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Fig. 1: Visual examples of turbulence mitigation on proposed real-world long-range
atmospheric turbulence benchmark RLR-AT. The proposed method could effectively
handle the long-range turbulence with severe distortions.

Abstract. Long-range imaging inevitably suffers from atmospheric tur-
bulence with severe geometric distortions due to random refraction of
light. The further the distance, the more severe the disturbance. Despite
existing research has achieved great progress in tackling short-range tur-
bulence, there is less attention paid to long-range turbulence with sig-
nificant distortions. To address this dilemma and advance the field, we
construct a large-scale real long-range atmospheric turbulence dataset
(RLR-AT), including 1500 turbulence sequences spanning distances from
1 Km to 13 Km. The advantages of RLR-AT compared to existing
ones: turbulence with longer-distances and higher-diversity, scenes with
greater-variety and larger-scale. Moreover, most existing work adopts ei-
ther registration-based or decomposition-based methods to address dis-
tortions through one-step mitigation. However, they fail to effectively
handle long-range turbulence due to its significant pixel displacements.
In this work, we propose a coarse-to-fine framework to handle severe
distortions, which cooperates dynamic turbulence and static background
priors (CDSP). On the one hand, we discover the pixel motion statistical
prior of turbulence, and propose a frequency-aware reference frame for
better large-scale distortion registration, greatly reducing the burden of
refinement. On the other hand, we take advantage of the static prior of
background, and propose a subspace-based low-rank tensor refinement
model to eliminate the misalignments inevitably left by registration while
well preserving details. The dynamic and static priors complement to
each other, facilitating us to progressively mitigate long-range turbu-
lence with severe distortions. Extensive experiments demonstrate that
the proposed method outperforms SOTA methods on different datasets.

https://shengqi77.github.io/RLR-AT.github.io/
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1 Introduction

Seeing farther and more clearly is crucial for many military and civilian ap-
plications. Unfortunately, long-range imaging inevitably suffers from the atmo-
spheric turbulence with severe geometric distortion due to random refraction of
light [8, 17, 49]. When accumulating over long distance in a non-uniform atmo-
sphere medium, more refractions occur during optical transmission, resulting in
more severe pixel displacement. Although short-range atmospheric turbulence
mitigation has achieved great progress in recent years [24,26,29,39,54,58], very
few studies have focused on long-range turbulence. In this work, our goal is to
handle the long-range turbulence with severe distortions as shown in Fig. 1.

Atmospheric turbulence benchmark is a key issue for evaluating turbulence
mitigation methods. Existing datasets can be classified into synthetic datasets
[55, 56] and real-world datasets [1, 4, 21, 25, 29, 39, 41]. Synthetic datasets are
mainly constructed using turbulence simulators [10,12,37]. However, simulators
cannot precisely generate data entirely matching the features of real turbulence,
since turbulence in real scenarios possesses complex nature, especially for long-
range turbulence. Real turbulence is primarily influenced by temperature and
imaging distance. Greater distances and higher temperatures both lead to more
severe turbulence. Typically, real turbulence can be divided into: hot-air turbu-
lence and long-range turbulence [37]. Most public real datasets consist of hot-air
turbulence, and TurbRecon [37] stands out by capturing 2 turbulence sequences
for building scene at a distance of 4 Km. As such, constructing a large-scale
real-world long-range turbulence dataset with diverse scenes is highly necessary.

In this work, we construct a large-scale real-world long-range turbulence
dataset RLR-AT for long-range turbulence mitigation. The strength of our bench-
mark is threefold. Firstly, RLR-AT contains long-range turbulence with longer-
distances and higher-diversity, covering diverse distortions ranging from 1 Km
to 13 Km. Secondly, it consists of large-scale and diverse scenes, including 1500
turbulence sequences collected across various scenarios, such as text, object,
building, etc. Last but not least, RLR-AT is collected by a telephoto camera
with high-resolution (1980*1080 pixels). Overall, RLR-AT can serve as a bench-
mark for future works targeting long-range turbulence mitigation.

The main difficulty of long-range turbulence mitigation lies in the severe dis-
tortions. To handle distortions, most existing methods can be classified into two
categories: registration-based methods [7,15,26,37,48,53,58] and decomposition-
based methods [14, 24,41]. The former merely employs a zero-mean assumption
prior of dynamic turbulence to construct a reference frame, aligning the dis-
torted frames with the reference frame using registration technique. However,
such strategy struggles to handle long-range turbulence with severe distortions,
as registration errors emerge from the blurring of the reference frame.

On the contrary, the latter is to treat the distortions among the frames as
gross error, and directly remove the distortions through matrix decomposition
by exploring low-rank prior of static background. Though it is effective for mild
distortions, it is theoretically less robust when handling severely corrupted ob-
servations [36, 52]. Thus, directly employing such strategy on the long-range
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turbulence with severe distortions would suffer from unexpected details loss.
Overall, previous methods either utilize the zero-mean assumption of dynamic
turbulence or low-rank prior of static background, and both of them are difficult
to handle long-range turbulence with severe distortions.

To handle long-range turbulence with severe distortions, we propose a coarse-
to-fine framework that cooperates dynamic turbulence and static background
priors (CDSP). On the one hand, we explore the pixel motion statistical prior of
turbulence and discover that the pixel occurring most frequently at one certain
position is most likely closer to the original GT. This inspires us to propose a
frequency-aware reference frame for better distortion registration, significantly
reducing the burden of subsequent refinement. On the other hand, we further
take advantage of static prior of background and propose a subspace-based low-
rank tensor refinement model to refine the registration errors unavoidably left
by registration meanwhile well preserving details. The dynamic and static priors
complement to each other, facilitating us to mitigate long-range turbulence with
severe distortions. Overall, our main contributions are summarized as follows:

1. Our work focuses on a challenging yet practical task: long-range turbulence
mitigation. We construct a large-scale real-world long-range atmospheric tur-
bulence benchmark (RLR-AT). Compared to existing public real-world datasets
, RLR-AT is the farthest (ranging from 1 Km to 13 Km) and largest-scale
(1500 sequences with high-resolution 1980*1080) turbulence dataset with di-
verse turbulence levels and scenes. This dataset would be a good testbed for
the community, especially for long-range turbulence mitigation.

2. We propose a coarse-to-fine framework for long-range turbulence mitigation,
which cooperates dynamic and static priors. Specifically, we figure out the pixel
displacement statistical prior of dynamic turbulence and propose a frequency-
aware reference frame for better registration, significantly reducing the burden
of refinement. Moreover, we take advantage of low-rank prior of static back-
ground and propose a subspace-based low-rank tensor refinement model to
remove the registration errors meanwhile well preserving details. Compared
to existing methods, the dynamic and static priors complement to each other,
facilitating us to address long-range turbulence with significant distortions.

3. We comprehensively compare CDSP with existing methods on proposed real
long-range turbulence dataset RLR-AT and synthetic dataset. Extensive ex-
periments show that our CDSP consistently outperforms SOTA methods, es-
pecially when handling long-range turbulence with severe distortions.

2 Related Work

Real Atmospheric Turbulence Benchmarks. Atmospheric turbulence is
a fundamental issue in long-range imaging system, mostly depending on the
temperature and imaging distance. Higher temperatures and longer distances
typically result in more severe turbulence. Generally, turbulence can be mainly
classified into two categories: hot-air turbulence and long-range turbulence [37].
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Table 1: Summary of existing available real-world turbulence benchmarks.
Venue Hot-air Temperature Long-range Distance Scene Category Scene Avg Frames Resolution

EFF [25] ✓ - ✗ <1Km Building, Chimney 2 100 240*240
Heat Chamber [39] ✓ - ✗ 20m Image 400 100 440*440

UG2+ TurbuText [1] ✓ - ✗ 20m Text 100 100 440*440
CLEAR [4] ✓ 46◦ ✗ <2Km Building, Street 3 53 250*180
OTIS [21] ✓ - ✗ <1Km Pattern, door 21 276 256*256

TSR-WGAN [29] ✓ 33◦ ✗ <3Km Street, Grassland 21 233 960*540
Turbulence Text [39] ✓ 30◦ ✗ 300m Text 100 100 440*440

TurbRecon [37] ✓ 30◦ ✓ 4Km Building, Chimney 4 100 512*512
RLR-AT ✓ −6◦ ∼ 40◦ ✓ 1Km-13Km Building, Text . . . Car 1500 800 1920*1080

In Table 1, we provide a comprehensive summary of existing pubic benchmarks.
EEF [25] provided two widely used hot-air turbulence samples. UG2+ TurbuText
[1] and Heat Chamber [39] collected turbulence sequences with a distance of
20 meters. These hot-air turbulence datasets were collected with artificial heat
burner. Further, CLEAR [4], OTIS [21], Turbulence Text [39] and TSR-WGAN
[29] collected turbulence under high-temperature environment near the surface.
Most existing public datasets are composed of hot-air turbulence, and TurbRecon
[37] captured 2 turbulence sequences with distance of 4Km. Moreover, existing
datasets are still limited in terms of scale and diversity. In this work, we focus
on the challenging problem: long-range turbulence mitigation and construct a
large-scale real long-range turbulence dataset to advance this field.
Atmospheric Turbulence Mitigation. Lucky imaging is an intuitive way to
mitigate the turbulence [2,3,5,6,11,26,31]. Its key idea is to choose the lucky high-
quality frames least affected by atmosphere from short-exposure imaging frames.
Unfortunately, the lucky assumption does not hold any more for long-range
anisoplanatic turbulence, where severe distortions persist across all frames [18,37,
43]. In recent years, the data-driven methods have been popular due to its end-to-
end simplicity [16,19,27,28,32,39,40,42,51,54–56]. Its main idea is to train on the
paired clean-degraded synthetic data from turbulence simulators [10, 12, 22, 38,
44]. The learning-based methods would achieve satisfactory results on simulated
data while can not generalize well to the real turbulence due to the domain
gap, especially for long-range turbulence with severe distortions. Considering the
turbulence has clear physical procedure namely light refraction and diffraction,
Zhu et al. [58] proposed a classical multi-stage restoration framework which
gradually performed the distortion correction and deblurring. In this work, we
follow this research line with clear physics foundations, and investigate how to
cooperate the dynamic and static priors for better distortion correction.
Turbulence Distortion Correction. The main difficulty of the long-range
turbulence lies in the severe distortions. Most existing methods can be classi-
fied into two categories: registration-based methods [7, 15, 26, 37, 48, 53, 58] and
decomposition-based methods [14,24,41]. Most existing registration-based meth-
ods employ the zero-mean assumption prior of dynamic turbulence to construct a
reference frame, and suppress distortion by aligning each input frame to the ref-
erence frame utilizing non-grid registration. For example, the most common way
to obtain a reference frame is by directly averaging input frames [4,7,23,25,58].
Mao et al. [37] further presented a novel space-time non-local averaging method
to adaptively assign different weights for different frames, departing from uni-
form temporal averaging. However, these methods would suffer from blur, leading
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Fig. 2: Illustration of the proposed dataset RLR-AT. (a) Long-range imaging with
larger focal length lens through turbulence. (b) Typical turbulence with diverse long-
distance conditions. (c) Statistics of distance and scene of the proposed benchmark.

to inaccurate registration, especially for long-range turbulence. In this work, we
discover the pixel motion statistical prior of turbulence and propose a frequency-
aware high-quality reference frame for better large-scale distortion registration.

The removal-based methods started from the matrix decomposition perspec-
tive, utilizing low-rank prior of static background to remove distortions. For
example, Oreifej et al. [41] proposed a three-term matrix decomposition ap-
proach for simultaneously distortion removal and object detection. However,
these matrix-based methods need to transform 3-D video into 2-D matrix, which
would unexpectedly damage the spatio-temporal structure. In this work, we pro-
pose a subspace-based low-rank tensor refinement model to refine the registration
error meanwhile well preserving the spatio-temporal details. We further integrate
dynamic and static priors within a coarse-to-fine framework in a complementary
manner to better handle long-range turbulence with severe distortions.

3 Large-scale Real Long-range Turbulence Benchmark

Owing to the challenges in gathering long-range turbulence, current datasets
mainly focus on hot-air turbulence, overlooking long-range turbulence with se-
vere distortions. To fill this gap, we construct a large-scale long-range turbulence
dataset for verification and analysis, named as RLR-AT. Note that RLR-AT also
includes videos of dynamic scenes and turbulence coupled with haze, which can be
used to study turbulence in dynamic scenes and multi-degradation restoration.
Benchmark Collection. In this work, we collect the long-range turbulence
sequences by a telephoto camera (Nikon Coolpix P1000) with equivalent 3000mm
lens focal length, sampled in 30 fps. The data collection process is illustrated in
Fig. 2(a). Firstly, we stabilize the camera on a tripod to capture distant static
scenes. Subsequently, we adjust the focal length until we discern the emergence
of geometric distortion and blurring induced by non-uniform indices of refraction
associated with long-range turbulence. For each sequence, we record approximate
35 seconds and extract the intermediate steady 30 seconds into our dataset.
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Benchmark Statistics. Table 1 presents the detailed statistical comparison
between our proposed RLR-AT and existing turbulence benchmarks. Overall,
our dataset contains 1500 sequences, each of which consists of approximately 800
frames, collected from diverse cities. Notably, our dataset comprehensively covers
long-range turbulence across distances ranging from 1 km to 13 km. Moreover,
over 19 typical scenes are captured, including the street, sports ground, factory,
car and billboard, etc, offering a comprehensive range for long-range surveillance
scenarios. To visualize the distribution of distances and scene categories, a bar
chart and a sunburst chart are illustrated in Fig. 2(c).
Turbulence with Longer-distances and Higher-diversity. The key differ-
ence between RLR-AT and other datasets is that RLR-AT covers turbulence dis-
tortions with longer-distances and higher-diversity. Most existing public datasets
are mainly composed of hot-air turbulence, and TurbRecon [37] stands out by
capturing two turbulence sequences at a distance of 4 Km. In comparison, RLR-
AT contains long-range turbulence images captured from longer and richer dis-
tances (1-13Km). In Fig. 2(b), we visualize some long-range turbulence images
with increasing distances in RLR-AT. It can be observed that with increasing
distance, turbulence degradation level is higher, leading to more severe distor-
tions in the images. The bar chart in Fig. 2(c) displays the number of turbulence
sequences in our dataset at each distance, ranging from 1 km to 13 km, which
further highlights the diversity of distances within our RLR-AT.
Scenes with Larger-scale and Greater-variety. We concern not only the
distances diversity of long-range turbulence but also the variety and scale of
scenes. In Table 1, we can observe that the existing real-world turbulence bench-
marks are still limited in terms of scene amount and diversity. Most datasets
focus on relatively common scenes, such as building, street or grassland, and
UG2+ TurbuText [1] and Turbulence Text [39] both collect hot-air turbulence
specifically for text scenes. In comparison, RLR-AT contains 1500 long-range tur-
bulence sequences across 19 various categories. Figure 2(b) shows some typical
long-range turbulence images in various scenes, such as car, motorcycle, build-
ing, text, offering a comprehensive range for long-range surveillance scenarios.
The sunburst chart in Fig. 2(c) illustrates the distribution of scene categories in
RLR-AT, further showcasing the diversity of scenes within our dataset.

4 A Coarse-to-fine Framework for Long-range Turbulence

In this work, we propose a coarse-to-fine framework that cooperates dynamic
turbulence prior and static background priors (CDSP) to handle long-range tur-
bulence with severe distortions. On the one hand, we discover the pixel motion
statistical prior of turbulence and propose a frequency-aware reference frame
for better large-scale distortion registration, which greatly reduces the burden
of refinement (Section 4.1). Then we align the distorted frames to the proposed
reference frame utilizing registration approach based on optical flow [34]. On the
other hand, we take advantage of the static prior of background and propose a
subspace-based low-rank tensor refinement model to refine the registration er-
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Fig. 3: Comparison between Temp Avg and proposed FRF. (a) Comparison of regis-
tration performance between Temp Avg and FRF. Temp Avg fails to achieve precise
registration since it suffers from blur, while FRF achieves more accurate registration.
(b) Comparison between the construction of Temp Avg and FRF. Temp Avg assigns
equal weight to all intensities at a certain position. However, the output is dissimilar
with original GT, since the less frequently occurring intensities make a negative con-
tribution. In contrast, we argue that the higher the frequency, the greater the weight,
as the most frequently occurring pixel at the position is closer to the original GT.

rors unavoidably left by registration while well preserving details (Section 4.2).
The dynamic and static priors complement to each other, facilitating us to better
eliminate the severe distortions. Finally, we employ a simple data-driven network
to further remove the residual blur, and the generation of paired deblurring data
is based on the proposed distortion correction framework. The details of blur re-
moval are provided in the supplementary material.

4.1 Frequency-aware Reference Frame Construction

Most previous methods [7, 23, 25, 58] employ temporal averaging (Temp Avg)
to construct a reference frame by naively applying zero-mean assumption of
turbulence. However, Temp Avg often suffers from blur, leading to imprecise
registration when handling severe distortions, as shown in Fig. 3(a). In contrast,
FRF achieves more accurate registration due to its superior quality. In Fig. 3(b),
Temp Avg assumes that all pixel intensities occurring at a certain position have
equal weight. However, the output is dissimilar with original GT, as the non-
original pixel intensities make a negative contribution to the output at the certain
position. In this work, we propose a frequency-aware method to construct a
reliable reference frame based on the pixel motion statistical prior of turbulence.
Pixel Displacement Statistical Prior of Turbulence. To explore the pixel
displacement statistical prior of turbulence, we conduct an analysis experiment
utilizing the corners of checkerboard in Fig. 4. We take checkerboard turbulence
images as the experimental datasets due to the ability to approximate corner
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the motion trajectory of corners along the temporal axis, with an extended display
of two randomly selected corners across 200 frames. (c) performs a statistic of corner
motions and the motions of corners approximately conform to a zero-mean gaussian
distribution, indicating that corners most frequently occur in their original positions.

motion as pixel motion, and the mature nature of checkerboard corner detection
techniques. Then we apply a corner detector [20] on the collected datasets to
detect the shifted corners. Note that we conduct extensive analysis experiments
on long-range turbulence across various distances and scenes ( e.g. Building with
wall corners). Please refer to supplementary material for details.

In Fig. 4(a), we show the clean and distorted checkerboard and corresponding
motion field of corners. It is evident that the corners of distorted frames exhibit
noticeable motion, and the motion of corners varies across different frames. To
better explore the motion of corners in the temporal dimension, we further visu-
alize the motion trajectory of the corners along the temporal axis in Fig. 4(b).
The motion trajectories of each corner are distinct. We randomly select two cor-
ners and present their horizontal and vertical positions on the right. It is observed
that although the displacements of the two corners differ, a commonality is that
they consistently occur relatively close to their original positions, resembling a
statistical rule. To further explore the statistics of pixel motion, we normalize
the positions of all corners across 200 frames and perform statistics analysis on
their displacements in Fig. 4(c). The statistical results show that the motions
approximately follow a zero-mean gaussian distribution, indicating that pixels
most frequently occur in their original positions. This insight implies that the
pixel occurring most frequently at one certain position is most likely the original
GT, inspiring us to propose a frequency-aware reference frame.
Frequency-aware Reference Frame. Given the distorted sequence, suppose
there are K different pixel intensities occurring at a certain position l = (x, y)
along the temporal dimension. Let Il ,k represent a pixel intensity occurring at
this position in the distorted sequence and k ∈ [1,K]. We first count the fre-
quency of each pixel intensity occurring at the position along the temporal di-
mension: Nl ,k = count(Il ,k). Previous temporal average reference frame assigns
a weight of one to each pixel intensity at the certain position, hence, the output
Tl is obtained by summing all pixel intensities and dividing by the number of
frames that equals the sum of the frequency of pixel intensities:

Tl =
( K∑
k=1

Nl ,k × Il ,k

)
/
( K∑
k=1

Nl ,k

)
, (1)
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Different from temporal averaging, we argue that the weight of pixel intensities
is positively correlated with their frequency as shown in Fig. 3(b). Consequently,
we construct a frequency-aware weight for each pixel intensity:

ωl ,k = eσ×Nl,k , (2)
which is a function of the frequency Nl ,k, and σ is a hyper-parameter controlling
the growth rate of the weight. Next, the pixel value of the reference frame at the
certain position Fl is constructed via weighted averaging based on frequency:

Fl =
( K∑
k=1

Nl ,k × Il ,k × ωl ,k

)
/
( K∑
k=1

Nl ,k × ωl ,k

)
. (3)

Relationship between FRF and Temp Avg. We further discuss the relation-
ship between Temp Avg and FRF, which is established through the parameter
σ. The σ in Eq. (2) decides the sensitivity of weight function to frequency. When
σ = 0, the weight is one for all intensities, and the Eq. (3) can be simplified as:

Fl =
( K∑
k=1

Nl ,k ×Dl ,k

)
/
( K∑
k=1

Nl ,k

)
. (4)

which is the same as Eq. (1), illustrating that average reference frame is a special
case of proposed FRF when σ = 0. The reference frame constructed with σ = 0
(Temp Avg) is shown in Fig. 3(a), it can be observed that the result suffers
from severe blur. On the contrary, when σ ̸= 0, the higher the frequency of pixel
intensity, the greater the weight, resulting in a output more similar to the original
pixel. The result with σ ̸= 0 (FRF) in Fig. 3(a) possesses superior visual quality
compared to Temp Avg, which is beneficial for severe distortion registration.

4.2 Low-rank Tensor Distortion Refinement

Low-rank Prior of Static Background. Due to the severe distortions in
long-range turbulence, achieving perfect pixel-level registration is impossible.
Consequently, registration errors are unavoidable in the registered sequences.
Considering the static nature of scene, we aim to utilize low-rank prior of static
background to refine registration errors while preserving details. We utilize the
section lines and singular values to analyze the low-rank property of the dis-
torted, registered and refined sequence in Fig. 5. In Fig. 5(a), we randomly
select 1D section lines from each sequence. It is observed that the registered sec-
tion lines contain sparse noise, while the refined section lines exhibit smoothness
along the temporal dimension. Figure 5(b) shows the curves of singular value,
revealing that the refined sequence manifests the strongest low-rank property.
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Subspace-based Low-rank Tensor Refinement Model. Previous meth-
ods directly utilized matrix decomposition to remove turbulence [24, 41], which
need to transform 3-D video into 2-D matrix, damaging the spatial-temporal
structure. In this work, we propose a subspace-based low-rank tensor refinement
model (SLRTR) to rectify the misalignments while preserving details. To our
knowledge, we are the first to introduce tensor model into turbulence removal.
Given the registered sequence R ∈ Rh×w×t, where h, w and t respectively de-
note the image height, width, and the number of frames. The key challenge lies
in effectively reducing registration error while preserving the spatio-temporal
details. A registered sequence can be described as the following formula:

R = B + E +N , (5)
where B ∈ Rh×w×t represents the refined sequence, E ∈ Rh×w×t is the registra-
tion error, N ∈ Rh×w×t denotes the random noise. In this work, we formulate the
refinement as an inverse problem utilizing the maximum-a-posterior, as follows:

min
B,E

1
2 ||B + E −R||2F + αΦb(B) + βΦe(E), (6)

where Φb and Φe represent the prior knowledge for the background and error,
respectively, α and β are the corresponding hyper-parameters. For static scene
turbulence videos, on the one hand, the refined sequence B exhibits global low-
rank property along the temporal dimension, with an ideal rank of one. On the
other hand, it also has significant non-local low-rank property along the spatial
dimension, due to the self-similarity widely employed in image restoration [13].
Hence, we effectively exploit a joint global-nonlocal prior across both spatial and
temporal dimensions to enhance the representation of the static background B:

Φb(B) = α
∑
i

(
1
λ2
i
||SiB×3Oi − Gi||2F + ||Gi||tnn

)
, (7)

where SiB ∈ Rp2×n×t is the constructed 3-D tensor via the non-local clustering
of a sub-cubic ui ∈ Rp×p×t [9], p and n are the spatial size and number of the sub-
cubic respectively, Oi ∈ Rd×t(d ≪ t) is an orthogonal subspace projection matrix
used to capture the temporal low-rank property, ×3 is the tensor product along
the temporal dimension [30], Gi represents the low-rank approximation variable,
|| • ||tnn means the tensor nuclear norm for simplicity [9], λi is the regularization
parameter. As for the error E, we formulate it as the sparse error [52] via the L1

sparsity. Thus, the Eq. (6) can be expressed as:{
B̂, Ê, Ĝi, Ôi

}
= arg min

B,E,Gi,Oi

1
2 ||B + E −R||2F

+β||E||1 + α
∑
i

(
1
λ2
i
||SiB×3Oi − Gi||2F + ||Gi||tnn

)
.

(8)

To solve B,E,Gi, Oi, we adopt the alternating minimization scheme [33] to solve
the Eq. (8) for each variable. Please refer to the appendix for the solution.

5 Experimental Results

5.1 Datasets and Experimental Settings

Datasets. We conduct the experiments on various datasets, including a syn-
thetic dataset, the proposed dataset RLR-AT and real hot-air turbulence dataset
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RLR-AT. Figures on the above row are results of static-scene independent methods
(marked by method), and ∗ denotes single-frame based method. Figures on the below
row are results of static-scene dependent methods.

TurbuText [1]. Synthetic turbulence is simulated with varying distances on the
ADE20K [57] employing the turbulence simulator P2S [38]. Further details of
the simulator protocol are provided in the supplementary material.
Comparison Methods. We compare CDSP with (1) conventional turbulence
removal methods: TurbRecon [37], SG [35], CLEAR [4] and NDL [58]; (2) deep
learning based methods: TurbNet [39], TSR-WGAN [29], PiRN [27], NDIR [32]
and TMT [56]. For a fair comparison, considering that the experimental datasets
consist of static scenes, we categorize the methods into two groups: static-scene
dependent and static-scene independent, and they are further classified based on
input frames into multi-frame based and single-frame based. We employ codes
and pre-train models of TMT and TurbRecon designed for static scenes to ensure
a fair comparison. All methods incorporate deblurring effects, with NDIR and
NDL using their default deblurring approach [45].

5.2 Qualitative and Quantitative Evaluation

Qualitative Evaluation on Real Turbulence. In Fig. 6, we compare with
the existing methods on the RLR-AT. Single-frame based methods TurbNet [39]
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Table 2: Quantitative comparison with other methods on synthetic turbulence dataset
at different distances. ∗ denotes single-frame based approach. Red text indicates the
best performance, blue text indicates the second-best performance. ∆ denotes the
exact superiority of proposed CDSP over the second-best method. As the distance
increases, our method outperforms the SOTA approach even more significantly.

Distance Metric Static-scene Independent Methods Static-scene Dependent Methods
∆TurbNet∗ PiRN∗ TSR-WGAN TMT TurbRecon NDL CLEAR SG NDIR CDSP

2 Km PSNR↑ 23.58 25.93 23.98 26.54 27.27 24.93 26.19 24.53 24.29 27.94 0.67
SSIM↑ 0.8155 0.8675 0.8215 0.8887 0.8995 0.8459 0.8815 0.8545 0.8147 0.9181 0.0186

4 Km PSNR↑ 21.97 24.43 22.90 24.82 26.05 24.12 24.79 23.31 23.23 26.91 0.86
SSIM↑ 0.7491 0.8168 0.7813 0.8556 0.8615 0.8111 0.8382 0.8026 0.7796 0.8893 0.0278

6 Km PSNR↑ 21.22 23.42 21.89 23.73 24.93 23.37 23.58 22.50 22.59 25.74 0.81
SSIM↑ 0.7132 0.7790 0.7394 0.8265 0.8311 0.7834 0.7925 0.7643 0.7561 0.8594 0.0283

8 Km PSNR↑ 20.69 22.74 21.31 23.01 23.95 22.76 22.62 21.89 22.19 24.84 0.89
SSIM↑ 0.6864 0.7518 0.7135 0.8012 0.8024 0.7592 0.7523 0.7335 0.7402 0.8319 0.0295
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Fig. 7: Effectiveness of FRF and SLRTR. (a) Visual
comparison of results w/o FRF-based registration, w/o
SLRTR and w/ both. (b) Residual error from SLRTR
decomposition. (c) Histogram of residual error.

(a)

(c)

(b)

（d）

Fig. 8: Ablation study on
SLRTR. (a) Input. (b)
w/o subspace. (c) w/o self-
similarity. (d) w/ both.

and PiRN [27] struggle with distortions as they lack modeling of temporal in-
formation for turbulence. The results of supervised-based methods like TSR-
WGAN [29] and TMT [56] still exhibit distortions due to the domain gap.
CLEAR [4], SG [35] and NDL [58] continually produce artifacts or distortions
due to unsuitable design for long-range turbulence. Albeit TurbRecon [37] can ac-
quire results with comparable quality, the results still encounter misalignments.
In comparison, CDSP consistently achieves more pleasing results at various dis-
tances, effectively addressing severe distortions while preserving details. We also
conduct a comparison on hot-air turbulence, which are shown in the appendix.
Quantitative Evaluation on Synthetic Turbulence. We further evaluate
the performance of CDSP and other methods on synthetic turbulence in Ta-
ble 2. It is observed that most multi-frame based methods perform better than
single-frame based methods, since they take into consideration the temporal in-
formation of turbulence. CDSP and TurbRecon achieve the best performance
in their respective categories. Note that as the distance increases, CDSP out-
performs existing SOTA methods even more significantly, further revealing the
superiority of CDSP for long-range turbulence with severe distortions.
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Table 3: Ablation
study of FRF and
SLRTR.

FRFSLRTRPSNR SSIM

✗ ✗ 22.62 0.8051

✗ ✓ 23.02 0.8034

✓ ✗ 23.53 0.8154

✓ ✓ 23.960.8385

Table 4: Effectiveness of FRF
when embedded into existing
methods compared to others.

Methods Metric
Reference frame

GainTemp avg
[58]

Non-local avg
[37]

FRF
(Ours)

NDL
[58]

PSNR 22.95 22.88 23.29 0.34
SSIM 0.7698 0.7650 0.7819 0.0121

TurbRecon
[37]

PSNR 24.33 24.14 24.79 0.65
SSIM 0.8122 0.8082 0.8231 0.0149

CDSP
(Ours)

PSNR 25.25 24.68 25.41
SSIM 0.8391 0.8331 0.8462

Table 5: Boosting perfor-
mance of high-level text
recognition task.

Methods CRNN ASTERN DAN
Distorted 0.2553 0.3475 0.3759
TurbNet 0.2057 0.3546 0.3617
PiRN 0.2695 0.3546 0.3758
SG 0.2340 0.3971 0.4042

NDL 0.4539 0.4894 0.4681
TMT 0.4040 0.4893 0.4964

TurbRecon 0.4397 0.4965 0.4894
CDSP 0.5248 0.5319 0.5532

Turbulence Temporal avg Non-local avg RPCA FRF (Ours)

Fig. 9: Visual comparison of FRF with other reference frame.

5.3 Ablation and Discussion

How dose FRF Facilitate Severe Distortion Correction? We study the
importance of FRF for distortion correction. As shown in Fig. 3(a) earlier, due to
the superior quality and sharp edges of FRF, better registration can be achieved,
greatly reducing the burden of refinement. We remove the FRF-based registra-
tion (FRF), and directly employ SLRTR to handle severe distortions, placing
a heavy burden on SLRTR. Table 3 shows that the removal of FRF leads to
a noticeable performance drop. Moreover, the result without FRF in Fig. 7(a)
encounters severe detail loss. Figure 7(b) and (c) show the visualization and dis-
tribution of residuals from SLRTR decomposition. It is evident that the residual
without FRF contains more lost details. This indicates that FRF is indispensable
in reducing the burden of refinement and preventing severe details loss.
How dose SLRTR Improve Severe Distortion Correction? We aim to em-
phasize the necessity of SLRTR for distortion correction. We remove the SLRTR
and directly utilize FRF-based registration. However, achieving perfect pixel-
level registration is impossible, since there exist severe distortions in long-range
turbulence. Table 3 shows that the method encounters a obvious performance
drop without SLRTR, and the result without SLRTR in Fig. 7(a) still exists mis-
alignments, indicating that SLRTR is necessary for refining registration errors.
Effectiveness of Subspace and Self-similarity. Then we aim to illustrate
the effectiveness of subspace and self-similarity to the proposed SLRTR. The
subspace is utilized to characterize the global low-rank property along the tem-
poral dimension. In Fig. 8(b), the result without subspace still exists distortions,
indicating that relying solely on the prior of spatial self-similarity is insufficient
to characterize the properties of the temporal dimension. The non-local prior
is employed to explore the self-similarity of the spatial dimension. Figure 8(c)
shows the result without self-similarity, which suffers from unexpected details
loss, implying that relying only on the temporal information is not enough.
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Static Region Dynamic RegionInput Static Region Dynamic RegionOutput

(a) Dynamic scene turbulence with static and dynamic regions (b) Results obtained using CDSP

Fig. 10: Limitation of the proposed CDSP. (a) Dynamic scene turbulence. (b) Result of
CDSP. CDSP can effectively handle static region but fails to process dynamic regions.

Complementarity between SLRTR and FRF. We further discuss how does
FRF and SLRTR complement each other in Fig. 7(a). On one hand, FRF-based
registration could notably mitigate distortions with fewer corruptions, greatly
reducing the burden of SLRTR. On the other hand, the SLRTR could effectively
refine the residual errors unavoidably left by FRF-based registration. FRF and
SLRTR complement to each other to better remove the severe distortion.
Effectiveness of Frequency-aware Reference Frame. To further illustrate
the Effectiveness of FRF, we embed existing reference frames (Temp Avg [58],
Non-local average [37]) and proposed FRF into existing frameworks: NDL [58],
TurbRecon [37] and proposed CDSP on 5 Km synthetic turbulence. Table 4
shows that existing methods obtain the highest PSNR/SSIM after integrating
FRF, revealing the effectiveness of FRF. We also visualize the comparison be-
tween FRF and other reference frames in Fig. 9. It is observed that FRF possesses
superior quality and sharper edge, further demonstrating the reliability of FRF.
Promotion for Downstream Recognition. We further evaluate the tur-
bulence mitigating methods on text recognition using TurbuText [1]. We ap-
ply three text recognition methods (CRNN [46], ASTERN [47], DAN [50]) on
restoration results and report the accuracies in Table 5. CDSP consistently im-
proves the recognition performance for all recognition methods.
Limitation. The proposed method could effectively handle static scene turbu-
lence, but dynamic scenes (e.g. scene contains moving objects or camera shake)
are more complex due to the coupling of turbulence, object and camera mo-
tion. Figure 10 shows the results of dynamic scene. Though static regions are
well-processed, dynamic regions suffer from severe trailing since CDSP does not
model object motion. We will address dynamic scene turbulence in future work.

6 Conclusion

Our work focuses on long-range turbulence mitigation. We construct a long-
range turbulence dataset (RLR-AT). We propose a coarse-to-fine framework for
long-range turbulence mitigation, which cooperates the dynamic and the static
priors. We propose a frequency-aware reference frame for better registration.
We propose a low-rank tensor refinement model to refine the registration er-
ror with details preserving. Extensive experiments demonstrate the proposed
method outperforms SOTA methods on different datasets.



Long-range Turbulence Mitigation 15

Acknowledgements

This work was supported by the National Natural Science Foundation of China
under Grant 62371203. The computation is completed in the HPC Platform of
Huazhong University of Science and Technology.

References

1. Bridging the gap between computational photography and visual recognition: 6th
ug2+ prize challenge, http://http://cvpr2023.ug2challenge.org/dataset23_
t2.html, track 2

2. Lucky imaging: high angular resolution imaging in the visible from the ground.
Astronomy & Astrophysics 446(2), 739–745 (2006)

3. Anantrasirichai, N., Achim, A., Bull, D.: Atmospheric turbulence mitigation for
sequences with moving objects using recursive image fusion. In: ICIP. pp. 2895–
2899 (2018)

4. Anantrasirichai, N., Achim, A., Kingsbury, N.G., Bull, D.R.: Atmospheric turbu-
lence mitigation using complex wavelet-based fusion. IEEE TIP 22(6), 2398–2408
(2013)

5. Boehrer, N., Nieuwenhuizen, R.P., Dijk, J.: Turbulence mitigation in neuromorphic
camera imagery. vol. 11540, pp. 43–58. SPIE (2020)

6. Brandner, W., Hormuth, F.: Lucky imaging in astronomy. Astronomy at High
Angular Resolution: A Compendium of Techniques in the Visible and Near-Infrared
pp. 1–16 (2016)

7. Caliskan, T., Arica, N.: Atmospheric turbulence mitigation using optical flow. In:
ICPR. pp. 883–888 (2014)

8. Chan, S.H.: Tilt-then-blur or blur-then-tilt? clarifying the atmospheric turbulence
model. IEEE SPL 29, 1833–1837 (2022)

9. Chang, Y., Yan, L., Zhong, S.: Hyper-laplacian regularized unidirectional low-rank
tensor recovery for multispectral image denoising. In: CVPR. pp. 4260–4268 (2017)

10. Chimitt, N., Chan, S.H.: Simulating anisoplanatic turbulence by sampling in-
termodal and spatially correlated zernike coefficients. OE 59(8), 083101–083101
(2020)

11. Chimitt, N., Mao, Z., Hong, G., Chan, S.H.: Rethinking atmospheric turbulence
mitigation. arXiv preprint arXiv:1905.07498 (2019)

12. Chimitt, N., Zhang, X., Mao, Z., Chan, S.H.: Real-time dense field phase-to-space
simulation of imaging through atmospheric turbulence. IEEE TCI 8, 1159–1169
(2022)

13. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-d
transform-domain collaborative filtering. IEEE TIP 16(8), 2080–2095 (2007)

14. Deshmukh, A.S., Medasani, S.S., Reddy, G.R.: A fast hierarchical patch-based
approach for mitigating atmospheric turbulence. In: ICACCI. pp. 1–7 (2013)

15. Fazlali, H., Shirani, S., BradforSd, M., Kirubarajan, T.: Atmospheric turbulence
removal in long-range imaging using a data-driven-based approach. IJCV 130(4),
1031–1049 (2022)

16. Feng, B.Y., Xie, M., Metzler, C.A.: Turbugan: An adversarial learning approach
to spatially-varying multiframe blind deconvolution with applications to imaging
through turbulence. IEEE JSAIT 3(3), 543–556 (2022)

http://http://cvpr2023.ug2challenge.org/dataset23_t2.html
http://http://cvpr2023.ug2challenge.org/dataset23_t2.html


16 Xu et al.

17. Fried, D.L.: Optical resolution through a randomly inhomogeneous medium for
very long and very short exposures. JOSA 56(10), 1372–1379 (1966)

18. Fried, D.L.: Anisoplanatism in adaptive optics. JOSA 72(1), 52–61 (1982)
19. Gao, J., Anantrasirichai, N., Bull, D.: Atmospheric turbulence removal using con-

volutional neural network. arXiv preprint arXiv:1912.11350 (2019)
20. Geiger, A., Moosmann, F., Car, Ö., Schuster, B.: Automatic camera and range

sensor calibration using a single shot. In: ICRA. pp. 3936–3943 (2012)
21. Gilles, J., Ferrante, N.B.: Open turbulent image set (otis). PRL 86, 38–41 (2017)
22. Hardie, R.C., Power, J.D., LeMaster, D.A., Droege, D.R., Gladysz, S., Bose-Pillai,

S.: Simulation of anisoplanatic imaging through optical turbulence using numerical
wave propagation with new validation analysis. OE 56(7), 071502–071502 (2017)

23. Hardie, R.C., Rucci, M.A., Dapore, A.J., Karch, B.K.: Block matching and wiener
filtering approach to optical turbulence mitigation and its application to simulated
and real imagery with quantitative error analysis. OE 56(7), 071503–071503 (2017)

24. He, R., Wang, Z., Fan, Y., Fengg, D.: Atmospheric turbulence mitigation based on
turbulence extraction. In: ICASSP. pp. 1442–1446 (2016)

25. Hirsch, M., Sra, S., Schölkopf, B., Harmeling, S.: Efficient filter flow for space-
variant multiframe blind deconvolution. In: CVPR. pp. 607–614 (2010)

26. Hua, X., Pan, C., Shi, Y., Liu, J., Hong, H.: Removing atmospheric turbulence
effects via geometric distortion and blur representation. IEEE TGRS 60, 1–13
(2020)

27. Jaiswal, A., Zhang, X., Chan, S.H., Wang, Z.: Physics-driven turbulence image
restoration with stochastic refinement. In: ICCV. pp. 12170–12181 (2023)

28. Jiang, W., Boominathan, V., Veeraraghavan, A.: Nert: Implicit neural representa-
tions for unsupervised atmospheric turbulence mitigation. In: CVPRW. pp. 4235–
4242 (2023)

29. Jin, D., Chen, Y., Lu, Y., Chen, J., Wang, P., Liu, Z., Guo, S., Bai, X.: Neutralizing
the impact of atmospheric turbulence on complex scene imaging via deep learning.
NMI 3(10), 876–884 (2021)

30. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM review
51(3), 455–500 (2009)

31. Lau, C.P., Lai, Y.H., Lui, L.M.: Restoration of atmospheric turbulence-distorted
images via rpca and quasiconformal maps. Inverse Problems 35(7), 074002 (2019)

32. Li, N., Thapa, S., Whyte, C., Reed, A.W., Jayasuriya, S., Ye, J.: Unsupervised
non-rigid image distortion removal via grid deformation. In: ICCV. pp. 2522–2532
(2021)

33. Lin, Z., Liu, R., Su, Z.: Linearized alternating direction method with adaptive
penalty for low-rank representation. NeurIPS 24 (2011)

34. Liu, C., et al.: Beyond pixels: exploring new representations and applications for
motion analysis. Ph.D. thesis, Massachusetts Institute of Technology (2009)

35. Lou, Y., Kang, S.H., Soatto, S., Bertozzi, A.L.: Video stabilization of atmospheric
turbulence distortion. Citeseer IPI 7(3), 839–861 (2013)

36. Lu, C., Feng, J., Chen, Y., Liu, W., Lin, Z., Yan, S.: Tensor robust principal
component analysis: Exact recovery of corrupted low-rank tensors via convex op-
timization. In: CVPR. pp. 5249–5257 (2016)

37. Mao, Z., Chimitt, N., Chan, S.H.: Image reconstruction of static and dynamic
scenes through anisoplanatic turbulence. IEEE TCI 6, 1415–1428 (2020)

38. Mao, Z., Chimitt, N., Chan, S.H.: Accelerating atmospheric turbulence simulation
via learned phase-to-space transform. In: ICCV. pp. 14759–14768 (2021)



Long-range Turbulence Mitigation 17

39. Mao, Z., Jaiswal, A., Wang, Z., Chan, S.H.: Single frame atmospheric turbulence
mitigation: A benchmark study and a new physics-inspired transformer model. In:
ECCV. pp. 430–446. Springer (2022)

40. Mei, K., Patel, V.M.: Ltt-gan: Looking through turbulence by inverting gans. IEEE
JSTSP (2023)

41. Oreifej, O., Li, X., Shah, M.: Simultaneous video stabilization and moving object
detection in turbulence. IEEE TPAMI 35(2), 450–462 (2012)

42. Rai, S.N., Jawahar, C.: Removing atmospheric turbulence via deep adversarial
learning. IEEE TIP 31, 2633–2646 (2022)

43. Roggemann, M.C., Welsh, B.M., Hunt, B.R.: Imaging through turbulence. CRC
press (1996)

44. Schwartzman, A., Alterman, M., Zamir, R., Schechner, Y.Y.: Turbulence-induced
2d correlated image distortion. In: ICCP. pp. 1–13 (2017)

45. Shan, Q., Jia, J., Agarwala, A.: High-quality motion deblurring from a single image.
ACM TOG 27(3), 1–10 (2008)

46. Shi, B., Bai, X., Yao, C.: An end-to-end trainable neural network for image-based
sequence recognition and its application to scene text recognition. IEEE TPAMI
39(11), 2298–2304 (2016)

47. Shi, B., Yang, M., Wang, X., Lyu, P., Yao, C., Bai, X.: Aster: An attentional scene
text recognizer with flexible rectification. IEEE TPAMI 41(9), 2035–2048 (2018)

48. Shimizu, M., Yoshimura, S., Tanaka, M., Okutomi, M.: Super-resolution from im-
age sequence under influence of hot-air optical turbulence. In: CVPR. pp. 1–8
(2008)

49. Tatarski, V.I.: Wave propagation in a turbulent medium. Courier Dover Publica-
tions (2016)

50. Wang, T., Zhu, Y., Jin, L., Luo, C., Chen, X., Wu, Y., Wang, Q., Cai, M.: Decou-
pled attention network for text recognition. In: AAAI. vol. 34, pp. 12216–12224
(2020)

51. Wang, Y., Jin, D., Chen, J., Bai, X.: Revelation of hidden 2d atmospheric tur-
bulence strength fields from turbulence effects in infrared imaging. NCS pp. 1–13
(2023)

52. Wright, J., Ganesh, A., Rao, S., Peng, Y., Ma, Y.: Robust principal component
analysis: Exact recovery of corrupted low-rank matrices via convex optimization.
NeurIPS 22 (2009)

53. Xie, Y., Zhang, W., Tao, D., Hu, W., Qu, Y., Wang, H.: Removing turbulence
effect via hybrid total variation and deformation-guided kernel regression. IEEE
TIP 25(10), 4943–4958 (2016)

54. Yasarla, R., Patel, V.M.: Learning to restore images degraded by atmospheric
turbulence using uncertainty. In: ICIP. pp. 1694–1698 (2021)

55. Zhang, X., Chimitt, N., Chi, Y., Mao, Z., Chan, S.H.: Spatio-temporal turbulence
mitigation: A translational perspective. In: CVPR (2024)

56. Zhang, X., Mao, Z., Chimitt, N., Chan, S.H.: Imaging through the atmosphere
using turbulence mitigation transformer. IEEE TCI (2024)

57. Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., Torralba, A.: Scene parsing
through ade20k dataset. In: CVPR. pp. 633–641 (2017)

58. Zhu, X., Milanfar, P.: Removing atmospheric turbulence via space-invariant de-
convolution. IEEE TPAMI 35(1), 157–170 (2012)


	Long-range Turbulence Mitigation: A Large-scale Dataset and A Coarse-to-fine Framework

