
Parrot Captions Teach CLIP to Spot Text

Yiqi Lin1,2* , Conghui He1*B , Alex Jinpeng Wang2*, Bin Wang1* ,
Weijia Li3, and Mike Zheng Shou2

1 Shanghai Artificial Intelligence Laboratory
2 Show Lab, National University of Singapore

3 Sun Yat-Sen University

Abstract. Despite CLIP [29] being the foundation model in numerous
vision-language applications, CLIP suffers from a severe text spotting
bias. Such bias causes CLIP models to ‘Parrot’ the visual text embedded
within images while disregarding the authentic visual semantics. We un-
cover that in the most popular image-text dataset LAION-2B [31], the
captions also densely parrot (spell) the text embedded in images. Our
analysis shows that around 50% of images are embedded with visual text
content and around 30% of captions words are concurrently embedded
in the visual content. Based on such observation, we thoroughly inspect
the different released versions of CLIP models and verify that the visual
text is a dominant factor in measuring the LAION-style image-text simi-
larity for these models. To examine whether these parrot captions shape
the text spotting bias, we train a series of CLIP models with LAION
subsets curated by different parrot-caption-oriented criteria. We show
that training with parrot captions easily shapes such bias but harms the
expected visual-language representation learning in CLIP models across
various vision-language downstream tasks. This suggests that it is urgent
to revisit either the design of CLIP-like models or the existing image-
text dataset curation pipeline built on CLIP score filtering. Project page:
https://linyq17.github.io/CLIP-Parrot-Bias/
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1 Introduction

Recently, contrastive learning models [17, 29, 31] pre-trained with large-scale
image-text pair data has led to numerous vision-language modeling task break-
throughs. Due to its efficiency and simplicity, the pioneering work CLIP [29]
now serves as a foundation model in various applications [20, 26, 30, 49]. How-
ever, several works [4,13] have shown that CLIP models have perpetuating biases
towards visual text [19,25], color [34,44], gender [41], etc. In this paper, we focus
on probing the visual text bias in CLIP, i.e., the capacity of spotting text in
images. Most of the previous cues [25, 29, 34] attribute the sources of biases to
the noisy pre-training data. Therefore, we begin by taking a close look at the
most popular dataset, LAION-2B [31].
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1). Year of Yes: How to Dance It Out, Stand In the Sun and Be Your Own Person by Shonda Rhimes.                                 
2). 10 Ways to Teach Your Toddler to Listen- excellent advice from Dr. B, a school psychologist.
3). Download 2018 Ford F150 3.5L Ecoboost vs 5.0L V8 Coyote Drag Race! It's Kunes Country Prize Fights! Video.
4). Kids Again (feat. Amy Allen) by Artist Vs Poet.
5). Modoc: The True Story of the Greatest Elephant That Ever Lived, Ralph Helfer.
6). Everton Mints 150g Jar.
7). National Association of Student Financial Aid Administrators Presents 2015 NASFAA What You Need to Know About Financial Aid.
8). Hake's - BILL GRAHAM FILLMORE EAST CONCERT POSTER FEATURING MOTHERS OF INVENTION.
9). \"\u2022 #LEGO #NINJAGO  [ \"\"Nobody is perfect. I am nobody, so I am perfect\"\" ] #quote  \u2022 #Kai #KaiSmith  \u2022 
My Edit. Hope you'll like it! :-)\".

CLIP Score Top5% in LAION-2B

Fig. 1: In LAION-2B [31], image-text pairs with the Top-5% highest similar-
ity score are most dominant by visual text! These samples have dense concurrent
text appearing in captions and images (text form in pixels). We refer to their captions
as Parrot Captions as they raise a question: Dose CLIP Simply Parroting Text in
Images for Vision-Language Alignment? The concurrent text is spotted by the OCR
model and highlighted with color in image-text pairs. (Best view in color)

Considering the massive scale of the image-text data, it is non-trivial to assess
the bias simply with a rough estimation. To this end, we first do image clustering
on the whole dataset and rank each cluster by CLIP scores to analyze the most
preferred types of image-text pairs under CLIP score measurement. As shown
in Fig. 1, we surprisingly observe that a decent number of samples with top CLIP
scores have dense concurrent text appearing in the captions and the images in the
form of pixels. These samples break the assumption that CLIP models leverage
text supervision to align the visual and language concepts. We refer to these
captions as Parrot Captions as they provide another shortcut to achieve the
same goal by teaching CLIP to do text spotting even without perceiving the
actual visual concepts. To understand the underlying impact, we analyze the
parrot captions from three perspectives: dataset, widely used released models,
and model training. The results lead to three key findings:

Firstly, captions in LAION-2B have a significant bias towards de-
scribing visual text content embedded in the images. We provide thor-
ough profiling using off-the-self text spotting models on the LAION-2B dataset
and show that over 50% of the images are embedded with visual text content.
Moreover, by examining the spotted text content and the paired caption in the
subset that images embedded with text, we find that over 60% of the captions
at least have one concurrent word and reach at least around 30% words overlap
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between the caption and spotted text from images. This finding suggests that
the basic assumption of image-text semantic alignment in CLIP does not fully
stand its ground when training with LAION-style data.

Secondly, released CLIP models have strong text spotting bias al-
most in every style of web images, resulting in CLIP-filtering datasets
inherently biased towards visual text-dominant data. We investigate
OpenAI released CLIP model’s behaviors in the LAION-2B dataset by exam-
ining the difference between alignment scores before and after text removal.
The results show that CLIP model predictions densely correlate the visual text
embedded in images with their parrot captions. Next, we further study the pref-
erence of the text spotting capacity on text content in CLIP and OpenCLIP
models. Note that CLIP is trained on WIT-400M, while OpenCLIP uses the
LAION-2B dataset. Therefore, we use synthetic images embedded with specific
rendered text to avoid overfitting in OpenCLIP models. Our analysis shows that
OpenCLIP is more biased toward text spotting than CLIP. We believe that the
parrot caption plays a lurking role in training these released CLIP models and is
the source of text spotting capacity instead of emergence behavior [42].

Thirdly, CLIP models can easily learn text spotting capacity from
parrot captions while failing to connect the vision-language seman-
tics, just like a text spotting parrot. We sample different LAION-2B sub-
sets curated by text-orientated criteria, including the embedded text ratio, the
concurrent word ratios, and the relative CLIP score from text removal to train
CLIP models under the same setting. The results show that using parrot cap-
tions data, CLIP model can learn strong text spotting capacity but lose most
of the zero-shot generalization ability on image-text downstream tasks. More-
over, we also observe similar behaviors on various downstream tasks such VQA,
captioning, and retrieval on BLIP [21] models. Lastly, we argue that the existing
data curation pipeline built on CLIP score and the contrastive fashion urgently
needs to be re-examined by considering such hidden parrot captions.

2 Related Work

2.1 Contrastive Vision-Language Pre-training

Modeling vision and language by aligning the embedding similarity between
paired image-text data [17, 29, 31] has shown great potential for transferable to
downstream vision-language tasks. The pre-training techniques mainly contain
the vision encoder [10, 15] for image embedding encoding, text encoder [9] for
text embedding modeling, and cross-modal contrastive learning [17, 22, 29, 47]
for learning a joint embedding space of vision and language. The pioneering
work CLIP [29] leverages 400 million noisy image-text pairs to learn transfer-
able visual representation from text supervision and show impressive zero-shot
performance for various vision-language tasks. Following CLIP, several vision-
language models such as ALIGN [17], BASIC [27], and Open-CLIP [31] are
proposed, and CLIP models have been replicated on various datasets includ-
ing WIT [29], LAION [31], COYO [6], and DataComp [11]. We mainly profile
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the LAION-2B [31] dataset due to its large scale and wide usage [26, 30] and
two versions of pre-trained models, CLIP and OpenCLIP. Note that the 2 bil-
lion image-text pairs in the LAION-2B dataset are filtered by OpenAI released
CLIP models, making OpenCLIP connect to CLIP closely.

2.2 Studying of CLIP Behaviors

Despite the strong zero-shot and transferable performance of CLIP, the perpet-
uating biases [1, 3, 13, 19, 41, 46] in CLIP are still not well investigated due to
its large-scale noisy training data. Much research [2, 25, 34,37,40, 43,44] focuses
on revealing or enhancing the downstream performance with discovered bias in
CLIP. For example, colorful masks [44] or red circles [34] applied to images can
improve the zero-shot performance on visual localization tasks. In studying vi-
sual text content bias, [13] shows the multimodal neurons of CLIP not only
respond to visual content and the visual text embedded in the image. Another
work [19] shows that image recognition in CLIP can be strongly dominated by
the visual text embedded in the image. To disentangle such bias, [25] attempts
to separate the text spotting representation in pre-trained CLIP by training rep-
resentation projection. Meanwhile, LoGoPrompt [33] enhances the classification
performance by utilizing the visual text content as auxiliary prompts as input.
Also, CLIPPO [39] shows that directly aligning the image and synthetic images
print with the captions can perform similarly to CLIP without a text encoder.

2.3 Data Curation with Text Removal

Due to the successful practice of data curation in LAION datasets [31, 32] on
scaling up the image-text datasets, searching advanced selection strategy to im-
prove the data quality from common crawl data pool gains a growing interest [11].
Recently, several works [7, 24, 28] suggest that introducing text-related filtering
methods improves the pre-training dataset quality. In DiHT [28], the data cura-
tion steps include filtering out the image-text pairs with high OCR confidence
and matching text ratio. Moreover, [7, 24] mainly focus on studying the impor-
tance of filtering out the text-dominate images utilizing OCR models to improve
pre-training dataset quality. Maini et al. [24] also draw the observation that 40%
of LAION’s image text is highly correlated with the caption, but only perform-
ing a small pilot study on 500 samples with manual judgment. Differently, this
paper makes the first attempt to systemically reveal the source of text spotting
capacity in CLIP is the data bias and the consequences of such bias in existing
widely used datasets and pre-trained models.

3 Terminology

The data processing on images in the following sections mainly covers clustering,
text spotting (OCR), and text inpainting. Firstly, we cluster all images based
on feature similarity. For each image-text pair, we then use the pre-trained text
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Fig. 2: Visualization of defined terminologies. Co-Emb. Text is marked in the caption.

Algorithm 1 Pseudocode of Detecting Co-Emb. Text (Rate)
# caption: captions from LAION-2B dataset.
# ocr_text: text spotted by OCR model.
cap_words, ocr_words = set(caption.split()), set(ocr_text.split())
co_emb_text = intersection(cap_words, ocr_words)
co_emb_text_rate = len(co_emb_text) / len(cap_words)

spotting model to detect and recognize the text print in image pixels. The mask
images in Fig. 2 are the spotted text area. Next, we match the spotted text with
the caption using Algorithm 1 to obtain the concurrent words and their ratio in
captions. Lastly, we use inpainting to remove the text from the image for CLIPs’
pattern ablation. To avoid confusion, we define these concepts as follows,

– Embedded Text: text spotted by OCR models from the images. To study
the correlation of embedded text with captions, we define different kinds
of embedded text as, 1) All-Emb. Text: all the text is spotted from an
image; 2) Co-Emb. Text: spotted text concurrently appears in the image’s
corresponding captions; 3) Syn-Emb. Text: synthetic text rendered in an
image with a fixed font and a blank background. Fig. 2 shows examples of
spotted embedded text by binary mask and the rendering synthetic text.

– Co-Emb. Text Rate (CoTR): the word set IoU of Co-Emb. text and
captions (See Algorithm 1).

– Image w/ or w/o Embedded Text: spotted text results of a given image
are none-empty or empty.

– Text Removal Image: do inpainting in the specific spotted text area (All-
Emb., Co-Emb., or Random). Random is implemented by sampling other
image’s text areas. For the different inpainting results, see Fig. 2.

– Relative Scores (RSA/RSC): the difference in CLIP score between im-
ages modified by different inpainting operations while keeping the same cap-
tions. RSA and RSC are the short for the relative scores before and after
removing All-Emb. text and Co-Emb. text.

– Image Clusters: image partitions based on K-Means.
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Table 1: Overall parrot captions statistic. More than 50% of images are embedded
with text, and 30% of caption words are printed in images!

Number of Total Images 1,985,284,122
Number of Images w/ Emb. Text 1,083,896,427
Number of Images w/ Co-Emb. Text 663,600,432
Co-Emb. Text Rate (in Total) 15.42%
Co-Emb. Text Rate (in Images w/ Emb. Text) 28.24%
Fuzzy Co-Emb. Text Rate (in Total) 30.46%
Fuzzy Co-Emb. Text Rate (in Images w/ Emb. Text) 55.79%

– CLIP and OpenCLIP: CLIP models are trained on WIT-400M [29] and
LAION-2B [31] dataset.

– N-gram Vocabulary (Vocab): the set of all contiguous N word sequences
extracted from a text corpus, such as the collection of all captions.

4 Profiling LAION-2B Data

To better profile the image-text pair data on a billion scale, we first cluster
all the images based on CLIP features into 4,000 clusters and sort each cluster
with CLIP scores. After obtaining all the cluster labels, we use the SOTA text
spotting model [45] to get the visual text content on all the collected images.
Finally, we aggregate all the model-predicted results and compare them with
their corresponding captions to bring out our observations.

4.1 Implementation Details

Clustering with CLIP Features: We first train K-Means (implemented by
Faiss [18]) on the LAION-400M [32] subset using ViT-B-32 [10] CLIP features
to speed up the clustering process. Due to the large memory consumption, we
reduce the feature dimensions from 512 to 256 using PCA. Then, we partition the
whole dataset using trained K-Means with the same feature extraction pipeline.
Text Spotting and Matching: To detect and recognize text across various
scenes, we adopt DeepSolo [45] as our text spotting model and use the pre-trained
checkpoints with the ViTAEv2-S [48] backbone in default setting. The output
format of the text spotting model is a sequence of polygons of text location and
their recognized characters. Despite its strong performance, we empirically find
that DeepSolo can not handle the crowd scenes well (with more than 100 sepa-
rate words) which is only a small proportion of the dataset (∼2%). To identify
the correlation between the spotted text and captions, we use Algorithm 1 to cal-
culate the Co-Emb. text rate in each image-text pair. Considering the imperfect
text spotting predictions might miss or misspell words, we also use Levenshtein
distance to calculate the fuzzing similarity and reported in Tab. 1.

4.2 Statistic and Observations from LAION-2B

The overall statistics of the 2 billion image-text pairs are reported in Tab. 1.
In summary, the images embedded with visual text content reach a surprisingly
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(a) The ratio of different OCR-oriented data types in LAION-2B clusters.

(b) Top CLIP score samples visualization from 50 clusters with ratio over 80%.

Fig. 3: (a): Based on the OCR prediction results, the image-text pairs are divided into
three types: image without visual embedded text content; the spotted text from
the image has no concurrent text with the caption; the spotted text at least share
one concurrent word with the caption. The clusters are merged from 4000 into 100 for a
better view. (b): In the clusters with high ratio, the top CLIP score samples contain
various text sources, such as posters, book covers, advertisements, and even slides.

high proportion of 54.60% in the investigated data. Around 15% of words in
the dataset captions are Co-Emb. text, and the proportion of Co-Emb. text can
further reach 30% when considering the fuzzy matching results of the spotted
text and captions. This suggests that CLIP models trained on these data might
lead to a high bias toward text spotting. To better visualize the data distribu-
tion, we provide cluster-specific statics results and top CLIP score samples of
text-dominated clusters in Fig. 3. We divide all images into 100 clusters based on
visual similarity and visualize them according to the OCR results. Every clus-
ter contains more or less images embedded with text. Combined with sample
visualization, we observe that in the LAION collected data, the parrot captions
cover various scenes. In the subsets of images embedded with text, around 60%
of captions at least precisely parrot one concurrent word (Co-Emb. Text Rate
> 0) appearing in the image. It suggests that the data collection pipeline of
LAION [31] has a strong bias to introduce parrot captions from web data.

To better understand Co-Emb. Text, we provide a more thorough analysis
of the word counting and text size of parrot captions. As shown in Fig. 4a,
the results show that a large proportion of the Co-Emb. Text only takes a few
words. However, we also find a large number of captions that are almost full
parrot captions (see areas around the heatmap diagonal). Next, in Fig. 4b and
Fig. 4c, we investigate the correlation between the size of concurrent words box
in the image and CLIP score. The results show that the large text size does not
usually lead to a higher score; meanwhile, the small text size can also dominate
the score as the score can be significantly different after removing them. (Details
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Fig. 4: (a): The number of caption words and associated spotted concurrent words
based on precise word matching. (b): Distribution of total box area of concurrent
words in the image and its CLIP score. (c): Distribution of total box area of concurrent
words and its relative CLIP score before and after removing them from the image. (d):
Distribution of text size of the single concurrent word and other spotted word.

of text removal described in Sec. 5.1). One possible reason is the text content
and input resolution may matter more for CLIP. Moreover, we discover that the
larger text is more likely to be parroted in the captions, as shown in Fig. 4d.

5 Inspecting Pre-Trained CLIP Models

It is important to note that the LAION-2B dataset collection pipeline uses CLIP
score from OpenAI’s model to filter out the image-text pair below 0.28. There-
fore, we inspect these two released CLIP models [29, 31] to answer better why
LAION data contains such a high proportion of parrot captions. Specifically,
OpenAI’s CLIP model is trained on the WIT dataset (out-of-domain model), and
OpenCLIP is trained on LAION-2B (in-domain model). We first study whether
the embedded text is the key factor in CLIP filtering by ablating the embedded
text using text inpainting. Moreover, we further investigate whether the text
spotting capacity prefers specific text content by examining synthetic images
with Syn-Emb. text.

5.1 Ablation of Embedded Text Removal

Text Removal via Inpainting: Given the OCR predicted results, we use the
fast marching method [38] to inpaint the area of the spotted text polygons.
We generate two versions of text removal results for each image with embedded
text, i.e., All-Emb. text removal and Co-Emb. text removal, as the parrot caption
prediction is imperfect due to the limitation of OCR models. We also generate
random inpainting images with randomly sampled spotted text polygons from
other images to ablate the distribution shift caused by image inpainting. Exam-
ples of the spotted text masks and inpainting results are shown in Fig. 2.
Results: Based on the OCR predicted results and text inpainting operations,
we can obtain six types of LAION images, including •): images without any
embedded text (OCR results are empty); •): images with any embedded text
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Fig. 5: Left: Mean CLIP scores of image-text pairs with different text removal oper-
ations depicted in Sec. 5.1, and grouped by cluster the same as Fig. 3. Right: Overall
relative CLIP score distribution by comparing different text removal operations.

Table 2: Mean CLIP score of different setups of text removal.

Setup Average CLIP Score
• Raw Images w/o Emb. Text 0.3223 ± 0.0078
• Raw Images w/ Emb. Text 0.3358 ± 0.0094
× All-Emb. Random Inpainted 0.3260 ± 0.0057
× All-Emb. Text Removal 0.2974 ± 0.0197
■ Co-Emb. Random Inpainted 0.3341 ± 0.0051
■ Co-Emb. Text Removal 0.2993 ± 0.0146

(OCR results are none-empty); ×): images with random inpainting by other
image’s All-Emb. text area; ×): images removed All-Emb. text (Inpaint all the
areas of OCR predicted text); ■): images randomly inpainted by other image’s
Co-Emb. text area, and ■): images removed Co-Emb. text (Inpaint the areas of
concurrent text in OCR predicted text and captions). Then, we calculate CLIP
scores of all the groups of images and their paired captions using OpenAI re-
leased CLIP model (ViT-B-32). Fig. 5 reports the mean scores of different types
of images in each cluster and raises four observations as follows: I). The images
embedded with text achieve higher CLIP scores in most clusters than those with-
out embedded text; II). CLIP scores significantly drop once we remove the text
from the images compared to its random inpainting baseline. It indicates that
the parrot captions correlate highly with CLIP score measurement; III). Not
all the samples are dominated by the embedded text, as some samples achieve
higher scores after removing text, indicating the embedded text can also be a
distractor; IV). Most of the relative CLIP scores (S(■) - S(×)) between images
removed Co-Emb. text and All-Emb. text are positive, as shown in the right of
Fig. 5. The straightforward reason is the images lose more visual information
due to the larger in-painting area. Another possible reason is the imperfect text
spotting prediction or the corner cases in the matching algorithm leaking parts
of the concurrent text in images.
Discussion: Due to the text removal, the image distribution may shift from
the CLIP training set. Therefore, we provide two random inpainting baselines
to examine the effect of distribution shift. In Tab. 2, we report the mean scores
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Fig. 6: OpenCLIP more bias towards text spotting than CLIP model.
Grouped score distributions of prompting CLIP and OpenCLIP models with N-gram
Syn-Emb. text and synthetic images for model preference investigation.

of different setups. Results show that the random baselines are very close to the
raw image baseline, indicating that CLIP model is robust to the distribution
shift caused by information loss in inpainted regions.

5.2 Prompting with Syn-Emb. Text

Generating Synthetic Images from N-gram Vocabulary: To investigate
CLIP models’ text spotting preference, we adopt a similar strategy in [25] to
use synthetic images to embed specific text content by rendering text in a blank
background. For each text, we use four fore-background style rendering tem-
plates (black-white, black-grey, white-grey, and white-black), as shown in Fig. 2.
Different from the uniformly sampling letters in [25], we generate the text con-
tent from the N-gram vocabulary built from captions and Co-Emb. text to study
the text spotting pattern. We only select the top frequent 400,000 grams for each
vocabulary. The statistics of 1-gram vocabulary are shown in Fig. 6a, which is a
long-tail distribution. Next, we calculate the synthetic images and the rendered
text similarity on released ViT-B-32 CLIP and OpenCLIP models.
Results: Firstly, we examine whether CLIP models prefer recognizing more
commonly seen words (with high frequency in vocabulary). Therefore, we group
the 1-gram results based on their frequency interval in the whole vocabulary, as
shown in Fig. 6b. The results show that OpenCLIP model clearly has a stronger
text spotting capacity than CLIP, i.e., more biased towards text spotting. We
also observe that all CLIP models are more sensitive to the vocabulary built
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from the concurrent words. Interestingly, both CLIP and OpenCLIP models
have slightly higher scores on the less frequent grams. Secondly, considering the
long-tail grams might contain more characters, we further group the 1-gram
and 2-gram results based on their text length in Fig. 6c and Fig. 6d. Note that
the Co-Emb. text is not regularly arranged in the images, making it hard to
extract continuous word sequences. Results show that all the models are better
at spotting the longer words, possibly due to the tokenizer used in the text
encoder, making them more discriminative. Meanwhile, in the groups of 2-gram
samples, the scores gradually drop when spotting the highly long text, indicating
that the spotting capacity of CLIP models is possibly built on word-by-word.

6 Training on Emb. Text Curated Data

Next, we dive deeper into training CLIP and BLIP [21] models on different
Emb. text curated subsets and studying various downstream task behaviors.

Implementation Details: For CLIP, we use the open-source software Open-
CLIP [16] for all CLIP model training. Our experiments are conducted on both
ViT-B [10] and RN50 [15]. We use 4,096 batch size for 3M and 8,192 for 12M
scale subsets. Other settings remain the same as [31]. For BLIP, we mainly con-
duct on 3M scale subsets with ViT-B [10]. The BLIP models are pre-trained for
10 epochs with an AdamW [23] optimizer. For downstream tasks, we finetune 10
epochs for VQA and 5 epochs for captioning and retrieval.

Evaluation: For CLIP, we follow the DataComp benchmark [11] using 38
zero-shot classification and retrieval tasks as evaluation. We report the average
performance (Avg.) of the DataComp benchmark and two subset track per-
formances, ImageNet (IN) and Retrieval (Ret.). To evaluate the text spotting
capacity, we use the synthetic benchmark illustrated in Sec. 5.2 and a real-world
benchmark sampled from LAION-2B as the validation set. In the synthetic
benchmark, we calculate the similarity of all the 1-gram synthetic image-text
pairs from caption vocabulary and report all the trained model results in Fig. 7.
For the real-world benchmark, we sample 1M image-text pairs without any em-
bedded text and 1M samples dominated by the parrot caption (RSC ≥ 0.2).
Fig. 8 aggregates the mean scores of the 2M evaluation set and also reports the
mean scores of applying text removal on the 2M evaluation set results. For BLIP,
inspired by [12], we further evaluate the model behavior on downstream tasks
requiring reading text, including Visual Question Answering (VQA), Image Cap-
tioning, and Text-Image Retrieval. Specifically, for the text-oriented tasks, we
use Text VQA [36] and ST-VQA [5] for VQA, and TextCaps [35] for captioning
and retrieval. Moreover, we also provide the same tasks on the datasets that
only require the model to see, i.e., the natural image dataset. Similarly, we use
VQAv2 [14] for VQA and COCO [8] for captioning and retrieval.

6.1 Ablation Study of Data Curation on CLIP

Curation I: Embedded Text in Images. To study the impact of embedded
text on overall pre-train data quality, we sample three subsets: random baseline,



12 Y. Lin et al.

Table 3: Ablation of images embedded
with or without text.

Data Model IN Ret. Avg.
3M Random RN50 0.204 0.222 0.256
3M w/o Emb. Text RN50 0.228 0.232 0.282
3M w/ Emb. Text Only RN50 0.071 0.139 0.164
3M Random ViT-B 0.131 0.148 0.210
3M w/o Emb. Text ViT-B 0.162 0.164 0.234
3M w/ Emb. Text Only ViT-B 0.052 0.111 0.153
12M Random RN50 0.360 0.354 0.354
12M w/o Emb. Text RN50 0.409 0.361 0.372
12M w/ Emb. Text Only RN50 0.129 0.192 0.218
12M Random ViT-B 0.314 0.299 0.351
12M w/o Emb. Text ViT-B 0.370 0.318 0.364
12M w/ Emb. Text Only ViT-B 0.129 0.172 0.225

Table 4: Ablation of different Co-
Emb. Text Rate (CoTR).

Data (3M) Model IN Ret. Avg.
CoTR = 0.0 RN50 0.193 0.229 0.247
CoTR ≥ 0.3 RN50 0.031 0.110 0.137
CoTR ≥ 0.5 RN50 0.021 0.099 0.124
CoTR ≥ 0.8 RN50 0.012 0.082 0.096
CoTR = 1.0 RN50 0.012 0.074 0.102
CoTR = 0.0 ViT-B 0.132 0.164 0.206
CoTR ≥ 0.3 ViT-B 0.029 0.084 0.130
CoTR ≥ 0.5 ViT-B 0.021 0.082 0.119
CoTR ≥ 0.8 ViT-B 0.012 0.076 0.104
CoTR = 1.0 ViT-B 0.013 0.076 0.103

Table 5: Ablation of models trained
on subsets sampled by different RSA.

Data (3M) Model Avg.S(•) IN Ret. Avg.
RSA < 0.0 RN50 0.319 0.181 0.220 0.239
RSA ≥ 0.0 RN50 0.339 0.126 0.180 0.215
RSA ≥ 0.1 RN50 0.351 0.041 0.123 0.148
RSA ≥ 0.2 RN50 0.360 0.017 0.094 0.109
RSA ≥ 0.3 RN50 0.376 0.009 0.075 0.097
RSA < 0.0 ViT-B 0.319 0.123 0.159 0.198
RSA ≥ 0.0 ViT-B 0.339 0.079 0.129 0.185
RSA ≥ 0.1 ViT-B 0.351 0.031 0.103 0.134
RSA ≥ 0.2 ViT-B 0.360 0.012 0.080 0.103
RSA ≥ 0.3 ViT-B 0.376 0.006 0.070 0.096

Table 6: Ablation of models trained
on subsets sampled by different RSC.

Data (3M) Model Avg.S(•) IN Ret. Avg.
RSC < 0.0 RN50 0.326 0.125 0.171 0.209
RSC ≥ 0.0 RN50 0.345 0.062 0.129 0.168
RSC ≥ 0.1 RN50 0.354 0.014 0.091 0.106
RSC ≥ 0.2 RN50 0.364 0.008 0.084 0.104
RSC ≥ 0.3 RN50 0.380 0.005 0.058 0.084
RSC < 0.0 ViT-B 0.326 0.079 0.129 0.174
RSC ≥ 0.0 ViT-B 0.345 0.045 0.119 0.149
RSC ≥ 0.1 ViT-B 0.354 0.018 0.091 0.116
RSC ≥ 0.2 ViT-B 0.364 0.008 0.076 0.106
RSC ≥ 0.3 ViT-B 0.380 0.004 0.059 0.091

images without any embedded text, and images all embedded with text from
LAION-2B. The subsets include 3M and 12M scales. The results in Tab. 3 show
that images embedded with text generally reduce the pre-training dataset quality
as all performance tracks significantly decrease. Meanwhile, in Fig. 7, the model
trained with the images embedded with text achieves the strongest text spotting
capacity compared to the random and images without text baselines.
Curation II: Co-Emb. Text Rate (CoTR). Tab. 3 reports CLIP models
trained on parrot captions with different CoTR. We first select all the images
with embedded text and then sample images based on the CoTR depicted at
Algorithm 1 with different thresholds. With increasing CoTR, all the zero-shot
benchmark performance drops significantly. Despite the images in the subset
(CoTR = 0) all embedded with text, the pre-trained model performs similarly
to the random baseline in Tab. 3. It indicates that the parrot caption is more
crucial than embedded text in reducing the pre-trained data quality. For the
text spotting capacity, Fig. 7 and Fig. 8 show that the increasing CoTR does
not lead to stronger text spotting capacity, possibly due to the average length
of captions decreasing in higher CoTR data.
Curation III: Relative Score from Text Removal (RSA & RSC). Given
the observations in Sec. 5.1, we further select a series of subsets based on the
relative score of images before and after text removal. The higher relative scores
mean the masked text is more dominant in CLIP score measurement. In Tab. 5
and Tab. 6, we report the zero-shot performance of models trained on subsets
with different relative score thresholds. CLIP models pre-trained with higher
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Fig. 7: CLIP models learn text spotting well from parrot captions. Bench-
marking text spotting capacity of CLIP models with 1-gram caption vocabulary syn-
thetic images dataset as the same as Sec. 5.2.
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Fig. 8: Text spotting capacity validation on real images. Models trained with
more parrot captions are better at aligning the image with parrot captions but perform
worse at aligning images without embedded text.

RSA or RSC both get worse downstream performance. Notably, the average
raw CLIP scores S(•) of these subsets have a positive correlation with RSA
or RSC, indicating using CLIP scores from a biased pre-trained model as the
data filtering strategy can be unreliable. When comparing the RSA and RSC,
the results show that the samples dominated by the latter, i.e., parrot captions,
are less informative for CLIP training. Meanwhile, Fig. 7 and Fig. 8 show that
the text spotting capacity of CLIP can be further improved by training on the
samples using relative scores as data curation criteria against CoTR.

6.2 More Investigation on Text-Oriented Tasks

Inspired by [12], we further train BLIP [21] models on the curated subsets to
better understand the impact of parrot caption on various vision-language tasks,
especially the tasks that require models to read the text. We chose BLIP for the
ablation study instead of CLIP as it can be directly applied to all these tasks.
As shown in Tab. 7, training BLIPs to spot text can boost their performance on
the downstream tasks requiring the model to read but impede the performance
of downstream tasks only requiring the model to see, which are consistent with
the observation on classification tasks. Nevertheless, when BLIPs mainly focus
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Table 7: BLIP downstream tasks performance of pre-training on different
curated 3M subsets. The gray color represents tasks requiring the model to read
the text from images, i.e., spotting text from images.

BLIP
Data (3M)

Visual Question
Answering (Acc)

Image Captioning
(CIDEr)

Text-to-Image
Retrieval (R@1)

Image-to-Text
Retrieval (R@1)

VQAv2 TextVQA ST-VQA COCO TextCaps COCO TextCaps COCO TextCaps
Rand 71.07 15.36 10.48 115.6 53.7 48.91 56.34 65.46 72.45

w/ Emb. Text 68.94 19.05 12.65 108.9 92.1 42.89 70.1 58.5 81.42
w/o Emb. Text 71.22 13.65 9.29 116.2 41.5 49.96 31.83 66.5 48.7
CoTR = 0.0 71.11 13.97 9.75 116.3 44.6 49.55 38.05 66.08 54.57
CoTR ≥ 0.3 67.4 19.28 11.81 104.9 96.9 37.78 67.28 51.98 78.2
CoTR ≥ 0.5 67.02 19.64 12.38 102.7 94.1 35.94 65.24 50.32 76.94
CoTR ≥ 0.8 66.38 18.50 12.00 100.9 91.6 34.13 62.65 46.9 73.56
CoTR = 1.0 66.18 18.47 12.80 101.2 91.3 33.55 61.83 46.62 73.05
RSA < 0.0 70.79 14.16 9.64 115.7 44.9 48.25 36.85 64.72 54.7
RSA ≥ 0.0 70.03 18.76 11.81 111.9 84.5 46.25 68.61 62.92 81.23
RSA ≥ 0.1 68.14 19.48 13.33 105.6 96.1 39.96 68.13 54.64 79.37
RSA ≥ 0.2 66.01 21.06 11.85 98.7 94.4 33.03 64.17 47.12 75.33
RSA ≥ 0.3 64.20 18.44 12.04 95.26 91.1 26.64 60.11 37.3 70.24
RSC < 0.0 70.13 15.19 10.74 112.2 46.7 46.8 41.95 63.24 58.05
RSC ≥ 0.0 68.86 20.12 13.75 107.8 93.5 42.0 69.78 57.42 80.92
RSC ≥ 0.1 67.35 20.54 12.84 103.4 96.9 36.4 66.69 51.02 77.79
RSC ≥ 0.2 62.62 20.32 13.14 98.7 92.8 30.08 61.38 42.96 71.98
RSC ≥ 0.3 63.75 18.94 13.03 92.9 88.7 24.23 58.35 34.72 68.95

on reading, e.g. (RSA ≥ 0.3), their text-oriented and natural downstream per-
formance also decreases. In other words, the parrot captions can benefit the
text-orient downstream tasks while requiring careful data mixing trade-off. We
believe that understanding parrot captions is essential for revealing the under-
lying mechanisms of existing large vision-language systems.

7 Conclusion and Discussion

The popularity of vision-language contrastive loss stems from its efficiency and
simplicity. However, the analysis and experiments we presented show that the
embedded text in images and their parrot captions plant significant text spotting
bias due to such contrastive fashions. Firstly, almost 30% of the captions in the
widely used LAION-2B dataset are biased towards parroting the embedded text
in images. Secondly, the pre-trained CLIP models have strong preferences for
the image-text pair with parrot captions, which achieve higher similarity scores
than those without. Finally, using data biasing to parrot captions, we can easily
train a CLIP model with a strong text spotting bias. Our work demonstrates the
emergency of reviewing the impact of parrot captions in the entire ecosystem of
CLIP models. Our future endeavor involves building a bias-aware data curation
pipeline and a robust training function to mitigate such issues.
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