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1 Overview

The supplementary material is organized as follows:
(Section 2) We conduct visual comparisons and analysis on existing public

real-world atmospheric turbulence benchmarks.
(Section 3) We provide additional analysis and details about the proposed

Coarse-to-fine framework.

• We provide more analysis of pixel displacements statistical prior of turbu-
lence in more long-range turbulence scenes in Sec. 3.1.

• We introduce the solution of low-rank tensor refinement model in Sec. 3.2.
• We introduce the details of data-driven blur removal process in Sec. 3.3.

(Section 4) We conduct further discussions on the effectiveness and perfor-
mance of the proposed framework CDSP and frequency-aware reference frame.

• We study the effectiveness of CDSP towards severe distortions in Sec. 4.1.
• We conduct an user study to compare existing methods with CDSP on pro-

posed dataset RLR-AT in Sec. 4.2.
• We discuss the robustness of proposed CDSP to long-range turbulence at

various distances in Sec. 4.3.
• We analyze the frequency-aware weight parameter σ in Sec. 4.4.
• We validate the robustness of proposed FRF to noises in Sec. 4.5.
• We show more visual comparison to demonstrate the high-quality of pro-

posed FRF in Sec. 4.6.
• We show more visual results of hot-air turbulence generalization in Sec. 4.7.

(Section 5) We provide more visual comparisons on proposed real dataset
RLR-AT and synthetic turbulence to demonstrate the effectiveness of CDSP.

(Demo) We provide a video demo to show our CDSP’s potential towards
long-range turbulence with severe distortions.

⋆ Corresponding author
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Fig. 1: Benchmark analysis of existing public real-world turbulence datasets.

2 Benchmark Analysis

Existing Datasets. We make a brief visual comparison between existing datasets
and our dataset RLR-AT in Fig. 1. In Fig. 1(a), EFF [9] provided two widely used
hot-air turbulence data: Chimney and Building. Further, Heat chamber [16] cap-
tured hot-air turbulence by imaging the display screen located 20 meters away,
and heat chambers are placed between the screen and the camera for gener-
ating turbulence effect. These hot-air turbulence datasets were collected with
artificial heat burners. Furthermore, OTIS [7], CLEAR [2], Turbulence Text [16]
and TSR-WGAN [10] further collected the hot-air turbulence sequences in high-
temperature weather conditions near the earth surface. Overall, most existing
benchmarks consist of hot-air turbulence, and TurbRecon [14] stands out by
capturing 2 turbulence sequences for Building scene at a distance of 4 Km, as
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Fig. 2: Illustration of the proposed framework.

shown in Fig. 1(f). Moreover, most existing datasets are not only constrained in
terms of distances but also limited in the number and diversity of scenes, as well
as the resolution size of images.
RLR-AT. To solve the limitations of existing datasets and advance this field,
we construct a large-scale real-world long-range atmospheric turbulence dataset,
RLR-AT. Typical examples are illustrated in Fig. 1(h). The advantages of RLR-
AT compared to existing datasets are threefold. Firstly, RLR-AT contains tur-
bulence with longer-distance and higher-diversity, covering diverse dis-
tortions spanning imaging distances from 1 Km to 13 Km. Secondly, it consists
of larger-scale and greater-variety scenes, including 1500 turbulence se-
quences collected across various scenarios, such as text, object, building, etc. Last
but not least, RLR-AT is collected by a telephoto camera with high-resolution
(1920*1080 pixels). We believe that RLR-AT can serve as a benchmark for
future works targeting long-range turbulence mitigation.

3 Method Details

We propose a Coarse-to-fine framework that cooperates dynamic turbulence and
static background priors (CDSP) to handle long-range turbulence with severe
distortions, as shown in Fig. 2. Specifically, we discover the pixel motion sta-
tistical prior of turbulence and propose a frequency-aware reference frame for
better registration, which greatly reduces the burden of refinement. Then we
align the distorted frames to the proposed reference frame utilizing registration
approach based on optical flow [13]. Moreover, we take advantage of the static
prior of background and propose a subspace-based low-rank tensor refinement
model to refine the registration errors unavoidably left by registration while well
preserving details. Finally, we employ a simple data-driven network to further
remove the residual blur, and the generation of paired deblurring data is based
on the proposed distortion correction framework. The details of SLRTR solu-
tion and blur removal process are provided in the following sub-sections, and we
also further analyze the pixel motion statistical prior of turbulence in various
long-range scenes.
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Fig. 3: Analysis of pixel motion statistical prior in long-range turbulence scenes. (a)
Visual examples of long-range turbulence building scenes with the detected corners. (b)
Statistic histograms of corners displacements. It is observed that corners motion in long-
range turbulence scenes still approximately follow a zero-mean gaussian distribution,
indicating that corners most frequently occur in their original positions.

3.1 Analysis of Pixel Motion Statistics Prior in Long-range Scenes

To further explore the pixel motion statistical prior of turbulence in long-range
scenes, we conduct statistical analysis experiments in numerous long-range tur-
bulence scenes (e.g. Building scenes with wall corners) as well. Typical visual
examples are shown in Fig. 3. We choose the building scenes with wall corners
as experiment data and utilize SURF corners detector [3] to detect the corners.
Figure 3(a) visualizes the cropped local regions with detected corners. The cor-
ners of distorted frames exhibit noticeable motion. The histograms of corner
motions are shown in Fig. 3(b). It is observed that corners motion in long-range
turbulence scenes still approximately follow a zero-mean gaussian distribution,
indicating that corners most frequently occur in their original positions.

3.2 Solution of the Distortion Refinement SLRTR

After aligning the distorted frames to the proposed FRF using the non-grid
registration based on optical flow [13], we employ SLRTR to refine the unavoid-
able registration error. The original optimization problem of SLRTR is shown
as follow: {

B̂, Ê, Ĝi, Ôi

}
= arg min

B,E,Gi,Oi

1
2 ||B + E −R||2F

+β||E||1 + α
∑
i

(
1
λ2
i
||SiB×3Oi − Gi||2F + ||Gi||tnn

)
,

(1)

where R ∈ Rh×w×t is the registered sequence, B ∈ Rh×w×t is the undistorted
sequence, E ∈ Rh×w×t represents the registered error, Gi represents the low-rank
approximation, Oi ∈ Rd×t(d ≪ t) is an orthogonal subspace projection matrix
used to capture the temporal low-rank property and SiB ∈ Rp2×k×t is the
constructed 3-D tensor via the non-local clustering of a sub-cubic ui ∈ Rp×p×t [5].



Long-range Turbulence Mitigation 5

Optimization. To solve this difficult problem, we apply the ADMM [12] to
decouple the Eq. (1) into several sub-problems.

1) Registered Error Estimation E: Fixed other variables, we can get following
subproblem:

Ê = argmin
E

β ∥ E∥1 +
1

2
∥ B + E −R ∥2F . (2)

The Eq. (2) can be solved by introducing the soft-thresholding operator [12]:

Ψυ(x) =

x− υ, if x > υ
x+ υ, if x < −υ
0, otherwise

(3)

Then, we can easily get its closed-form solution:
Ê = Ψβ (−B +R) . (4)

2) Subspace Projection Oi: We enforce the orthogonal constraint on OT
i Oi = I

with the following subproblem:

Ôi = arg min
OT

i Oi=I

1

λ2
i

||SiB×3Oi − Gi||2F , (5)

According to [18], we perform a model-3 unfolding and singular value decom-
position on SiB, that is (SiB)

(3)
= USV T . Then let the Ôi = (U(:, 1 : d))T ,

where U(:, 1 : d) means to select the first d left singular vectors corresponding
to the d largest singular values, where the d is the measurement of the intrinsic
subspace of the temporal dimension, we empirically set (d ≤ 4).

3) Low-rank Approximation Gi: Dropping the irrelevant variables, we can get
following subproblem:

Ĝi = argmin
Gi

1

λ2
i

∥ SiB×3Oi − Gi ∥2F +||Gi||tnn, (6)

where λ2
i is the noise variance, ∥ Gi∥tnn =

∑
p

∣∣∣σp(G(2)
i )

∣∣∣
1

is the tensor nuclear

norm, G(2)
i denotes the model-2 unfolding matrix of the Gi, and σp(G(2)

i ) repre-
sents the p-th singular value of the G(2)

i . This minimization problem is usually
solved by the singular value thresholding algorithm [4,5], we adopt the weighted
nuclear norm minimization to boost the performance [8]. Thus, we can get the
following formula:

Ĝi = UΘW (Σ)V T , (7)

where UΣV T is the singular value decomposition of the mode-2 unfolding matrix
of the SiB×3Oi, and ΘW (Σ)pp = max(Σpp − Wpp, 0) is the generalized soft-
thresholding operator with the weight vector W . After we obtain the Gi, we
conduct the tensor folding to transform it into the 3D tensor Gi.

4) Undistorted Sequence Estimation B: We fix the other variables and opti-
mize B with the following subproblem:

min
B

1
2 ||B + E −R||2F + α

∑
i

1
λ2
i
||SiB×3Oi − Gi||2F , (8)

where the first term is the fidelity term, and the second term is the low-rank
constraint. The linear operator S is used to extract the cubic from the video and
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it can be fast solved on a pixel-by-pixel manner. However, the Eq. (8) is difficult
to solve directly. To solve this problem, we introduce the auxiliary variable D =
B to spilt the three terms, and the Eq. (8) can be transformed into the following
augmented Lagrangian function:

Lµ(B,D) = 1
2 ∥ B + E −R ∥2F +µ

2 ∥ D −B − Γ
µ ∥2F

+α

(∑
i

1
λ2
i
∥ SiD×3Oi − Gi ∥2F + ∥ Gi∥tnn

)
,

(9)

where Γ is the Lagrangian multipliers, and µ is a positive scalar. And the Eq.
(9) can be separated into several sub-problems:

Bm+1 = argmin
B

1
2 ∥ B + E −R ∥2F +µ

2 ∥ Dm −B − Γm

µ ∥2F , (10)

Dm+1 = argmin
D

α
∑
i

1
λ2
i
∥ SiD×3Oi − Gi ∥2F +µ

2 ∥ D −Bm+1 − Γm

µ ∥2F , (11)

We adopt the fast 3-D Fourier transform for fast calculating the clean video B,
the following formula is its closed-form solution.

Bm+1 = F−1

(
F(R−E+µ(Dm−Γm

µ ))

I+µI

)
, (12)

where F is the fast 3-D Fourier transform, F−1 is its inverse transform, and F∗

represents its conjugate transform.
As for the auxiliary variable D, we have the following formula:

Dm+1 =

(
2α
λ2
i

∑
i

(Si)
TSi + µI

)−1

×
(

2α
λ2
i

∑
i

(Si)
TGi×3(Oi)

T
+ µBm+1 + Γm

)
.

(13)

where (Si)
TGi is the sum value of all overlapping reconstruction cubics that

cover the pixel location, and (Si)
TSi corresponds to the number of the overlap-

ping cubics. Then the Eq. (13) can be easily solved by the pixel-to-pixel division.
For the Lagrangian multipliers, we update them with the following formulas:

Γm+1 = Γm + µ
(
Bm+1 −Dm+1

)
. (14)

The overall procedure is summarized in Algo. 1.

3.3 Data-driven Blur Removal

In this work, after correcting the severe distortions caused by long range tur-
bulence utilizing the proposed CDSP, we further employ a data-driven method
to remove the residual blurry in the undistorted image as shown in Fig. 4. To
achieve this, we adopt the Uformer [17] as our backbone, due to its excellent
performance in image restoration. In addition, we further utilize the turbulence
simulator P2S [15] and CDSP to construct the paired blurry training data.
CDSP-based Paired Blurry Data Generation. We’ve already corrected
the severe distortions, so we only need to construct the suitable paired blurry
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Algorithm 1 Low-rank tensor distortion refinement model
Require: The Registered sequence R
1: Initialization:;
2: • Set the regularization parameters β, α, λi;
3: • Set the temporal subspace dimension d ≤ 4;
4: for l=1:L do
5: Group similar cubics SiBl+1;
6: Estimate registration error E l+1 via Eq. (4);
7: Estimate subspace projection Oi

l+1 via Eq. (5);
8: Estimate low-rank approximation Gi

l+1 via Eq. (7);
9: for m=1:M do

10: Estimate undistorted video Bm+1 via Eq. (12);
11: Estimate auxiliary variable, Dm+1 via Eq. (13);
12: Update lagrangian multipliers Γm+1 via Eq. (15);
13: end for
14: end for
Ensure: The undistorted sequence B.

Table 1: The protocol of the simulator for generating paired blurry training data.

Strength Probability D(m) D/r0 Distance(m) Corr Kernel Size

Weak 0.3 U(0.001, 0.005) [0.4, 0.8, 1.2, 1.5] U(800,1500) [-1, -0.1, -0.5, -0.05] 33

Medium 0.5 U(0.04, 0.1) [0.8 , 1, 1.6] U(2000,3000) [-1, -0.1, -0.5, -0.05] 33

Strong 0.2 U(0.1, 0.2) [1.6, 2, 2.4] U(4000,5000) [-1, -0.1, -0.5, -0.05] 33

training data. As shown in Fig. 4, we first employ the turbulence simulator to
generate the synthetic turbulence. Next, we apply the proposed CDSP to correct
the distortion in the synthetic turbulence, obtaining undistorted image that can
be paired with clean image to create the training data for blurry removal.
Description of Training Dataset. We randomly select 60000 images in the
place dataset [19] as input of the simulator. For the configuration of turbulence
simulator, we set turbulence strength in 3 levels: weak, medium and strong. The
protocol of the simulator is shown in Table 1. From top to bottom, the turbulence
strength becomes higher. D denotes the aperture diameter of the sensor, D/r0
denotes the ratio of D and the fried parameter r0, Corr denotes the spatial
correlation. U(a, b) denotes uniform distribution in the range(a, b) and [a, b, c,
d] denotes random choice with equal probability.
Implementation Details. We train the network using the Charbonnier loss [6]
supervised by the ground-truth image:

L(Î , I) =
√

∥ Î − I ∥2 +ϵ2, (15)

where Î is the clean image and I is the output image, and ϵ is empirically set
to 10−3. The network is trained with two RTX 3090 GPUs. The images are
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Fig. 4: Paired blurry data generation for training and data-driven blurry removal test
process. We apply the proposed CDSP to correct the distortion of synthetic turbulence
images, generating undistorted image that could be paired with the ground-truth image
to construct the training dataset for blurry removal. The network trained with this
generated paired dataset could effectively remove the residual blur from the refined
image, producing a clean image.

Temp avg-based registration  Stage1: FRF-based registration  Stage2: Low-rank tensor refinement

(a) Distorted frame (b) Temp avg  (c) Registered frame (d) FRF (e) Registered frame (g) Registration error(f) Refined frame

Fig. 5: Visualization of each stage. (a) Distorted frame. (b) Baseline of reference frame:
Temporal average (Temp avg). (c) Registered frame obtained utilizing Temp avg. (d)
Frequency-aware reference frame obtained based on dynamic turbulence prior. (e) Reg-
istered frame obtained utilizing the proposed FRF in stage 1. (f) Refined frame via
low-rank tensor distortion refinement based on static background prior. (g) Estimated
registration error in stage2.

randomly cropped into 128*128 for training. The learning rate is set as 0.0002.
The Adam optimizer is adopted for optimization with a batch size of 32.

4 Analysis and Discussion

4.1 Effectiveness of Coarse-to-fine Framework towards Severe
Distortions

We illustrate the effectiveness of our Coarse-to-fine framework in Fig. 5. Our
framework jointly employs both dynamic turbulence and static priors, where
dynamic and static priors complement to each other to better remove the severe
distortions. On the one hand, we propose a frequency-aware reference frame
(FRF) based on pixel motion statistical prior of turbulence. Compared to existing
baseline: Temp avg, FRF possesses more superior visual quality and sharper
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Fig. 6: The user study on real long-range turbulence mitigation on RLR-AT.

Fig. 7: Comparison of long-range turbulence mitigation at different distances.

edge, as shown in Fig. 5(b) and (d). Therefore, FRF-based registration ensures
greater accuracy, thereby reducing registration errors in the registered frame
and greatly reducing the burden of refinement, as shown in Fig. 5(c) and (e).
On the other hand, we further utilize the low-rank prior of static background,
and propose a subspace-based low-rank tensor refinement model to eliminate
the registration errors inevitably left by registration, as shown in Fig. 5(f) and
(g). The correction result of Fig. 5(f) not only avoids severe distortions but also
well preserves details, implying the effectiveness of the proposed Coarse-to-fine
framework towards long-range turbulence with severe distortions.

4.2 User Study Conducted on RLR-AT

To further compare CDSP with other methods, we conduct a user study on the
RLR-AT. We randomly choose 50 real turbulence images and the corresponding
restoration results produced by each method. Then we invite 20 people to score
each result with the range of 1-10, higher score represents better restoration
quality. The distribution of scores for each method is shown in Fig. 6. It is
observed that CDSP achieves the highest median score, surpassing 8 in its first
quartile, indicating that users tend to rank our results first. The user study
results again imply that the proposed method is superior to other methods.
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Fig. 9: Robustness of frequency-aware reference frame construction to noises.

4.3 Robustness towards Different Distances

We further analyze the performance of CDSP when handling different distances
of turbulence, presenting the quantitative results in Fig. 7. We can observe that
our results outperform existing methods by a large margin under each distance.
Moreover, the visualization results in Fig. 13 shows that the CDSP can consis-
tently improve image quality for different distances. Both the quantitative and
qualitative results verify the robustness of the CDSP towards different distances.

4.4 Analysis of Frequency-aware Weight Parameter σ

The parameter σ determines the sensitivity of weight function to frequency. In
Fig. 8, we show the quantitative results of reference frame with different numbers
of σ and their corresponding registered frames. It is evident that as σ increases,
the quality of results improves gradually before reaching a stable state. In this
work, we empirically set σ to 1.0.
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Turbulence Image Temp Avg [22] Non-local Avg [15] Lau[11] FRF (Ours)

Fig. 10: Visual comparison of FRF with other reference frames.

4.5 Robustness of Frequency-aware Reference Frame to Noises

We construct the frequency-aware reference frame under various levels of noises,
as shown in Fig. 9. It is observed that the proposed FRF sill maintains accu-
rate structure and sharp edge even as the noise increases, demonstrating the
robustness of proposed frequency-aware reference frame to noises.

Turbulence NDL TurbRecon CDSPTurbNetAT-DDPMTSR-WGAN

Fig. 11: Visual comparisons on real hot-air turbulence. The proposed method gener-
alizes well for hot-air turbulence which is collected with heat chamber.
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Table 2: The protocol of simulator for synthetic turbulence comparison experiment.

Parameter Value
Distance L = 1Km− 8Km

Fried Parameter r0 = 0.041m− 0.145m
Aperture Diameter D = 0.077m

Aperture-to-Coherence Ratio D/r0 = 0.53− 1.85
Correlation Strength for PSF Corr = −0.01

Image Size 256× 256 pixels
Wavelength λ = 500nm

Zernike Phase Size 16× 16 pixels
Kernel Size 33× 33 pixels

4.6 High-quality of Frequency-aware Reference Frame

To further demonstrate the high-quality of the proposed FRF, we compare the
existing reference frames (Temp Avg [21], Non-local avg [14], Lau [11]) and pro-
posed FRF in Fig. 10. We can observe that existing reference frames suffer from
severe blur, while FRF possesses more favorable image quality and sharper edge,
which is beneficial for large scale distortion registration.

4.7 Generalization to Hot-air Turbulence

We further compare with state-of-the-art methods on hot-air turbulence, using
UG2+ TurbuText [1]. As shown in Fig. 11, existing methods exhibit either severe
geometric distortion or significant loss of image detail. Compared with these
methods, CDSP effectively corrects most geometric distortions meanwhile well
preserving image details, which demonstrates that the proposed method could
effectively handle hot-air turbulence as well.

5 Comparison Experiments

5.1 Configuration of Simulator

The ground-truth images for the synthetic turbulence comparison experiment
are randomly selected from ADE20K [20] and differ from the dataset used to
generate paired blurry data. We simulate the synthetic turbulence sequences at
different distances applying the turbulence simulator P2S. Each strength of syn-
thetic turbulence contains 100 distorted sequences with 100 frames. The details
of the simulator parameter are provided in Table 2 and C2

n = 1.0×10−15m−2/3.

5.2 Qualitative Comparisons on Synthetic Turbulence

Figure 12 shows the visual results on synthetic turbulence. For the supervised
methods, they cannot well correct the distortions due to the domain gap. The
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TurbReconNDLTMT CDSPTurbNet PiRNTSR-WGANClean Turbulence

Fig. 12: Visualization comparisons on synthetic turbulence.

model-based methods NDL and SG are limited to handle severe pixel displace-
ment. The wavelet-based CLEAR generates artifacts which degrade the visu-
alization quality in restoration results. Compared with these methods, CDSP
could acquire images with more favorable visual quality and structure, closing
to corresponding ground-truth image.

5.3 Qualitative Comparisons on Real Turbulence

We evaluate the performance of the proposed CDSP and other state-of-the-art
methods on RLR-AT that contains severe long-range turbulence. The turbulence
removal results visualization are shown in Fig. 13. We can observe that the su-
pervised methods have difficulty in dealing with realistic turbulence and leave
the distortions unremoved, due to the huge gap between the simplified synthetic
turbulence and the complex real turbulence. The artifacts in CLEAR degrade
restoration images. NDL continually suffers from pixel displacement due to un-
suitable design for long-range turbulence. Albeit TurbRecon can acquire results
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Turbulence TSR-WGAN NDLTMT CLEAR TurbRecon CDSPTurbNet

Fig. 13: Visual comparison on real long-range turbulence in proposed RLR-AT.

with comparable quality, the results still encounter details loss and artifacts due
to the severe pixel displacement. In comparison, CDSP possesses not only higher
image quality but also more satisfying distortion correction results thanks to the
cooperative dynamic turbulence and static background priors.
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