which include amod, nmod, compound,
npadvmod, and conj. Finally, any NOUN or PNOUN that functions as a modifier
for other entity-nouns within the object set is excluded.

E.3 Attention Map Extraction

The aggregated attention features At comprises N spatial attention maps, each
corresponding to a token of the input prompt y. The CLIP text encoder appends
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a specialized ⟨SOT⟩ token at the beginning of y to signify the start of the text. It
has been observed that in Stable Diffusion, the ⟨SOT⟩ token consistently receives
the highest attention among all the tokens. Following [4], we exclude the atten-
tion allocated to ⟨SOT⟩ and then apply a softmax operation to the remaining
tokens to obtain attention scores Ãt.

E.4 Augmented Attribute Editing Setup

We utilize and slightly adapt the official repository from [8] for conducting at-
tention editing. A cross-replace step of 0.8, i.e. replacing the first 80% steps of
cross-attention maps, is employed for all editing tasks. Additionally, in line with
the repository’s provisions, self-attention maps also play a role in preserving the
image’s shape. For this purpose, we set the self-replace step at 0.4, i.e. replacing
the first 40% steps of self-attention maps, for all the experiments.

E.5 A-Star Comparison

As A-STAR has not released their official code of implementation, we display
their reported numeric results of T-C Sim. in Tab. 4. The table shows that
our method demonstrates significantly superior performance when it comes to
more complicated datasets. Note that A-A, A-O, and O-O include 0, 1, and 2
attributes in their prompts, respectively.

Table 4: Comparison with A-Star. * Values copied from the A-Star paper.

Method A-A A-O O-O

AnE* 0.80 (-2.4%) 0.82 (-3.5%) 0.81 (-3.6%)
SG 0.77 (-6.1%) 0.83 (-2.4%) 0.81 (-3.6%)
A-STAR* 0.82 (-0.0%) 0.84 (-1.2%) 0.82 (-2.4%)

Ours 0.82 0.85 0.84

F Computational Efficiency

We randomly sampled a total of 100 prompts from the ABC-6K dataset and
compared the time required for each method. Since there are no updates in SD,
it provides us with the lower bound of the time needed for generating the images.
As shown in Tab. 5, we can observe that AnE takes the longest time, approxi-
mately 47.0 minutes, to complete the generation process, while our method and
SG require less than half of that time. The reason for this discrepancy is that
AnE employs a technique called iterative latent refinement, which may require
multiple updates at certain steps when the loss objective does not meet specific
thresholds. We emphasize that our method is computationally efficient while still
achieving top performance.
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Table 5: Computational time comparison. We compare the time required for
generating images for 100 prompts in ABC-6K dataset for each method.

SD AnE SG Ours

Time(min) 13.2 47.0 21.9 20.9

G External modifiers incorporation

We modify our workflow shown in Fig. 2 to include external modifiers without
affecting the original prompt’s guidance: (a) We first append the modifier(s) to
the prompt to obtain attention maps for both original and external tokens. (b)
We calculate the final loss using these attention maps. (c) After updating zt,
we drop the external modifier(s) and proceed with the original prompt. Tab. 6
presents the results of incorporating arbitrary syntactically unrelated modifiers,
with their number denoted as n. The modifiers chosen are ‘red’(n = 1), and
‘red blue green’(n = 3). The performance decreases with n increasing. This
decline may be due to external tokens interfering with the repulsion of other
non-modifier tokens, as the attribute binding loss has to balance the repulsion
of external tokens and that of non-modifier tokens.

n A-A A-O O-O
0 0.340/0.256/0.817 0.362/0.270/0.851 0.366/0.274/0.836
1 0.337/0.254/0.812 0.360/0.269/0.844 0.364/0.272/0.826
3 0.331/0.248/0.822 0.357/0.266/0.846 0.362/0.270/0.823

Table 6: Results on external modifiers incorporation under the same setting
as Tab. 1 . n denotes the number of external modifiers appended.

H Additional Ablation Experiments

Intensity Weight λ We explore various settings of the intensity weight parameter
λ as illustrated in Fig. 10, where the metrics are computed across 10 images for
each prompt. The values of Text-Image Full Similarity (Full. Sim.) and Text-
Caption Similarity (T-C Sim.) are presented as functions of varying λ. At λ =
0, the intensity level is disregarded by the method. Conversely, increasing λ
shifts the focus more towards the intensity level, at the expense of distribution
alignment in attention maps.

For Animal-Animal and Object-Object , both metrics peak at λ = 0.5. For
the Animal-Object dataset, the Text-Image similarity attains its highest score at
λ = 0 or λ = 0.25. Given that Text-Caption Similarity is maximal at λ = 0.25,
this value is selected for the Animal-Object dataset.
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Fig. 10: Ablation study for λ. We generated 10 images for each prompt with the
same seed across all methods. The results indicate that for datasets with Animal-
Animal and Object-Object pairings, a setting of λ = 0.5 is optimal; whereas for the
Animal-Object dataset, λ = 0.25 yields the best performance.

Our analysis indicates that λ effectively balances the trade-off between inten-
sity level and attribute binding. Extremes of λ (e.g., 1.0 or 0.0) yield suboptimal
generation results. Based on these findings, and considering that the ABC-6K
dataset is more akin to the Object-Object dataset – notably, they both contain
at least two attributes and two objects – we select λ = 0.5 for the ABC-6K
dataset in all our experiments. The situation with the DVMP dataset is more
intricate due to its potential for containing one to three objects and an unlim-
ited number of attributes. As we suggest in the main text, selecting different
intensity weights based on the number of objects in a prompt is recommended
to optimize our method’s performance.
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Fig. 11: Ablation demonstration for updated timesteps T ′. (a) an orange and
white cat sitting in the grass near some yellow flowers; (b) red roses in a square green
vase; (c) A room with pink walls and white display shelves and chair. Each column
shares the same random seed.
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Number of updated timesteps T ′ We explore different settings for the updated
timesteps, denoted as T ′, which refer to the timestep numbers of updating the
latent variable zt. This exploration is depicted in Fig. 11. When T ′ = 0, our
method defaults to the standard stable diffusion generation, with no updates ap-
plied to the model. In this configuration, due to the lack of interventions during
the generation process, the generated images often exhibit semantic misalign-
ments. Examples include the yellow flowers in (a), the red roses in (b), and the
pink walls in (c). Conversely, setting T ′ = 25 implements our proposed method,
which produces images better aligned with the input text. However, increasing
T ′ to 50, where zt is updated throughout the generation process, can introduce
artifacts. Notable instances of these artifacts are visible in the representations
of the cat in (a), the vase in (b), and the chair in (c).
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Fig. 12: Ablation demonstration for step size α. (a) a blue zebra and a spotted
crown; (b) a living room with white walls and blue trim; (c) a green and white sign on
a black pole and some buildings. Each column shares the same random seed.

Step Size α We investigate different settings for the step size α, as depicted
in Fig. 12. When α is set to 1, the step size is too small, leading to insufficient
attribute binding and the inability to generate multiple objects effectively. This is
evident from the examples of blue walls in (b), a green pole in (c), and the missing
crown in (a). Conversely, with α set to 40, the step size becomes excessively large,
causing an overemphasis on certain attributes, e.g. blue in (a), blue in (b), black
in (c) (note that the building behind is also black).
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I Additional Details on Human Evaluation

Raters were enlisted via an online platform under conditions of anonymity, with
the requirement that each participant possessed an educational level of a bache-
lor’s degree or higher. Additionally, they were assured of the protection of their
privacy and the confidentiality of their identities throughout the process.

Fig. 13 provides a screenshot of the rating interface. The order of images was
randomized.

Fig. 13: A screenshot of the rating interface. The order of images was randomized.


