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In this document, we provide additional experiments, visualizations and de-
tails of our work on gaze prediction during incremental object referral task us-
ing the Attention in Referral Transformer (ART) model and RefCOCO-Gaze
dataset. The specific sections of this document are listed below.

– We provide details about how we selected the stimuli, i.e. the images and re-
ferring expressions, from RefCOCO dataset to create RefCOCO-Gaze dataset.
(Section 1).

– We discuss the gaze recording method we used to collect human fixations
for RefCOCO-Gaze dataset along with analysis of the collected gaze data
(Section 2).

– We provide a comparative analysis of our proposed RefCOCO-Gaze dataset
and other related gaze datasets discussed in the main text (Section 3).

– We provide details of various components of the ART model along with the
pre-training and training procedures (Section 4).

– We provide implementation details of several scanpath metrics used for eval-
uation in the main text (Section 5).

– We augment ART with fixation duration prediction capability and report
the experimental results for ART model and other baselines on RefCOCO-
Gaze with respect to both fixation location and fixation duration prediction
(Section 6).

– We show that ART generalizes to categorical search task when trained and
evaluated using COCO-Search18 [4] dataset (Section 7).

– We provide implementation details of the baselines - Random Scanpath,
OFA [27], Chen et al . [3], Gazeformer-ref [16], and Gazeformer-cat [16] (Sec-
tion 8).

– We augment the experimental results for the ablation studies on ART model,
which are discussed in the main text, with additional metrics (Section 9).

– We present additional ablation studies investigating the effects that the com-
ponents of ART model have on performance and also include additional
analysis on the ablations (Section 10).

– We explore the effects of next word token prediction task on the performance
of ART model (Section 11).
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– We present additional qualitative examples of scanpaths generated by hu-
man participants, our ART model and other competitive baseline models.
(Section 12).

1 Image and Referring Expression Selection Details

We utilized a subset of the RefCOCO dataset [32] (the original UNC split) to
create our dataset. RefCOCO dataset consists of referring expressions collected
for 50,000 target objects present in 19,994 COCO [12] training images. RefCOCO
was carefully curated such that each image contained at least two objects of the
same object category as the target object. To ensure the reliability of our gaze
data, we selected the longest referring expression amongst the multiple referring
expressions collected for each target object. To eliminate stimuli that might
produce inaccurate gaze patterns due to low quality or extreme difficulty, we
further refined our dataset by excluding images and referring expressions that
did not meet the following criteria. For detailed examples of such exclusions,
please refer to Fig. 1.

– Target Size: We excluded data where the size of the target object, as mea-
sured by the area of its bounding box, was larger than 10% of the total image
area.

– Image Ratio: We excluded data with images whose width-to-height ratios
were outside the range of 1.2-2.0 (based on a screen ratio of 1.6). We did
this to eliminate very elongated images, which might distort normal viewing
behavior.

– Sentence Complexity: We excluded data where the referring expression
sentence was either too simple or too complex. We measured sentence com-
plexity using the metric introduced by Liu et al. [13], which is correlated
with sentence length and frequency. Specifically, we excluded data where
the referring expression language complexity was below the 10th percentile
(e.g., "the girl") or above the 90th percentile (e.g., "second row from left to
right second one up from bottom..."). This ensured that the length of the
remaining referring expressions ranged from 2 to 10 words, with a median
of 4. The original dataset had a wider range of sentence lengths, from 1 to
39 words, with a median of 4.

After applying the aforementioned exclusion criteria, we were left with 7,568
referring expressions from 72 categories. However, this number exceeded our
resources for gaze data collection. Therefore, we decided to further trim the
dataset while maintaining a balanced distribution of target categories. To do so,
we removed entire categories if the application of the exclusion criteria left fewer
than 100 referring expressions per category. Then, we randomly selected up to
150 data points per category. This process resulted in a dataset of 2,422 referring
expressions from 18 categories. Finally, we conducted a manual exclusion process
to remove any referring expressions or images containing obscene, inappropriate,
or irrelevant content (e.g., blood, nudity, slang). We also manually removed
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any data points with spelling mistakes, or incorrect or poor target descriptions.
In total, 328 data points were removed during this manual exclusion process,
yielding 2,094 image-expression pairs for the dataset.

Fig. 1: Excluded Samples
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2 Gaze Recording Methods

2.1 Participants

Our dataset was collected from 220 participants, consisting of 155 male, 63 fe-
male, and 2 non-binary individuals. Participants were undergraduate students
from our institution who were recruited for extra credit in a psychology class
and had normal or corrected-to-normal vision. The age range of participants was
between 18 and 33 years. Among the participants, 28 were non-native English
speakers but rated their �uency level as either very good or good. This study
had Institutional Review Board (IRB) approval.

Fig. 2: Stimuli Statistics. A: Spatial distribution of target locations B: Temporal dis-
tribution of target word onset

2.2 Stimuli

Images were resized and padded to �t to the computer screen size and resolution
(1680� 1050 pixel resolution). Fig. 2A displays the spatial distribution of target
locations in the images, which are evenly distributed but with slightly higher
probability around the center-bottom area. Spoken referring expression were
generated using Google Text to Speech API5 commonly known as the gTTS
available in Python. Fig. 2B shows the temporal distribution of target word
onset, which was measured by the timing of the target word from generated
audio. The original dataset did not provide the target word (i.e., the word in the
sentence that refers to the target object). Therefore, we manually annotated the
target word for each referring expression using the consensus of two annotators.
Example target words are provided in Table 1. The target word is usually referred
to at the beginning of the sentence (median time of 0.4 seconds), and the total
duration of the audio mostly ranges from 1 to 3 seconds, with a median of 1.7
seconds.
5 https://pypi.org/project/google-cloud-texttospeech/
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Fig. 3: Descriptive statistics for RefCOCO-Gaze images and referral expressions.

Our dataset closely matches the distribution of the original RefCOCO dataset
(panels A and B of Fig. 3), capturing the distributions of target clutter (i.e., the
number of instances of the same target category in the image) and sentence com-
plexity (as measured by Liu et al. [13]). Fig. 3C shows the category distribution
of target objects in the dataset. These categories were well-balanced and span
a wide semantic range, from animate objects (e.g., person, sheep) and indoor
objects (e.g., chair, cup) to outdoor vehicles (e.g., car, truck).
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Table 1: Target Names

Category Target Names Used for Referral

person coach, �gure, pic, jeans, player, girl, arm, row, thingy, shirt, girls, kid, hat,
red, skier, picture, head, woman, left bottom, hand, slider, child, lady, man,
boy, catcher, jacket, person, red and black, green, guy

elephant rump and tail, ear, elephant butt, butt, one, camera, animal, elephant, baby,
corner, legs

sheep sheep, goat or sheep, cow, area, animal butt, animals face, leg, ship, one,
lamb, sheep butt, animal, guy, face, goat, calf

cow brown, cow, leg, camel, one, band, animal, bull, cows, corner, critter, legs,
goat, calf

bus trolley, double decker, van, phone, bus, ride, deck, decker, glass, train, truck,
vehicle, thing, rectangle, car

car taxi, benz, van, re�ection, area, car, screen, mirror, police, suv, truck, vehicle,
cab, ford, black

truck hummer, area, van, semi, suv, door, car, vehicle, �retruck, bus, fedex, ma-
chine, thing, part, truck, item, �re truck, corner, rig, tarp, trailer

couch loveseat, armchair, frame, seat, corner, ottoman, chair, love seat, thingy,
couch, orange, seat cushion, pillows, leg rest, cushion, table, furniture, foot-
stool, chairs, sofa, bed, thing, pillow

chair woven, center, thing, chairs, tray, object, couch, jacket, item, bench, pattern,
corner, chair, seat, lady, seat cushion

tv laptop, monitor, tablet, tv, poster, screen, tv screen, bruce lee, face, com-
puter, monitor screen, desktop, girl, sign, spot, computer screen

suitcase case, box, container, briefcase, luggage, area, space, bag, black, item, suitcase,
corner, chair, thing, trunk

bowl right, bananas, cup and spoon, pot, dish, corner, thing, row, container, cup,
things, section, bowl, butter, sauce, pan, kiwi, plate, food, left bowl, grapes,
tuna, chips, broccoli, pottery piece, hot dog, fruit slices, soup, stu�, apples,
dip

cup tea, pot, whatever, one, juice, second, frosty, dish, candle, milk, blender,
container, cup, section, jar, mug, beer, co�ee, coke, drink, pitcher, toothbrush,
glass, water, thing, stu�, bottle

donut plate, sprinkles, item, food stu�, donuts, food, cheerio, donut, chocolate ice,
bun, pastry, dessert, corner, skewer, doughnut, thing, striped, row

cake mu�n, pie, one, pastry, corner, thing, ice cream, row, item, pile, orange,
hat, roll, plate, umbrella, food, dessert, brownie, cupcake, cake, fruit, cookie,
frosting, chocolate, bread, center, biscuit, train car, cake slice

sandwich taco, wa�e, burger, ball, pastry, wrap, sammy, toast, �ower, sub, bowl, palte,
roll, plate, sandwich, food, appetizer, bun, half, banana slices, bread, meat,
thing, piece

orange one, slice, apple, left, thing, orange slice, bowl, oranges, pieces, lime, grape-
fruit, fruit, food, lemons, front, orange, lemon, stem, egg, row

broccoli broccoli piece, broccoli pieces, greens, spinach, food, blur, veggie, patch,
thing, piece, green, goop, basket, piece of broccoli, broccoli
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2.3 Procedure and Apparatus

Gaze was recorded using the EyeLink 1000 eye-tracker (SR Research Ltd., Ot-
tawa, Ontario, Canada) and the data were exported using the EyeLink Data
Viewer software package (also from SR Research Ltd.). During the experiment,
the presentation of images was controlled using Experiment Builder software
(SR Research Ltd., Ottawa, Ontario, Canada). The stimuli were displayed on a
22-inch LCD monitor, positioned at a viewing distance of 47cm from the par-
ticipant, with the help of chin and head rests. This resulted in a horizontal
and vertical visual angle of 54� � 35� , respectively. At the beginning of each
trial, participants were instructed to �xate on a central point but were free to
move their eyes while searching for the target. Eye movements were recorded
throughout the experiment using the EyeLink 1000 eye-tracker in tower-mount
con�guration. Prior to each block or whenever necessary, the eye-tracker was
calibrated using a 9-point calibration method, and the calibration was not ac-
cepted unless the average calibration error was below 1.0� and the maximum
error was below 1.5� . The experiment was conducted in a quiet laboratory room
under dim lighting conditions. All responses were recorded using Microsoft Game
controller triggers. The following instructions were provided to the participants
prior to the gaze data collection process:

�We wish to observe your natural eye-movement behavior while searching for
a referred target. You will be shown 100 images with spoken referring expressions
describing the target's location and appearance. Your job is to �nd a target AS
QUICKLY AND ACCURATELY AS POSSIBLE. When you �nd a target, please
press any button on the top side of the controller. We will analyze your gaze
later and measure accuracy by checking whether your gaze land on the target
correctly at the time you press. So please make sure you press the button WHILE
you are looking at the target. Please press the button as soon as you �nd the
referred target. You can browse each image up to 5 seconds after the sound ends.
There will be a break around halfway through the experiment, but if you need an
additional break during the experiment, let the experimenter know anytime.�

2.4 Preprocessing

Fixations were detected from raw gaze samples using the EyeLink online parser,
which applied velocity and acceleration thresholds of 30� =s and 8000� =s2, re-
spectively. Fixations with a duration lower than 60ms were �ltered out, but all
other �xations were retained. The initial raw dataset consisted of 21,898 valid
scanpaths. However, to ensure data reliability, we removed trials where partici-
pants did not �nd the target within a given time limit of 5 seconds or reported
not �nding the target in the survey. We also eliminated trials where any of the
participant's �xations did not land within the target bounding box, resulting in
the removal of 10% of the entire dataset and leaving us with 19,738 scanpaths.
Additionally, we observed that 6% of trials had the participant's �nal �xation
not within the target area, which may have been due to them moving away from
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the target as they pressed the button. To address this, we trimmed the �xations
up to the last �xation that landed on the target, thereby ensuring that only
�xations relevant to the target search were included in the analysis.

2.5 Gaze Data Analysis for RefCOCO-Gaze

RefCOCO-Gaze �xations are intention-driven. As can be seen by compar-
ing the top two rows in Table 1 from the main text, the inter-observer agreement
metrics (row 1, labeled �Human�) far exceed the Random baseline metrics (row
2). Based on this observation, and �ndings of previous behavioral work [21, 29]
suggesting that high inter-observer agreement mark similar task-driven atten-
tion allocation across individuals, we infer that the �xations in RefCOCO-Gaze
are not random but rather, intention-driven and under attention control.

Target Localization analysis. Analysis of the gaze data collected in our incre-
mental object referral task revealed that on 9.76% of the trials, participants failed
to either �xate on the correct target or to localize the target within the 5 sec-
ond limit. Mean saccade amplitudes for successful and failed localizations were
192.948 (standard deviation=75.86), and 191.662 (standard deviation=78.94),
respectively. On the other hand, mean �xation durations (in msecs) for suc-
cessful and failure localizations were 280.741 (standard deviation=114.38) and
277.432 (standard deviation=126.68), respectively. As is evident, the gaze statis-
tics of average saccade amplitude and average �xation duration did not signi�-
cantly di�er between the successful localizations and failed localizations (T-test
revealed p-value= 0.437 for average saccade amplitude, and p-value= 0.247 for
average �xation duration � both not statistically signi�cant since p-value > 0.05).
However failure cases yielded statistically signi�cant longer scanpaths (average
of 10 �xations for failure, 8 for success; p-value< 0.05). Failure cases also showed
strong positive correlations with scene complexity (Pearson correlation coe�-
cient r =0.81) in terms of object instance count in a scene, and referral language
perplexity (Pearson correlation coe�cient r =0.76). These complexity scores tend
to be higher for failure cases than for successful ones, suggesting that search per-
formance decreases with increasing scene complexity and linguistic complexity
of the referring expressions.

We also note that in 12.52% of the trials, observers �xated on the target dur-
ing exposure time. Yet, for these trials, search ended after a median of 5 words,
implying that observers required ample description for con�dent localization.
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3 Comparison of RefCOCO-Gaze with other gaze
datasets

Here, we compare related datasets discussed in Related Work section (Section 2
in the main text) in the table below. Our proposed dataset, RefCOCO-Gaze is
the only gaze scanpath dataset for the incremental object referral task.

Dataset Apparatus Task Gaze
recorded

[dur-
ing/after]
task de-
scription

Stimuli No. of
scanpaths

No. of
Subjects

Relevant
w.r.t.

Object
Referral

Relevant
w.r.t. In-
cremental

Predic-
tion

COCO-
Search18 [4]

Eye-
tracker

Categorical
Visual
Search

After Images 299037 10 No No

AiR [2] Eye-
tracker

VQA After Images 13173 20 No No

Localized
Narra-
tives [19]

Mouse
proxy

Image
Caption-

ing

During Images 848749 156 No Yes

He et
al . [10]

Eye-
tracker

Image
Caption-

ing

During Images 14000 16 No Yes

SNAG [23,
24]

Eye-
tracker

Image De-
scription

During Images 3000 30 No Yes

OR [25] Face
videos

Object
Referral

After Videos 30000 20 Yes No

Zhang et
al . [33]

Gaze
Following

Object
Referral

After Images - � - Yes No

RefCOCO-
Gaze(ours)

Eye-
tracker

Incremental
Object

Referral

During Images 19738 220 Yes Yes

* Zhang et al . [33] collect 40000 static gaze heatmaps , not spatiotemporal gaze scanpaths

4 Additional Details of ART

In this section, we share additional details about the ART model, such as de-
tails of implementation, architectural design, and hyperparameter choices for our
experiments on RefCOCO-Gaze.
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4.1 Visual Encoder and Language Encoder

For designing the visual encoder, we use an ImageNet [6] pre-trained ResNet-
50 [9] backbone followed by a transformer encoder consisting of 6 standard trans-
former encoder layers [26] with hidden sizedvis = 256 and 8 attention heads. A
dropout of 0.1 was applied to the transformer encoder layers. The output of the
visual encoder is patch embedding tensorgvis 2 Rdvis � hw , corresponding toh� w
grid, where h = 10; w = 18. For the language encoder, we use the RoBERTa-base
variant [14] which generates embeddings of dimensiondlang = 768 for each token
in the tokenized text string. The hyperparameter l lang is set to 32. RoBERTa
encodes text tokenized using a Byte-Pair Encoding (BPE) [20]. RoBERTa is pre-
trained on a large corpus of English data (which includes the BookCorpus [34],
English Wikipedia data, the English portion of CommonCrawl News dataset [17]
called CC-News, OpenWebText [8] and STORIES [22]) using a Masked Language
Modeling (MLM) objective with a dynamic masking scheme. As mentioned in
the main text, we speci�cally use ResNet-50 and RoBERTa backbones for fair
comparison because they form the backbones of our baselines Chenet al. [3] and
Gazeformer [16] variants. Both visual and language encoders are trainable, and
not frozen as in Gazeformer [16].

4.2 Visuo-linguistic Transformer Encoder

For our experiments on RefCOCO-Gaze, ART's visuo-linguistic encoder consists
of 6 standard transformer encoder layers [26] with hidden size (d) 256 and 8
attention heads each. A dropout of 0.1 was applied to all transformer layers
in this module. For the bounding box regression and target category prediction
heads, a dropout of 0.3 was applied during the pre-training phase while a dropout
of 0.2 was applied during the training phase. To deal with scale variation, we
normalize the parameters of of ground truth bounding boxes and consequently
apply sigmoid activation to the bounding box regression head.

4.3 Pack Decoder & Fixation Prediction

For our experiments on RefCOCO-Gaze, ART's pack decoder module consists of
6 transformer decoder layers [26] with hidden size(d) 256 and 8 attention heads. A
dropout of 0.2 was applied for all transformer decoder layers in this module. For
the �xation prediction heads in the �xation prediction module, a dropout of 0.4
was applied. We choose hyperparametersL P and L C to be 6 and 36 respectively.
Spatial location estimation was done by regressing parameters (i.e. mean and log-
variance) of two separate Gaussian distributions using 4 regression heads (two
heads each for the two Gaussian distrbutions - one head for estimating mean and
the other head for estimating log-variance) in the �xation prediction module.
These Gaussian distributions model the x and y co-ordinates (raw unnormalized
pixel co-ordinates) of �xations [16]. The spatial locations are sampled from the
Gaussian distributions using the reparameterization trick [11]. The range of the
predicted unnormalized �xation location (x and y) co-ordinates are the respective
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image dimensions. We do not involve the pack decoder module and the �xation
prediction module in the pre-training stage.

4.4 Pre-training & Training

To deal with scale variation, we normalize the parameters of the ground truth
bounding boxes during pre-training and training of the bounding box head. We
use AdamW [15] optimizers for our pre-training and training phases with weight
value 1e-4. During the pre-training process, the visual encoder, the language
encoder and the visuo-linguistic encoder are all assigned learning rates of 1e-5.
During the training process, the visual encoder and the language encoder are
both assigned learning rates of 1e-7 while the visuolinguistic encoder is assigned
a learning rate of 1e-5, while the rest of the ART model is assigned a learning
rate of 1e-4. We pre-train on the RefCOCO training set for 200 epochs with a
batch size of 128 and train on RefCOCO-Gaze training set with a batch size
of 64 for a maximum of 200 epochs. Note that the visual, language and visuo-
linguistic encoders are trainable (not frozen) during the pre-training stage, and
all components of the ART model are trainable (not frozen) during the training
stage. We ran our experiments on NVIDIA RTX A5000 GPUs.

5 Additional Details of Metrics

In this section, we provide additional implementation details of the scanpath
metrics.

SS. This metric is the sequence score between the ground truth and predicted
scanpaths over theentire referring expression. Hence, this metric considersonly
the valid 2D �xation locations.

SSpack . We might encounter two edge cases while calculatingSSpack - either (1)
the predicted pack is a null pack or (2) the ground truth pack is a null pack, with
both scenarios resulting in empty strings which hinder direct application of string
matching algorithm [18]. We handle the �rst scenario by duplicating the last
�xation of previous non-null predicted pack (initial central �xation point in case
there are no previous �xations) and handle the second scenario by duplicating the
last �xation of previous non-null ground truth pack (initial central �xation point
in case there are no previous �xations) - similar to the process for calculating
ScanMatch with duration [5]. Similarly, we also duplicate the last 2D �xation
when one of ground truth scanpath or predicted scanpath has terminated and
the other one has not.

CC pack . For our implementation of CCpack , we add a small � = 1e� 9 to the
ground truth and predicted maps to avoid a divide-by-zero error for cases where
either the ground truth map or the prediction map is a zero map due to a null
pack.

NSS pack . We disregard cases where either ground truth or predicted pack is a
null pack while calculating the average forNSSpack . This is because there is no
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Table 4: Performance of ART and baselines on RefCOCO-Gaze test set when trained
and evaluated on both �xation location and �xation duration prediction tasks.

(a) Duration-agnostic metrics

SS " SSpack " F ED # F ED pack # CCpack " NSSpack "

Human 0.400 0.317 6.573 1.278 0.283 3.112

Random 0.189 0.133 17.735 3.005 0.094 1.689
OFA [27] 0.216 0.170 17.084 2.901 0.174 2.175
Chen et al. [3] 0.281 0.255 6.825 1.163 0.209 1.953
Gazeformer-ref [16] 0.261 0.187 6.833 1.307 0.197 2.882
Gazeformer-cat [16] 0.244 0.172 7.144 1.394 0.194 2.664
ART (Proposed) 0.356 0.285 6.410 1.161 0.281 3.539

(b) Duration-aware metrics

SS( t ) " SS( t )
pack " F ED ( t ) # F ED ( t )

pack # MM dur "

Human 0.379 0.215 38.153 8.204 0.589

Random 0.169 0.097 108.296 18.395 0.688
OFA [27] 0.206 0.124 103.347 17.868 0.688
Chen et al. [3] 0.272 0.157 42.058 8.224 0.633
Gazeformer-ref [16] 0.236 0.166 39.104 7.131 0.617
Gazeformer-cat [16] 0.224 0.161 39.937 7.216 0.519
ART (Proposed) 0.332 0.199 35.997 7.120 0.696

theoretical upper or lower bound of NSS that can be assigned to scenarios where
either one or both of ground truth and predicted packs are null packs (resulting
in zero action/saliency maps).

6 Fixation Duration Prediction with ART

ART is also capable of predicting the �xation durations of humans. We model
�xation durations as Gaussian distributions, similar to how we model �xation lo-
cations. First, we reparameterize a �xation pk

i using �ve parameters: x-location
xk

i , y-location yk
i , �xation duration dk

i , the pack number k (i.e., the index of
the pack the �xation belongs to), and the within-pack index i (which we call
order). We then add two �xation duration regression heads (along with the
already existing �xation location regression heads) to the �xation prediction
module to estimate parameters (i.e., mean and log-variance) of a Gaussian dis-
tribution modeling �xation durations. Fixation durations dk

i are sampled from
this Gaussian distribution using the reparameterization trick [11]. Let the pre-
dicted pack of �xations Pk = f (xk

i ; yk
i ; dk

i )gL P
i =1 , and ground-truth pack of �x-

ations P̂k = f (x̂k
i ; ŷk

i ; d̂k
i )gl k

i =1 where lk is the length of the ground truth pack.
Moreover, let v̂k

i;t be a binary scalar representing ground truth of thei th token
in Pk belonging to the token classt 2 T where T = f FIX; PAD; EOSg. Also let vk

i;t
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be the probability of that token belonging to token class t as estimated by our
model. For accomodating the additional �xation duration prediction objective,
an L 1 lossL k

d between ground-truth �xation durations d̂k
i and predicted �xation

durations dk
i is added to the formulation of L gaze in Equation 1 of the main pa-

per. Hence, upon accounting for �xation duration prediction along with �xation
location prediction, L gaze for a minibatch of size M now becomes:

L gaze =
1

M

MX

k=1

�
L k

xy + L k
token + L k

d

�
: (1)

Here L k
xy = 1

l k

P l k

i =1

�
jxk

i � x̂k
i j + jyk

i � ŷk
i j

�
, L k

d = 1
l k

P l k

i =1

�
jdk

i � d̂k
i j

�
, and

L k
token = �

P L P
i =1

P
t 2 T v̂k

i;t log(vk
i;t ). Hence, the total multi-task loss L that we

use to train our ART model for both �xation location prediction and �xation
duration prediction is L = L gaze + L ground when the scanpath has terminated
or the referral audio has ended, andL = L gaze otherwise. Note that L ground is
the auxiliary multi-task grounding loss de�ned in Sec. 4.2 of the main paper.

To evaluate �xation duration prediction of baselines and ART, we train them
on �xation duration prediction along with �xation location prediction. Along
with the duration-agnostic metrics we used in the main paper, we also report
SS( t ) , FED ( t ) , SS( t )

pack , and FED ( t )
pack , which are duration-aware variants (as

done in previous works [3, 5, 16]) ofSS, FED , SSpack , and FED pack , respec-
tively. We also report the duration component of MultiMatch [1, 7] ( MM dur ).
Higher SS, SSpack , SS( t ) , SS( t )

pack , CCpack , NSSpack , MM dur metrics signify

higher scanpath similarity, whereas higherFED , FED pack , FED ( t )
pack , and FED ( t )

metrics denote lower scanpath similarity. The results are in Table 4.
ART outperforms baselines on all metrics (both duration-agnostic and duration-

aware) when trained on and evaluated for �xation duration prediction and �xa-
tion location prediction. The model hyperparameters, pre-training and training
processes remain as mentioned in Sec. 4. Additional details for baselines endowed
with �xation prediction can be found in Sec. 8.

Note that MM dur re�ects solely the duration component, in contrast to the
spatio-temporal metrics (SS( t ) , FED ( t ) , SS( t )

pack , FED ( t )
pack ) in Table 4(b), and

by that metric, the random baseline (whose generated �xation duration is set
to the average training set �xation duration, as detailed in Sec. 8) scores higher
than the human consistency score. We believe this is because of very poor agree-
ment among the behavioral participants in their �xation duration in our in-
cremental object referral task, which makes the prediction of �xation duration
less meaningful than the prediction of �xation spatial locations (when we created
scanpaths using average �xation locations from the RefCOCO-Gaze training set,
we observedSS = 0 :037 and SSpack = 0 :044, which are far lower than human
consistency scores (SS = 0 :400, SSpack = 0 :317), signifying that the spatial
attention of humans for our task is meaningful and intention-driven).
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Table 5: Performance of ART and baselines on COCO-Search18 [4] dataset. Gaze-
former and ART models are shown in two variants - one with �xation prediction capa-
bility (�w/ dur.� in parenthesis) and one without �xation prediction capability (�w/o
dur.� in parenthesis). Metrics in bold are the best performing metrics, while those
underlined with a single dash are second-best, and thoseunderlined with a double
dash are third-best (we do not underline the third-best metric with double dash for
duration-aware metrics since there are only three models predicting �xation duration).

(a) Duration-agnostic metrics

SS " SemSS " F ED # SemF ED #

Human 0.490 0.522 2.531 1.720

IRL [30] 0.405 0.441 2.781 2.393
Chen et al. [3] 0.398 0.425 2.376 2.064
FFM [31] 0.384 0.391 2.719 2.479
Gazeformer (w/o dur.) [16] 0.475 0.456 2.159 2.012
Gazeformer(w/ dur.) [16] 0.467 0.449 2.198 2.082

ART (w/o dur.) (Proposed) 0.454 0.461 2.251 1.995
ART(w/ dur.) (Proposed) 0.432 0.441 2.335 2.070

(b) Duration-aware metrics

SS( t ) " SemSS( t ) " F ED ( t ) # SemF ED ( t ) # MM dur "

Human 0.409 0.433 11.526 8.389 0.663

Chen et al. [3] 0.354 0.368 11.610 9.991 0.691
Gazeformer(w/ dur.) [16] 0.417 0.408 10.216 8.771 0.727

ART (w/ dur.) 0.373 0.394 11.127 9.089 0.725

7 ART generalizes to Categorical Search
(COCO-Search18)

In this section, we extend ART to the related categorical search task. We do this
via providing a pre�x in the form of the category name (e.g., �car� or �potted
plant�) to ART. We chose the large-scale categorical search �xation prediction
dataset, COCO-Search18 [4] to train and evaluate ART and other baselines on
its target-present trials. We use several competitive baselines, such as IRL [30]
and FFM [31] which are not trained on an additional �xation duration prediction
objective, along with Chen et al. [3]'s model and Gazeformer [16] which can be
trained on the additional �xation duration prediction objective. State-of-the-art
baseline Gazeformer [16] and ART are trained and evaluated in two variants
- one which is trained on the additional �xation duration prediction objective
(�w/ dur.� in parenthesis) and another one which is not trained on the additional
�xation duration prediction objective (�w/o dur.� in parenthesis).

To evaluate on this categorical search task embodied by COCO-Search18, we
follow previous methods [16, 31] and map all predictions to our input grid, and
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then report Sequence Score [30] (SS), Semantic Sequence Score [31] (SemSS),
Fixation Edit Distance [16] ( FED ), Semantic Fixation Edit Distance [16] (SemFED)
and duration component of MultiMatch [1,7] ( MM dur ). SemSS and SemFED
di�ers from SS and FED , respectively, in that they convert scanpaths to strings
of �xated scene object IDs instead of cluster IDs. We also reportSS, SemSS,
FED , and SemFED with duration denoted by SS( t ) , SemSS( t ) , FED ( t ) , and
SemFED ( t ) , respectively, as done by previous works [3, 5, 16]. Results are in
Table 5. Higher SS, SemSS, SS( t ) , SemSS( t ) , MM dur metrics signify higher
scanpath similarity, whereas higherFED , SemFED, FED ( t ) , and SemFED ( t )

metrics denote lower scanpath similarity.
Even though ART is designed for the incremental object referral task, in an

extension to the categorical search task, we found that its performance is on
par with Gazeformer [16], the state-of-the-art search �xation prediction model.
ART even outperforms Gazeformer on Semantic Sequence Score (SemSS) and
Semantic Fixation Edit Distance (SemFED) metrics. This generalization to the
categorical search task further demonstrates the strength of ART's architecture.

8 Additional Details of Baseline Models

In this section, we provide additional implementation details of the baselines
used in the main paper.

Random Scanpath : We sample pack lengthlp uniformly from integers [0,1,...,L P ]
where L P is the hyperparameter for maximum number of �xations in a pack.
Since we choseL P = 6 for ART, we use the same value for this baseline for fair
comparison. Then we uniformly samplelp �xation locations within the entire
image to obtain a generated pack of �xations. For the variant with �xation du-
ration (Sec. 6), we use the average of all �xation durations in the RefCOCO-Gaze
training set.

OFA : We sample pack lengthlp uniformly from integers [0,1,...,L P ] whereL P is
the hyperparameter for maximum number of �xations in a pack. Since we chose
L P = 6 for ART, we use the same value for this baseline for fair comparison. In
order to obtain a generated pack of �xations, we uniformly sample lp �xation
locations from within the bounding box predicted by the OFA [27] model for
the referring expression pre�x corresponding to an incoming word within the
referring expression. For the variant with �xation duration (Sec. 6), we use the
average of all �xation durations in the RefCOCO-Gaze training set.

Chen et al . We train model from Chen et al. [3] using teacher-forcing algo-
rithm [28] in the same manner we have trained ART. To incorporate �xation
history, we construct a composite action map containing all previous �xations.
We subsequently initialize the dynamic memory of the model with the sum of the
task guidance map (from MDETR model which is pre-trained on RefCOCO for
fair comparison) and the composite action map. Maximum number of �xations
in a predicted pack is set to 6, identical to the value of pack lengthL P chosen
for ART, for fair comparison. In the context of experiments on RefCOCO-Gaze,
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we train Chen et al.'s model with �xation duration information for results in
Sec. 6 and without �xation duration information for the rest, unless speci�ed
otherwise.

Gazeformer-ref. We train the Gazeformer [16] variant, that we named Gazeformer-
ref, using teacher-forcing algorithm [28] in the same manner we have trained
ART. We provide previous �xation information in the form of the last �xation
from the previous non-null pack, which is encoded using a 2D positional encoding
and added to the �rst �xation query as prescribed in [16] for including initial �x-
ation information. The validity prediction head in the model is also extended to
support the prediction of an additional end-of-scanpath token. Maximum num-
ber of �xations in a predicted pack is set to 6, identical to the value of pack
length L P chosen for ART, for fair comparison. In the context of experiments on
RefCOCO-Gaze, we train Gazeformer-ref with �xation duration information for
results in Sec. 6 and without �xation duration information for the rest, unless
speci�ed otherwise.

Gazeformer-cat. We train the Gazeformer [16] variant, that we named Gazeformer-
cat, using teacher-forcing algorithm [28] in the same manner we have trained
ART. The previous �xation history is conveyed in the same manner as in the im-
plementation of Gazeformer-ref (see above). We also extend the validity predic-
tion head to support the prediction of an additional end-of-scanpath token. The
target category estimation which is used to construct the input category name
comes from a RoBERTa-based classi�er which is separately trained on RefCOCO
referring expressions and their corresponding target categories. Speci�cally, the
target category estimator is a RoBERTa-base model with a classi�cation head
on top. This baseline should show how important target category estimation is
for gaze prediction. Maximum number of �xations in a predicted pack is set to
6, identical to the value of pack length L P chosen for ART, for fair comparison.
In the context of experiments on RefCOCO-Gaze, we train Gazeformer-cat with
�xation duration information for results in Sec. 6 and without �xation duration
information for the rest, unless speci�ed otherwise.

9 Additional metrics for Ablation Studies

In Table 6, we augment Table 2 in the main paper with additional metrics
(FED , FED pack and NSSpack ). The trends remain similar to the what we
observed forSS and SSpack scores, thereby rea�rming our assertion that both
object localization and target category prediction tasks are integral to the object
referral process and that pre-training on these tasks is instrumental for superior
performance.

10 Additional Ablation Studies and Analysis

We provide two additional ablations (in addition to the �ve ablations in Table 2
of the main paper and Table 6 in Section 9) tabulated as ablation #1 and abla-
tion #2 in Table 7. As it can be seen, addition of only one of the auxiliary losses
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Table 6: Ablation studies on ART model (reported in Table 2 of the main
paper) augmented with additional metrics. If either L bbox or L target is included,
and the model undergoes pre-training, the loss is applied in both pre-training and gaze
training phases.

Ablation Pre- L bbox L target SS SSpack F ED F ED pack CCpack NSSpack

# training " " # # " "

1 � � � 0.309 0.257 6.873 1.203 0.222 3.032
2 X X � 0.321 0.279 7.341 1.348 0.239 2.769
3 X � X 0.292 0.260 6.713 1.162 0.216 2.967
4 � X X 0.304 0.257 7.104 1.245 0.215 2.953
5 X X X 0.359 0.292 6.371 1.143 0.280 3.478

Table 7: Additional ablation studies on ART model. If either L bbox or L target is
included, and the model undergoes pre-training, the loss is applied in both pre-training
and gaze training phases. Ablations #3, #4 and #5 are from Table 6 (also in Table 2
in the main paper).

Ablation Pre- L bbox L target SS SSpack F ED F ED pack CCpack NSSpack

# training " " # # " "

1 � X � 0.319 0.270 6.736 1.193 0.228 3.135
2 � � X 0.309 0.264 6.705 1.175 0.216 2.919
3 X X � 0.321 0.279 7.341 1.348 0.239 2.769
4 X � X 0.292 0.260 6.713 1.162 0.216 2.967
5 X X X 0.359 0.292 6.371 1.143 0.280 3.478

L bbox and L target results in little to no boost in performance. It is evident that
we needboth L bbox and L target in the objective function along with pre-training
for our model to achieve high performance. We posit that ablation #4 in Ta-
ble 7 fails to perform well because the target category prediction task largely,
if not completely, relies on the linguistic input (i.e., the referring expression).
Consequently, the sub-networks dedicated to visual and visuo-linguistic process-
ing (especially, the visual encoder) might not bene�t from pre-training only on
this objective whereas the linguistic subnetworks (i.e. the linguistic encoder) are
greatly optimized. We speculate that it is also perhaps hard for ART to adapt to
object referral during training after pre-training its parameters to signi�cantly
align with the target-category estimation objective (which can be inadequate
for our task since there are multiple objects belonging to the target category) in
ablation #4 of Table 7. On the other hand, object localization seems to be much
more aligned with the object referral task, which is indeed shown by ablation #3
in Table 7. In summary, the ablation studies validate our hypothesis that both
object localization and target category prediction tasks are integral to the object
referral process. Also note that Ablations 1 and 4 in Table 6 and Ablations 1
and 2 in Table 7 show that even when ART is not pre-trained on RefCOCO,
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Table 8: Additional ablation studies on ART model when trained with ad-
ditional Fixation Duration Prediction objective. If either L bbox or L target is
included, and the model undergoes pre-training, the loss is applied in both pre-training
and gaze training phases.

(a) Duration-agnostic Metrics

Ablation Pre- L bbox L target SS SSpack F ED F ED pack CCpack NSSpack

# training " " # # " "

1 � � � 0.206 0.169 10.840 2.073 0.167 2.331
2 � X � 0.262 0.230 8.225 1.528 0.207 2.930
3 � � X 0.269 0.201 9.626 1.616 0.196 2.396
4 � X X 0.296 0.252 7.049 1.271 0.209 2.914
5 X X � 0.309 0.278 7.306 1.339 0.257 3.307
6 X � X 0.284 0.210 7.172 1.351 0.179 2.460
7 X X X 0.356 0.285 6.410 1.161 0.281 3.539

(b) Duration-aware Metrics

Ablation Pre- L bbox L target SS( t ) SS( t )
pack F ED ( t ) F ED ( t )

pack MM dur

# training " " # # "

1 � � � 0.222 0.110 55.614 11.274 0.672
2 � X � 0.253 0.169 44.074 8.559 0.691
3 � � X 0.277 0.159 47.876 8.928 0.675
4 � X X 0.253 0.164 38.722 7.232 0.652
5 X X � 0.282 0.181 37.922 7.389 0.685
6 X � X 0.252 0.165 38.934 7.206 0.683
7 X X X 0.332 0.199 35.997 7.120 0.696

it still outperforms baselines that are also not pre-trained on RefCOCO, i.e.,
Gazeformer-ref and Gazeformer-cat (in Table 1 of main text).

In Table 8, we tabulate the ablation studies for ART when equipped with
�xation duration prediction capability. As shown in Sec. 6 through analysis of
MM dur metric values for random baseline and human consistency, there is poor
agreement between participants in their �xation durations and thus training on
such noisy supervision can be challenging. We interpret Table 8 as being con-
sistent with our �ndings from the ablation studies with ART without �xation
prediction (Sec. 5.4 in main text; Sec. 9, Sec. 10 in the supplement) in support-
ing our assertion that both pre-training and training on both auxiliary object
localization and target category estimation objectives are crucial for ART's per-
formance. We also observe that without pre-training and training on auxiliary
losses, ART struggles to generalize when trained with noisy �xation durations,
as seen in Ablation 1. Our proposed model (#7 in Table 8) supports our asser-
tion that ART's pre-training and training on the two object grounding tasks for
complete/partial expressions underlying object referral signi�cantly contributes
towards its SOTA performance when compared to existing baselines that are
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unable to pre-train/train on object grounding for partial/complete expressions.
Our proposed model thus generalizes well even when trained with a noisy su-
pervision signal, such as the �xation durations. We also note that when not
pre-trained on RefCOCO (Ablations 2, 3, and 4 in Table 8), ART still outper-
forms baselines that are not pre-trained on RefCOCO, i.e. Gazeformer-ref and
Gazeformer-cat (see Table 4).

11 Auxiliary Next Word Token Prediction Task

We also hypothesized that predicting the next linguistic token during search also
underlies incremental object referral process along with the object localization
and target category prediction tasks. So we added aNEXT_WORD_TOKENtoken
along with BBOXand TGTtokens as input to the visuo-linguistic encoder. The
corresponding latent vector served as input to an MLP which generated logits
over a vocabulary of tokens in order to predict the next word token. The loss
imposed is a cross-entropy lossL nextword . The results are tabulated in Table 9.
As we can see, addingL nextword does not improve the performance signi�cantly
� we achieve best performance withoutL nextword (Ablation #1 in Table 9). We
hypothesize that this is because the next word token prediction task is consid-
erably more di�cult than the object localization and target category prediction
tasks, and potentially introduces noise while training on the gaze prediction
objective.

Table 9: E�ect of auxiliary next word token prediction task on ART model.
Ablations #1 and #3 are from Table 2 in main text.

Sl.No# Pre-training L nextword L bbox L target SS SSpack CCpack NSSpack

1 X � X X 0.359 0.292 0.280 3.478
2 X X X X 0.355 0.281 0.269 3.388
3 � � X X 0.304 0.257 0.215 2.953
4 � X X X 0.313 0.265 0.224 3.049

12 Qualitative Results

In this section, we present additional qualitative results of human behavior, our
model ART and other competitive baseline models in Fig. 4 and Fig. 5. We
see that ART e�ciently �nds the correct target through scanpaths that closely
resemble human behavior in all rows except the last row in Fig. 5 - where it fails
to localize the �head� of the correct person. In the �rst row of Fig. 4, we can see
both the human participant and ART wait until the last word �left� to localize
the correct mu�n. We see a similar waiting pattern in second and third row of
Fig. 4 where ART and the human participant wait until disambiguation towards
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the end of the expression for localizing the correct �bus� and �car� respectively.
In the �rst row of Fig. 5, we see a scanning behavior where ART and the human
�xate on the kids in the center after hearing the word �kid� until the contextual
information �far right� is provided in the end to locate the correct �kid�. In the
second row of Fig. 5, we observe that both ART and the human participantwait
till the utterance of the target category word �elephant� in order to localize the
correct elephant.

Human ART (Proposed) Chen et al. Gazeformer-ref

Human ART (Proposed) Chen et al. Gazeformer-ref

Human ART (Proposed) Chen et al. Gazeformer-ref

Fig. 4: Qualitative results [1/2]. Scanpaths from humans and three scanpath pre-
diction models on three trials exhibiting strategic �xation behavior. Fixations (denoted
by circles numbered with �xation order) are color-coded to corresponding words in the
referring expression (above each row). Fixations color-coded to [BOT] occurred before
the expression started, and those color-coded to [EOT] occurred after the expression
ended. Blue bounding boxes indicating the referred objects are not visible during trials.
Our model generates the most human-like scanpaths for incremental object referral.
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Human ART (Proposed) Chen et al. Gazeformer-ref

Human ART (Proposed) Chen et al. Gazeformer-ref

Human ART (Proposed) Chen et al. Gazeformer-ref

Fig. 5: Qualitative results [2/2]. Scanpaths from humans and three scanpath pre-
diction models on three trials exhibiting strategic �xation behavior. Fixations (denoted
by circles numbered with �xation order) are color-coded to corresponding words in the
referring expression (above each row). Fixations color-coded to [BOT] occurred before
the expression started, and those color-coded to [EOT] occurred after the expression
ended. Blue bounding boxes indicating the referred objects are not visible during trials.
Our model generates the most human-like scanpaths for incremental object referral.
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