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Abstract. Text-to-image diffusion models have shown great success in
generating high-quality text-guided images. Yet, these models may still
fail to semantically align generated images with the provided text prompts,
leading to problems like incorrect attribute binding and/or catastrophic
object neglect. Given the pervasive object-oriented structure underly-
ing text prompts, we introduce a novel object-conditioned Energy-Based
Attention Map Alignment (EBAMA) method to address the aforemen-
tioned problems. We show that an object-centric attribute binding loss
naturally emerges by approximately maximizing the log-likelihood of a z-
parameterized energy-based model with the help of the negative sampling
technique. We further propose an object-centric intensity regularizer to
prevent excessive shifts of objects attention towards their attributes. Ex-
tensive qualitative and quantitative experiments, including human eval-
uation, on several challenging benchmarks demonstrate the superior per-
formance of our method over previous strong counterparts. With better
aligned attention maps, our approach shows great promise in further en-
hancing the text-controlled image editing ability of diffusion models. The
code is available at https://github.com/YasminZhang/EBAMA.

Keywords: Attention Map Alignment· Energy-Based Models · Text-to-
Image Diffusion Models

1 Introduction

Recently, large-scale text-to-image diffusion models [2,11,19,22,26,27] have show-
cased remarkable capabilities in producing diverse, imaginative, high-resolution
visual content based on free-form text prompts. Despite their revolutionary
progress, however, these models may not consistently capture and convey the
full semantic meaning of the provided text prompts [5, 25]. Some well-known
issues include omission, hallucination, or duplication of details [30], semantic
leakage of attributes between entities [25], and miscomprehension of intricate
textual descriptions [27].

Many previous works have focused on addressing the semantic misalignment
issues, particularly concerning multiple-object generation and attribute bind-
ing. Composable Diffusion (CD) [16] composes multiple output noises guided

https://github.com/YasminZhang/EBAMA
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Fig. 1: Key observations of the generation process of diffusion models. The
given prompt is “a purple crown and a blue suitcase”. In panel (c), we hypothesize that
if the intensity level of any object in the prompt does not remain high during the first
half of the denoising process, e.g. the crown in SD and SG, the model would fail to
generate the object in the final image. The panel (d) suggests that if the attention map
distributions of any attribute-object pair are not aligned, the model would struggle to
correctly bind attributes to their respective objects, e.g. ‘purple’ and ‘crown’ in SD
and AnE. The generated images are displayed in the panel (e). All methods share the
same random seed.

by different objects in a text prompt during the generation process. However,
this approach often results in a blend of objects, failing to distinctly separate
them. Prompt-to-Prompt (PtP) [8] observes a strong correlation between cross-
attention maps and the layout of an image. Building on this, Structured Diffusion
(StrD) [7] experiments with averaging attention maps generated by different
noun phrases for the same queried image latent representation. Yet, a simple
average is inadequate for consistently generating images with multiple objects
possessing complex attributes. Attend-and-Excite (AnE) [4] proposes a novel
approach of maximizing the attention map scores of object tokens by updating
the latent at each sampling step. However, we note that artifacts and incorrect
attribute binding are likely when AnE maximizes the attention weights of ob-
ject tokens without any concerns on attributes. Similarly, A-star (A∗) [1] aims
to minimize the intersection of different objects’ attention maps. In response,
SynGen (SG) [24] proposes an attribute-object pair-centric objective, aiming to
minimize the distribution distance within the pair while maximizing it from other
tokens, based on the assumption that normlized attention maps follow a multino-
mial distribution. Our findings (see Figs. 1 and 4-6) indicate that this approach
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still struggles with object neglect due to its pair-centric nature. We argue that
multiple-object generation is more critical than attribute binding, as attributes
cannot manifest without the presence of objects. Furthermore, in scenarios with
multiple objects and no explicit attributes in a prompt, SG is degraded to stan-
dard Stable Diffusion Models (SD) [26]. Diverging from these methods, Energy-
Based Cross Attention (EBCA) [20] introduces an Energy-Based Model (EBM)
framework [29, 31–34] for queries and keys within cross-attention mechanisms,
proposing updates to text embeddings instead of latent noise representations.

A closer look at both the fluctuations of attention intensities and the at-
tention distributions of attribute-object pairs in these methods shed light on
the root cause of the misalignment issues. As illustrated in Fig. 1, alignment in
attribute-object attention maps (e.g., ‘purple crown’ in SG) encourages attribute
binding. However, attention map alignment alone does not guarantee complete
semantic alignment, as the intensity levels of object attention maps are crucial
in determining the presence of an object in the final image. For example, in the
image generated by SG, the crown is notably absent. Conversely, despite success-
ful generation of both objects with strong intensities, AnE binds the attribute
‘purple’ incorrectly to the suitcase resulting from misaligned attention distribu-
tions of attribute-object pairs. Motivated by these key observations, we introduce
a novel object-conditioned Energy-Based Attention Map Alignment (EBAMA)
method to hopefully address both the incorrect attribute binding and the catas-
trophic object neglect problems in a unified framework. Notably, we show that
approximately maximizing the log-likelihood for a z-parameterized EBM effec-
tively leads to optimizing an object-centric binding loss, which emphasizes both
the object attention map intensity levels and the attribute-object attention map
alignment. We further develop an object-centric intensity regularizer to prevent
excessive shifts of objects towards their attributes, providing an extra degree
of freedom balancing the trade-off between correct attribute binding and the
necessary presence of objects.

We summarize our contributions as follows: i) we introduce a novel object-
conditioned EBAMA method to address both the incorrect attribute binding and
the catastrophic object neglect problems in text-controlled image generation; ii)
extensive qualitative and quantitative experiments, including human evaluation,
on several challenging benchmarks demonstrate the superior performance of our
method over strong previous approaches. iii) We showcase that our approach
has great promise in further enhancing the text-controlled image editing ability
of diffusion models.

2 Related Work

EBM Framework for Attention Mechanisms Recent advancements in the the-
oretical exploration of attention mechanisms have increasingly embraced the
EBM framework [13,17,23]. Modern Hopfield Networks [23] showcases that one
of the proposed energy minima is equivalent to the attention mechanism. Build-
ing on this groundwork, Energy Transformer [12] designs an engineered energy
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function to extract the relationships between tokens. Furthering this approach,
EBCA [20] first formulates EBMs of query values condtioned on key values in
each cross-attention layer. Similarly, our method seeks to exploit the theoreti-
cal potential of EBMs, focusing on the unique formulation of object-conditioned
EBMs for attention maps.

Text-to-Image Diffusion Models Most large-scale text-to-image diffusion mod-
els [2,11,19,22,26,27] utilize classifier-free guidance [9] for improved conditional
synthesis results. However, due to its strong linguistic and visual priors injected
from the training dataset, these models suffer from diverse semantic misalign-
ment issues related to the objects in the provided text prompts and their at-
tribute(s) [5, 25,27,30,37]. Our approach better aligns images with its provided
texts by mitigating the issues of object neglect and incorrect attribute binding
without fine-tuning the diffusion models or additional training datasets.

Attention-Based Enhancement PtP [8] identifies a correlation between cross-
attention maps and image layout. Expanding on this, StrD [7] experiments with
averaging attention maps from different noun phrases to mitigate object neglect
and attribute leakage. AnE [4] introduces a method to enhance object presence
by maximizing attention map weights for object tokens. SG [24] proposes mini-
mizing distribution distances of the attention maps within attribute-object pairs
and maximizing the distances between the pairs and the other tokens. Different
from the previous approaches, EBCA [20] adopts an EBM framework, focus-
ing on updating text embeddings within cross-attention mechanisms. Our work
also introduces an energy-inspired attention map alignment objective, while our
objective has a specific emphasis on the object tokens.

3 Background

3.1 Stable Diffusion Models

For fair comparison with previous approaches, we also conduct experiments on
open-sourced state-of-the-art Stable Diffusion Models (SD) [26]. SD first encodes
an image x into the latent space using a pretrained encoder [6], i.e., z = E(x).
Given a text prompt y, SD optimizes the conditional denoising autoencoder ϵθ
by minimizing the objective

Lθ = Et,ϵ∼N (0,1),z∼E(x)||ϵ− ϵθ(zt, t, ϕ(y))||2, (1)

where ϕ is a frozen CLIP text encoder [21], zt is a noised version of the latent
z, and the time step t is uniformly sampled from {1, . . . , T}. During sampling,
zT is randomly sampled from standard Gaussian and denoised iteratively by the
denoising autoencoder ϵθ from time T to 0. Finally, a decoder D reconstructs
the image as x̃ = D(z0).
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Fig. 2: An overview of our workflow for optimizing diffusion models. It in-
cludes aggregation of attention maps, computation of object-centric attention loss, and
updates to zt.

3.2 Cross-Attention Mechanism

In the cross-attention mechanism, K is the linear projections of Wy, the CLIP-
encoded text embeddings of text prompt y. Q is the linear projection of the
intermediate image representation parameterized by latent variables z. Given a
set of queries Q and keys K, the (unnormalized) attention features and (softmax-
normalized) scores between these two matrices are

A =
QKT

√
m

, Ã = softmax
(
QKT

√
m

)
, (2)

where m is the feature dimension. We consider both attention features and scores
for our modeling here, which we denote as As and Ãs for token s, respectively.

4 Method

The key idea of the proposed method derives from the object-oriented struc-
ture that underlies most prompts for text-to-image generation. To be specific,
syntactically the majority of prompts can be parsed as the modifiers and the
entity-nouns, i.e., the nouns that correspond to objects in the generated image,
such as “A red metal crown”, and “A girl in red”, etc. Based on the observation,
we propose to exploit the object-oriented structure by employing an ensemble of
object-centric cross-attention losses for inference-time optimization. Our aim is
to address the semantic misalignment issues including both the attribute bind-
ing (e.g., semantic leakage and attribute neglect [24]) and catastrophic object
neglect [4], with the principally derived and deliberately designed optimization
objective. We then discuss the key components of our method as follows.
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4.1 Extraction of the Object-Oriented Structure

Following the pre-processing step in [24], we parse the prompt using Spacy’s [10]
transformer-based dependency parser to extract the object-oriented structure.
We identify a set S of object tokens s from the prompt, whose tag is either
NOUN (noun) such as ‘backpack’ or PROPN (proper noun) such as ‘Tesla com-
pany’ using the parser; we exclude nouns that serve as direct modifiers of other
nouns. The remaining modifiers are grouped by their corresponding object to-
kens, denoted as the modifier sets for each object token s, i.e.,M(s). Note that
M(s) = ∅ if there are no modifiers corresponding to the object token s. We refer
to supplementary material for more details about the parsing process.

4.2 Object-Conditioned Energy-Based Model

We assume that the distribution of the modifier tokens l ∈
⋃

sM(s) given the
object token s is

pz(l|s) =
1

Z(s)
exp (f(Al, As)) , (3)

where Z(s) =
∑

l exp (f(Al, As)) is the normalizing constant and f is the nega-
tive energy function. How to choose the energy function for attention maps re-
mains an interesting and open problem. Prior works [20,23] utilize a log-sum-exp
term to model the exponential interaction and alignment between state patterns
(query) and stored patterns (key). However, the alignment measurement for at-
tentions maps across different tokens is unclear. To bridge the gap, we propose
the application of a non-crafted yet effective energy function — cosine similarity
defined as f(Al, As) = ⟨Al, As⟩ /(||Al|| · ||As||). The efficacy of this choice of en-
ergy function is validated in the experimental section. Eqn. (3) therefore defines
a multinomial token distribution as a z-parameterized conditional energy-based
model, where z is the latent variables of SD. The inference-time optimization
over the latent variables z is then equivalently maximizing the log-likelihood
of this EBM, which increases the probabilities of the syntatically related mod-
ifier tokens of the given object s. To be specific, it can be shown that (see the
supplementary material)

∇z log pz(l|s) = ∇zf(Al, As)− Epz(l|s) [∇zf(Al, As)] . (4)

Since the vocabulary size of modifier tokens can be large in practice (in the order
of 104), we consider resorting to negative sampling [18] for the approximation of
the expectation term, where we uniformly sample tokens unrelated to the object
token and calculate the Monte Carlo average. This particular implementation
choice of Eqn. (4) then leads to the object-centric attribute binding loss below.

4.3 Object-Conditioned Energy-Based Attention Map Alignment

For each object token s ∈ S, we design the following two components that consist
of the object-centric attention loss:
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Object-centric attribute binding First, instead of operating on the noun-
modifier normalized attention score pairs as in [24], we focus on optimizing the
log-likelihood of the object-conditioned EBM using negative sampling. This gives
us the attribute binding loss:

L
(s)
b = − 1

|M(s)|
∑

l∈M(s)

f(As, Al) +
1

N − |M(s)| − 1

∑
l/∈M(s),l ̸=s

f(As, Al), (5)

whose negative gradient w.r.t. z could be seen as the Monte Carlo approximation
of Eqn. (4). The goal of L(s)

b is to: i) maximize the cosine similarity between the
given object s and its syntactically-related modifier tokens, while ii) enforcing
the repulsion of grammatically unrelated ones in the feature space. Note that
the loss above only applies to the cases whereM(s) is a non-empty set. For the
case where M(s) = ∅, only the repulsive term of Eqn. (5) is used.

Object-centric intensity regularizer Although the proposed attribute bind-
ing loss mitigates the catastrophic object neglect problem (see λ = 0 entries in
Tab. 1), we observe that the object-related attention feature can still be overly
shifted when there are multiple modifier tokens in the M(s) or multiple ob-
ject tokens in a prompt; this could again potentially leads to the object neglect
phenomenon. To address this issue, we follow [4] and propose an object-centric
intensity regularizer to maintain the attention intensity level of object s:

L(s)
n = −||K(Ãs)||∞, (6)

where K is a 3x3 Gaussian kernel, and || · ||∞ denotes the maximum value of a
vector. We use the attention scores in Eqn. (2) as its input. We refer to ||K(Ãs)||∞
as the intensity level of the object token s.

The final object-centric attention loss L is the linear combination of the
binding loss and the regularizer, i.e.

L =
∑
s∈S

L(s) =
∑
s∈S

L
(s)
b + λL(s)

n , (7)

where intensity weight λ is a hyper-parameter to specify. λ > 0 enforces the
presence of object s, but excessively intensified object attention can hinder the
attribute binding performance and lower visual image quality. We provide em-
pirical analysis on how to tune the weight in practice (see Section 5.4 and sup-
plementary material for details).

4.4 Workflow

Our workflow is illustrated in Fig. 2. To begin, at each time step t, we aggregate
the attention map features denoted as A at a resolution of 16x16. This aggrega-
tion is performed after one step of propagating zt through the denoising model.
Subsequently, we calculate the object-centric attention loss, as described in Eqn.
(7). Finally, we backpropagate the computed loss and update zt for each time
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Table 1: Comparison of Full Sim., Min. Sim., and T-C Sim. across different
methods on the AnE dataset. Note that the performance of SG on Animal-Animal
is degraded to SD, as the prompts do not contain any attribute-object pairs. The best
and second-best performances are marked in bold numbers and underlines, respectively;
tables henceforth follows this format.

Animal-Animal Animal-Object Object-Object

Method Full Sim. Min. Sim. T-C Sim. Full Sim. Min. Sim. T-C Sim. Full Sim. Min. Sim. T-C Sim.

SD [26] 0.311 0.213 0.767 0.340 0.246 0.793 0.335 0.235 0.765
CD [16] 0.284 0.232 0.692 0.336 0.252 0.769 0.349 0.265 0.759
StrD [7] 0.306 0.210 0.761 0.336 0.242 0.781 0.332 0.234 0.762
EBCA [20] 0.291 0.215 0.722 0.317 0.229 0.732 0.321 0.231 0.726
AnE [4] 0.332 0.248 0.806 0.353 0.265 0.830 0.360 0.270 0.811
SG [24] 0.311 0.213 0.767 0.355 0.264 0.830 0.355 0.262 0.811

Ours(λ = 0) 0.340 0.255 0.814 0.362 0.271 0.851 0.360 0.270 0.823
Ours 0.340 0.256 0.817 0.362 0.270 0.851 0.366 0.274 0.836

step, following the formula z′t ← zt − α∇ztL, where α represents the step size.
In our experimental setup, we set α = 20. Note that we only perform updates
on zt during the first half of the sampling steps, which corresponds to 25 steps
since we use a DDIM sampler with a total of 50 steps. More details about the
workflow can be found in the supplementary material.

5 Experiments

We compare our generation results with SD, CD, StrD, EBCA, AnE, and SG on
two artificial datasets, AnE dataset [4] and DVMP [24], and one natural-language
dataset, ABC-6K [7]. We refer to supplementary material for implementation
details and computational efficiency comparison.

Datasets The AnE dataset [4] comprises three benchmarks: Animal-Animal,
Animal-Object, and Object-Object. Each benchmark varies in complexity and
incorporates a combination of potentially colored animals and objects. The
prompt patterns for these benchmarks include two unattributed animals, one
unattributed animal and one attributed object, and two attributed objects, re-
spectively. The DVMP dataset [24] features a diverse set of objects (e.g., daily
objects, animals, fruits, etc.) and diverse modifiers including colors, textures and
so on. It features more than three attribute descriptor per prompt. The ABC-6K
dataset [7], derived from natural MSCOCO [15] captions, includes prompts with
at least two color words modifying different objects. The first two datasets are
artificial, while ABC-6K is composed of natural language captions.

5.1 Quantitative Comparison
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Fig. 3: Full Sim. results on DVMP
and ABC-6K datasets. We randomly
sample 200 prompts from each dataset
and generate 4 images for each prompt.

Following the setting of [4], we compare
the Text-Image Full Similarity (Full
Sim.), Text-Image Min Similarity (Min.
Sim.), and Text-Caption Similarity (T-
C Sim.) on the AnE dataset. Addition-
ally, we present the Full Sim. results on
the DVMP and ABC-6K datasets.

Full Sim. is the CLIP [21] co-
sine similarity score between the text
prompt and the generated image. Fur-
thermore, we assess CLIP similarity
for the most neglected object indepen-
dently from the full text by computing
the CLIP similarity scores between each
sub-prompt and the generated image.
The smaller score is denoted as Min.
Sim.. T-C Sim. is the average CLIP sim-

ilarity between the prompt and all captions generated by a pre-trained BLIP
image-captioning model [14] with the generated image as input.

We generate 64 images for each prompt using the same seed across all meth-
ods and compute the average score between each prompt and its corresponding
images. Our method consistently demonstrates superior performance across all
datasets, as shown in Tab. 1. We stress the following advantages of our method:
(1) Our method distinguishes itself from SG by its adaptability to the Animal-
Animal dataset, even when the prompts lack specific attributes; (2) Our method
with λ = 0 surpasses AnE and SG in all cases, underscoring the effectiveness of
our object-centric attribute binding loss; (3) As the dataset becomes more com-
plicated, our method with hyper-picked λ gains a more significant advantage
over that with λ = 0.

In Fig. 3, despite SG’s deliberate design for multi-attribute prompts, our
method consistently surpasses SG. Furthermore, in the ABC-6K dataset, AnE
and SG exhibit performance levels similar to that of SD, while our method
consistently achieves superior results. These advantages are further confirmed
by our human evaluation in 5.3.

5.2 Qualitative Comparison

In Figs. 4-6, we identify recurrent failure modes in SG and AnE, attributable to
the ineffectiveness of their objective design. AnE frequently struggles with in-
correct attribute association, whereas SG often fails to generate multiple objects
simultaneously. In contrast, our method attains high-quality semantic alignment
with deliberately designed optimization objective. It also exhibits more stable
performance across different random seed selections.
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SD
A

nE
SG

O
ur

s

an orange backpack
and a purple car

a red suitcase and a
blue apple

a purple crown and a
blue suitcase

Fig. 4: Qualitative comparison on the AnE dataset. Each column shares the
same random seed.

SD
A

nE
SG

O
ur

s

a purple modern
camera and a

spotted baby dog
and a sliced tomato

a red metal crown
and a white bear and

a wooden chair

an orange suitcase
and a sliced

strawberry and a
baby mouse

Fig. 5: Qualitative comparison on the DVMP dataset. Each column shares the
same random seed.

Object Omission SG, due to its pair-centric approach, frequently omits objects,
as evidenced by missing items like cars, apples, and crowns in Fig. 4, tomatoes,
crowns, strawberries in Fig. 5, and earrings, ties, etc. in Fig. 6.
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SD
A

nE
SG

O
ur

s

A man with glasses,
earrings, and a red
shirt with blue tie.

A red kitty cat
sitting on a floor
near a dish and a

white towel.

Two tan boats on
dock next to large
white buildings.

Fig. 6: Qualitative comparison on the ABC-6K dataset. Each column shares
the same random seed.

Attribute Omission Due to a lack of concern for attribute tokens, AnE fails to
overcome the strong visual priors over objects. e.g., the green apple in Fig. 4,
the non-spotted dog in Fig. 5, and the brown cat in Fig. 6.

Attribute Leakage In the case of SG, examples include purple on the wall, blue
spilled on the plants, and purple on the suitcase in Fig. 4, illustrating how
attributes emerge as leakage when the respective object is absent. Additional
examples include the tomato’s color spilling onto the dog and red metal leaking
onto the chair in Fig. 5, as well as blue color leaking and forming artifacts in Fig.
6. AnE, with its sole focus on intensity, also suffers significantly from attribute
leakage, evident in the purple backpack and blue suitcase in Fig. 4, the red metal
chair in Fig. 5, and the blue glasses and earrings, and red towel in Fig. 6.

We argue that addressing object neglect or attribute binding in isolation is
insufficient, as these issues are intrinsically interconnected. Our method adeptly
balances these two concerns with a chosen intensity weight λ, demonstrating its
success in addressing the challenges above.

5.3 Human Evaluation

Recent work [3, 35] has found that large Vision-and-Language Models (VLMs)
[14, 21, 28, 36] demonstrate a significant lack of compositional understanding,
failing to reflect human preferences accurately. Given this, we conducted human
evaluations across all three datasets to rigorously assess our model’s performance.
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Raters were enlisted online, with the requirement that each participant pos-
sessed an educational level of a bachelor’s degree or higher. In the process of
evaluation, they were presented with 2-way multiple choice problems consisting
of a text prompt and two images generated by our method and one of four base-
lines, including SD, AnE, SG, and our method with λ = 0. For each dataset,
100 prompts were randomly sampled for evaluation. The effectiveness of prompt-
image alignment was assessed by asking raters, "Which image better matches
the given description?". More details are provided in supplementary material.

Fig. 7: Preference ratio percentage
on text-image alignment by human
evaluation. Ours(avg) represents the av-
erage preference ratio of our method com-
pared with the other four methods.

The human evaluation results are
shown in Fig. 7. We observe that: 1)
our method consistently surpasses SD,
AnE, and SG aligned with quantita-
tive results in Tab. 1 and Fig. 3; 2)
our method shows a more pronounced
advantage over other methods on the
natural-language ABC-6K dataset. We
argue that our object-centric objective,
in harmony with the object-oriented
patterns prevalent in naturally occur-
ring prompts, exhibits superior effi-
cacy in handling complex real-world,
natural-language-based prompts.

5.4 Ablation Study

Repulsive Term Tab. 2 presents the re-
sults of ours(λ = 0) w/o and w/ the re-
pulsive term in rows 1 and 2, and simi-
larly, ours w/o and w/ this term in rows
3 and 4, under the same settings as Tab.
1. Row 2/4 demonstrates a significant

performance increase than Row 1/3 due to the repulsive term, validating the
effectiveness of negative sampling approximation.

Table 2: Ablation results on repulsive term. Both Ours and Ours(λ = 0) benefit
from the repulsive term as defined in Eqn. (5).

Animal-Animal Animal-Object Object-Object

Method Repul. Full Sim. Min. Sim. T-C Sim. Full Sim. Min. Sim. T-C Sim. Full Sim. Min. Sim. T-C Sim.

Ours(λ = 0) ✗ 0.311 0.213 0.767 0.343 0.246 0.794 0.334 0.237 0.765
✓ 0.340 0.255 0.814 0.362 0.271 0.851 0.360 0.270 0.823

Ours ✗ 0.338 0.250 0.810 0.360 0.267 0.841 0.359 0.269 0.819
✓ 0.340 0.256 0.817 0.362 0.270 0.851 0.366 0.274 0.836
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λ
=

0.
0

λ
=

0.
5

λ
=

1.
0

(a) (b) (c)

Fig. 8: Ablation demonstration for
intensity weight λ. (a) a sliced apple
and a purple camera and a teal lion; (b) a
brown bear with red hat and scarf and
a small stuffed bear; (c) a gray crown
and a purple apple. We have selected one
prompt from each dataset to showcase
the stability of our method. Each column
shares the same random seed.

Intensity Weight We demonstrate the
impact of different choices for the in-
tensity weight λ, which plays a role in
enhancing the intensity level. In Fig. 8,
we present some representative exam-
ples where the model needs to gener-
ate multiple objects with certain mod-
ifiers. When λ = 0.5, the generation is
balanced. However, when λ = 0.0, all
images more or less suffer from object
neglect. Conversely, when λ = 1.0, arti-
facts are likely to appear and attribute
binding becomes less effective.

Object-Conditioned Perspective Be-
sides being able to handle more flexi-
ble prompts where no attribute-object
pairs exist, our method is object-centric
and thus, in the repulsive term, we only
calculate the energy of objects and non-
modifiers. The way SG handles it is to
treat objects and modifiers equivalently
when faced with non-modifiers. In the
row ‘- obj cond.’ of Tab. 3, we replace
the energy of object and non-modifier
f(As, Al) with the average energy of

f(As, Al) and f(As, Am), where s, l,m represent object, non-modifier, and mod-
ifier, respectively. Note that as no modifiers exist in A-A, the results remain the
same. In the other datasets, our object-conditioned perspective plays a vital role
in the success of our method as the performance significantly decreases.

Table 3: Ablations on object-
conditioned perspective and energy
function choice.

A-A A-O O-O

ours(λ = 0) 0.814 0.851 0.823

- obj cond. 0.814 (-0.0%) 0.832 (-2.2%) 0.813 (-1.2%)

- cos sim. 0.812 (-0.2%) 0.846 (-0.6%) 0.817 (-0.7%)

SG 0.767 (-5.8%) 0.830 (-2.5%) 0.811 (-1.5%)

Energy function Choice To calculate
KL div., SG assumes attention maps
follow a multinomial distribution. Yet,
cosine similarity does not pose any
assumption on the distribution and
achieves superior performance. In the
row ‘- cos sim.’ of Tab. 3, we replace
cosine similarity with the average KL
div..

5.5 Augmented Attribute
Editing

PtP [8] allows local editing with
word swap, adding new phrase, or re-
weighting by replacing the attention
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weights of unchanged tokens, or re-weighting the attention maps of target tokens.
This heavily relies on the semantic coupling between tokens and their attention
maps. In Fig. 9, we categorize the failure cases in PtP shown in the left panel
into four situations: (a) ineffective editing with aligned text-to-image genera-
tion; (b) ineffective editing with incorrect attribute binding, e.g. the semantic
leakage of ‘pink’; (c) ineffective editing with object neglect, e.g. the ‘apple’; and
(d) insignificant editing with aligned text-to-image generation, e.g. the property
‘metal’ for the drum. In contrast, our method effectively enhances the semantic
distribution of attention maps, allowing PtP with our approach to apply effective
and significant local attribute editing to the original images.

6 Conclusion

Original −→ Edited Original −→ Edited

(a) a yellow(→ green) guitar

(b) a (+ blue) frog on a pink bench

(c) a green backpack and a black(→ pur-
ple) apple

(d) a dog is playing a leather(→ metal)
drum on the beach

Fig. 9: Augmented attribute editing
with our method. The left two columns
demonstrates the attribute editing results
from PtP, while the right two columns
demonstrates the results from PtP w.
ours.

We introduce an object-conditioned
EBAMA framework to address the
alignment issues in text-to-image dif-
fusion models. We propose an object-
centric attribute binding loss that max-
imizes the log-likelihood of the object-
conditioned EBM in the attention fea-
ture space. An intensity regularizer is
further designed to provide an extra de-
gree of freedom balancing the trade-
off between correct attribute binding
and the necessary presence of objects.
Extensive quantitative and qualitative
comparisions demonstrate the superi-
ority of our method in aligned text-
to-image generation. This advancement
promises great improvements in text-
controlled attention-based image edit-
ing with semantically aligned attention
maps.
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