
20 Y. Hu et al.

Appendix

A Related Works .21
A.1 Scene Generation .21
A.2 Reactive Simulation . 21
A.3 Interactive Planning .22
A.4 Online Learning with RL . 22

B Dataset and Metrics . 23
B.1 Dataset . 23
B.2 Metrics .23

C Experimental setup . 28
C.1 Scene Generation .28
C.2 World Simulator . 28
C.3 Interactive Planning . 29
C.4 Online Training . 29

D Training setup . 30
D.1 Raster Input . 30
D.2 Data Augmentation . 30
D.3 Loss . 31
D.4 Hyperparameters . 31

E Ablation Study . 32
E.1 Effectiveness of NAR conversion . 32
E.2 Effectiveness of Prediction Chunking and Temperal Aggregation 32
E.3 Ablation Study of Decay Rate γ . 33
E.4 Ablation Study of Temperature .34
E.5 Ablation Study of the Number of Conditioned Frames 34

F Qualitative Analysis . 35
F.1 Scene Generation . 36
F.2 Diverse future . 36
F.3 Reactive Simulation . 37

G WOD Motion Results . 38
G.1 WODM validation set . 38
G.2 Per-type Results of WOMD Validation . 39

H Per-component WOD Sim Agent Metric . 39

GUMP 21

A Related Works

A.1 Scene Generation

As a supplement to real data, generated scenarios establish the initial conditions
for reactive simulations. Previous efforts have involved the creation of agents
guided by heuristic rules [16,46,57,82] or fixed grammars [15,38]. However, the
manual generation of such scenarios requires extensive human labor and strug-
gles to achieve the necessary realism, diversity, and generalization for down-
stream tasks, especially in new environments. Recent work has started to adopt
an end-to-end fully learned approach, either through an autoregressive architec-
ture that places agents one by one [19,73] or a diffusion-based architecture [58].
Yet, no work has exploited a more scalable or unified transformer-based lan-
guage model for controllable scene generation. Moreover, our method allows for
a coarse control over the entire scene through a global description prompt and a
fine control by directly modifying each agent’s states, e.g. enforcing traffic rule
constraints. These features enable our model to strike a better balance between
diversity and controllability throughout the generation process.

A.2 Reactive Simulation

Traditional simulators are built on computer graphics and human prior knowl-
edge, including physical laws, lighting conditions, and hand-crafted traffic dy-
namics [2, 16, 41, 46]. However, relying on a vast collection of manually created
scene assets and heuristic driving policies for intelligent agents not only intro-
duces a significant domain gap but also results in a lack of diverse scenarios and
realism.

Recently, there has been a growing emphasis on building world simulators
as generative models through a data-driven approach [22, 24, 31, 42, 62, 81, 83].
Compared to those end-to-end models, structured input provides a simpler and
more efficient setting, facilitating a variety of downstream applications and on-
board deployments. Predictive models, based on the unfolding of agents’ states
over time, fall into open-loop and closed-loop categories. In an open-loop setting,
each agent makes decisions—either marginally [21, 34, 67, 76] or jointly [33, 52,
68]—based solely on historical information and generates predictions for their
trajectory over a short future period. In contrast, closed loop simulations incor-
porate feedback mechanisms, where the decisions of each agent are influenced
by the current state of the system, including the actions of other agents. This
leads to a more dynamic, interactive and realistic simulation environment, where
agents continuously update their decisions based on the evolving scenario, such
as [65, 71]. Notably, WOSAC [50] established the first evaluation benchmark
for closed-loop simulators, attracting numerous participants [51, 56, 59, 78]. As
a closed-loop simulator, our work is most related to MotionLM [65] and Tra-
jenglish [56], as both employ a GPT-like autoregressive predictive model. How-
ever, in contrast to them, which tokenize the action space, we employ a “key-value
pair” tokenization strategy and directly quantize the state space. Through this

22 Y. Hu et al.

method, we can achieve Non-Autoregressive (NAR) transitions within frames,
significantly speeding up inference, and endowing the model with generative
capabilities. Moreover, it has the flexibility to handle the disappearance and
emergence of agents. These capabilities foster a wider range of downstream ap-
plications, which require higher scalability, efficiency, and flexibility.

A.3 Interactive Planning

The ability to effectively model the interactions between road users and au-
tonomous vehicles is crucial for enhancing the safety and comfort of self-driving
technology. An optimal policy planning algorithm should enable multi-stage rea-
soning, incorporating bidirectional interactions between the agent and it’s en-
vironment. Previous research has tackled this challenge through two main ap-
proaches: Some studies have employed neural networks to implicitly and itera-
tively capture the interactions between the ego vehicle and other road users [9,
34,36,66,67]. Others have taken a more explicit route, utilizing model predictive
control (MPC) in conjunction with tree search expansion to navigate complex
interactions [7, 8, 35, 74]. Among these approaches, certain studies [7, 8, 35] have
simplified the modeling of bidirectional interaction by combining a simple non-
reactive rule-based planner with a model-based, ego-conditioned predictor. In
contrast, PDM [14] simplifies interaction by assuming a non-reactive environ-
ment with constant velocity agents, and a reactive Intelligent Driver Model
(IDM)-based [75] ego-planner. Our work advances beyond these methodolo-
gies by coupling our realistic ego-conditioned simulator with a reactive planner,
adaptable to any rule-based or neural network-driven ego-planner. This approach
allows for a more accurate modeling of interactions and the stochastic nature of
future scenarios.

A.4 Online Learning with RL

The reinforcement learning (RL) domain has witnessed considerable progress,
fostering algorithms adept at solving various types of tasks via mode-free [23,64]
and model-based approaches [24, 25]. The progress in RL has contributed to
the paradigm shift in autonomous driving from open-loop trajectory prediction-
based approach to closed-loop interaction-based approach. One critical compo-
nent to enable closed-loop training is a reactive environment, generating the
state of the next time step given the current state and action taken [5,20,30,55].
Nevertheless, the simplicity of these models often results in environments that
fall short of realism and interactivity, leading to a pronounced simulation-to-
reality gap in complex scenarios. Addressing this, some research focuses on the
creation of more realistic and intelligent training environments [19,41]. Different
from previous approaches, we introduce a scalable, data-driven model capable
of imitating interactive agent behaviors and generating realistic, diverse driving
scenarios. Its efficiency aligns well with the demands of online RL training. Such
an environment could bridge the simulation-reality gap, and push RL closer to
practical application in autonomous driving.

GUMP 23

B Dataset and Metrics

B.1 Dataset

The WOD Motion Dataset We have utilized the Waymo Open Motion
Dataset (WOMD) to train and evaluate for scene generation, reactive simu-
lation and motion prediction tasks. WOMD contains 7.64 million unique tracks
from 574 driving hours across 1750 km urban roadways collected in six cities of
the United States. Specifically, the WOMD v1.2.0 release includes 486,995 train,
44,097 validation, and 44,920 test scenarios. Each scenario consists a 9.1 seconds
10 Hz driving log, partitioned into 11 history frames and 80 future frames. All
reported variants of our model is trained on the full training dataset. To fur-
ther augment the data volume, we treat different objects as the center object,
ultimately yielding approximately 2.6 million training scenarios.

The nuPlan Dataset We utilized the nuPlan Dataset [2] for scenario prompt
conditioned scene generation, interactive planning and online training experi-
ments. The dataset encompasses 1,500 hours of diverse driving scenarios from ur-
ban environments such as Las Vegas, Boston, Pittsburgh, and Singapore. These
scenarios are annotated with various traffic situations including merges, lane
changes, interactions with cyclists and pedestrians, among others. For training,
a random sampling strategy is adopted, with 50,000 scenarios selected for each
scenario type from the training subset, culminating in approximately 1.5 million
scenarios.

B.2 Metrics

Scene Generation Metrics To measure the quality of generated scenarios, we
treat the generated agents as samples from a distribution, and compare it with
ground-truth agents, which are also treated as samples from another distribution.
Similar to Trafficgen [19], we use maximum mean discrepancy (MMD) as the
metric to measure the difference between the generated distribution and the
corresponding ground-truth distribution. Given two distributions p and q with
Gaussian kernel k, the maximum mean discrepancy is defined as

MMD2(p, q) = Ex,x′∼p[k(x, x
′)] + Ey,y′∼q[k(y, y

′)]− 2Ex∼p,y∼q[k(x, y)] (9)

We calculate this metric for generated attributes including agent center po-
sitions in R2, agent heading angle in R, agent velocities in R2, and agent dimen-
sions in R2.

For each pair of generated and ground-truth scenarios, we calcuate MMD for
each attributes independently and compute the average value of them. And the
final MMD score is averaged across all selected testing dataset.

24 Y. Hu et al.

The WOD Sim Agents Metrics We evaluate our model’s simulation capa-
bility on the WOMD Sim Agents Benchmark [50]. Each testing scenario consists
a 9.1 seconds 10 Hz driving log, partitioned into 11 history frames and 80 future
frames. Trajectories of up to 128 agents (including ego vehicle) are tracked in
each scenario. The task is to simulate 32 parallel future rollouts for each agent
and scenario in an autoregressive manner. Given an agent in a scenario, the
predicted distribution of its future behavior is formed over the 32 rollouts. In
order to parameterize the predicted distribution, a total of 3 categories and 9
component metrics are computed:

– Kinematic-based:
• Linear Speed unsigned magnitude of agent’s speed in x, y, z axis.
• Linear Acceleration Magnitude derivative of linear speed with re-

spect to time in x, y, z axis.
• Angular Speed signed minimum difference between consecutive angu-

lar heading
• Angular Acceleration Magnitude derivative of angular speed with

respect to time
– Interaction-based:

• Distance to nearest object for each agent represented by a box poly-
gon, the signed distance from the nearest object in the scenario.

• Collisions Count of collisions with other objects, recognized when Dis-
tance to nearest object is negative.

• Time-to-collision Time takes before an agent collide with the agent it
is following, assuming constant speed.

– Map-based:
• Distance to road edge Signed distance to the nearest road edge, where

a road egde is represented as a 2D vector.
• Road departures Indicator of an agent going off road at any time.

A component score is calculated by testing the Negative Log Likelihood of
the ground truth agent behavior over the corresponding distribution, masked by
validity vt: m = exp

(
− 1∑

t
1{vt}

∑
t
1{vt}NLLt

)
. Each component metric is as-

signed a weight, and each categorical metric is computed by taking the weighted
average of all corresponding component metrics: Mc =

∑
i wimi∑
j wj

. We report all
categorical metrics on the test dataset in Tab. 13. The final composite metric
is calculated as a weighted average over all component metrics. Our reported
model performance is based on the V1 Leaderboard, which improved collision
and offroad calculation from the previous V0 Leaderboard.

The nuPlan Planning Metrics Our evaluation concentrates on the model’s
planning abilities in closed-loop with reactive agents (CL-R) task. In these se-
tups, the planner generates a trajectory at each timestep, which is used as a
reference by the controller to incrementally adjust the vehicle’s state. In CL-R

https://waymo.com/open/challenges/2023/sim-agents/
https://waymo.com/open/challenges/2023/sim-agents-v0/

GUMP 25

tasks, we apply two distinct world models for the surrounding agents: a rule-
based IDM environment and a model-based environment powered by GUMP,
both controls all non-ego agents dynamically.

The planning score, as defined by the equation (5), is reported on on the test
dataset. We exactly follow the nuPlan benchmark metrics [2], which reflects the
model’s performance across safety, efficiency, and comfort metrics in CL-R tasks.
This score is aggregated by selected metrics for the driven trajectory generated
from the planner. The aggregation function is a hybrid hierarchical-weighted
average function of individual metric scores.

The first part Θ of equation (5) gets a zero score for a driven scenario if any
one of those following situations happens.

– There is an at_fault collision with a vehicle or a VRU (pedestrian or bicy-
clist);

– There are multiple at_fault collisions with objects (e.g. a cone);
– There is a drivable_area violation;
– Ego drives into uncoming traffic more than 6 m;
– Ego is not making enough progress.

The second part Φ of equation (5) is a weighted average of other selected
metrics’ scores. Those selected metrics and their corresponding weight are listed
as following.

Metric Name ωn

driving_direction_compliance 5
time_to_collision_within_bound 5
speed_limit_compliance 4
ego_progress_along_expert_route 5
Ego_is_comfortable 2

Table 6: Selected metrics for the second part Φ of equation (5) .

The following component metrics contribute to the overall planning score:

– No at-fault Collisions A collision is defined as the event of ego’s bounding
box intersecting another agent’s bounding box. To define the collision score
for a scenario, we only consider collisions that should have been prevented if
planner performed properly. For simplicity, we call these collisions at-fault.

– Drivable area compliance Ego should drive in the mapped drivable area
at all times. Drivable area compliance metric identifies the frames when
ego drives outside the drivable area. Due to over-approximation of ego’s
bounding box, we allow for a small infringemenet outside the drivable area
(max_violation_threshold = 0.3m).

– Driving direction compliance This metric is defined to penalize ego
when “it drives into oncoming traffic”. The metric computes the movement

26 Y. Hu et al.

of ego’s center during a 1 second time_horizon along the driving direction
defined according to the baselines of ego’s lanes or lane-connectors. The
score is set to 1 if it does not drive/move against the flow more than driv-
ing_direction_compliance_threshold (= 2 m) and 0 if it drives against the
flow more than driving_direction_violation_threshold (= 6 m), and 0.5
otherwise.

– Ego progress along the expert’s route ratio This metric is used to
evaluate progress of the driven ego trajectory in a scenario by comparing its
progress along the route that expert takes in that scenario.

– Making progress This metric is defined as a boolean metric based on the
“Ego progress along the expert’s route ratio”. It’s score is set to 1 if the ratio
is more than the selected threshold (min_progress_threshold = 0.2), and is
set to 0 otherwise.

– Time to Collision (TTC) within bound TTC is defined as the time
required for ego and another track to collide if they continue at their present
speed and heading.

– Speed limit compliance This metric evaluates if ego’s speed exceeds the
associated speed limit in the map. Speed limit violation at each frame is
defined based on the difference between ego’s speed and the speed limit, if
ego’s speed is higher than the speed limit (over-speeding).

– Comfort We measure the comfort of ego’s driven trajectory by evaluat-
ing minimum and maximum longitudinal accelerations, maximum absolute
value of lateral acceleration, maximum absolute value of yaw rate, maximum
absolute value of yaw acceleration, maximum absolute value of longitudinal
component of jerk, and maximum magnitude of jerk vector. These variables
are compared to thresholds with default values determined empirically from
examination of a dataset of expert trajectories.

RL metrics We define safe episodes as those without any critical failures, such
as collisions and violations of the drivable area. In the context of RL training, we
utilize four specific types of metrics that differ slightly from the nuPlan Planning
Metrics mentioned previously in B.2. These metrics include:

– Collision Rate We do not differentiate between at-fault and non-at-fault
collisions, setting a higher standard for the planner to avoid all collisions,
whether by not colliding with others or by not being collided into. The
collision rate is calculated as the percentage of episodes that experience at
least one collision.

– Out of Drivable Area Rate Diverging from the nuPlan metric, our ap-
proach disallows any encroachments outside the drivable area, demanding
strict adherence from the planner. The score for drivable area compliance is
determined by the percentage of episodes where the drivable area is violated.

– Progress We define a series of equally spaced waypoints along the planned
route. Progress is measured by the physical distance the ego vehicle covers
towards the next waypoint at each step. The overall progress score represents
the average progress made in all safe episodes.

GUMP 27

– Comfort This metric maintains the same components as defined in the
nuPlan Planning Metrics. The comfort score is the proportion of episodes
deemed comfortable out of all safe episodes.

The final score calculation incorporates Equation (5). For this equation, the
Θ component comprises binary metrics from collision and out-of-drivable-area
violations, signifying that these metrics are either 0 (no violation) or 1 (viola-
tion occurred). As for the Φ component, it is determined by first calculating the
progress percentage. This is achieved by dividing the actual progress made by the
vehicle by an empirical value of 62, which represents the average progress length
according to the nuPlan dataset. Subsequently, the average of this progress per-
centage and the comfort metric is calculated to derive the Φ value.

WOD motion metrics WOMD’s metrics are used to evaluate the motion
prediction performance of our model.

– minADE The minimum Average Displacement Error computes the L2 norm
between groundtruth and the closest joint prediction.

– minFDE. The minimum Final Displacement Error is equivalent to evalu-
ating the minADE at a single time step T.

– Overlap rate (OR) The overlap rate is computed by taking the highest
confidence joint prediction from each multimodal joint prediction. If any of
the A agents in the jointly predicted trajectories overlap at any time with
any other objects that were visible at the prediction time step (compared at
each time step up to T) or with any of the jointly predicted trajectories, it is
considered a single overlap. The overlap rate is computed as the total number
of overlaps divided by the total number of predictions. See the supplementary
material for details. The overlap is calculated using box intersection, with
headings inferred from consecutive waypoint position differences.

– Miss rate (MR) A binary match/miss indicator function ISMATCH(^st,
st) is assigned to each sample waypoint at a time t. The average over the
dataset creates the miss rate at that time step. A single distance threshold
to determine ISMATCH is insufficient: we want a stricter criteria for slower
moving and closer-in-time predictions, and also different criteria for lateral
deviation (e.g. wrong lane) versus longitudinal (e.g. wrong speed profile)

– Mean average precision (mAP) The Average Precision computes the
area under the precision-recall curve by applying confidence score thresh-
olds ck across a validation set, and using the definition of Miss Rate above
to define true positives, false positives, etc. Consistent with object detec-
tion mAP metrics, only one true positive is allowed for each object and
is assigned to the highest confidence prediction, the others are counted as
false positives. Further inspired by object detection literature, we seek an
overall metric balanced over semantic buckets, some of which may be much
more infrequent (e.g., u-turns), so report the mean AP over different driv-
ing behaviors. The final mAP metric averages over eight different ground
truth trajectory shapes: straight, straight-left, straight-right, left, right, left
u-turn, right u-turn, and stationary.

28 Y. Hu et al.

C Experimental setup

C.1 Scene Generation

For our quantitative experiments in scene generation, we utilized all the valida-
tion scenarios from the Waymo Open Motion Dataset (WOMD) version 1.2.0.
To ensure a fair comparison with Trafficgen [19], we followed the testing settings
outlined in that research and limited our model to generate vehicles only within
a range of -50 meters to 50 meters. Moreover, we omitted scenarios with less
than 8 ground-truth vehicles, yielding a total of 28,341 scenarios. We evaluated
the first frame of each selected scenario to compute the average score. Under
identical testing conditions, we reassessed Trafficgen and found the results to
align closely with those reported in the original study. For the scene genera-
tion task, we found through experimentation that a slightly higher temperature
setting leads to a more diverse distribution of scenes, thereby enhancing the
performance of our metrics. Consequently, we selected a temperature setting of
1.25 and a top k of 200 for this task.

For our qualitative analysis of scene generation, we mainly used the nuPlan
dataset. This dataset was chosen for its diverse and detailed scenario description
tags, which are essential for our prompt-based conditioning experiments. These
experiments aim to generate scenes that follow the scenario descriptions, offering
a more nuanced and targeted approach.

C.2 World Simulator

Our experiments are conducted on the WOD Sim Agents Benchmark, utiliz-
ing the WOD Motion Dataset. We adhere to the protocols of the Sim Agents
challenge, unrolling 32 futures for each scenario in parallel. Specifically, for the
experiments detailed in Tab.2, we utilize the test splits, with evaluation per-
formed by the Waymo Sim Agent Challenge server. For other experiments, such
as the scaling laws in Sec. 3 and various ablations, we employ the sub50 valida-
tion dataset, which comprises a total of 1024 scenarios.

Specifically, our model operates in 2Hz, and we interpolate the results to
10Hz for evaluation. For both the Waymo and nuPlan datasets, we use 1 second
of history along with the current frame as conditions and predict the information
for the next 8 seconds. Our model does not directly output information on the
z-axis. To meet the requirements of the Waymo Sim Agents Benchmark, we
infer the z value for each agent based on their predicted x and y positions,
in conjunction with map data. Specifically, we employ the K-nearest neighbor
algorithm to identify the k closest map points in the xy-2D plane location. We
then average the z information of these map points to estimate the agent’s z-axis
position. In our approach, we set k to 4. Additionally, to better combat the jitter
caused by the sampling and quantization processes, we employ a simple sliding
window algorithm to smooth the final prediction results. This method helps with
the stability and the overall smoothness.

GUMP 29

C.3 Interactive Planning

Our planning experiments are conducted on the nuPlan Dataset. To develop
an interactive planner based on PDM [14], we integrate multiple simple policies
with an interactive simulator and scorer, powered by GUMP. Specifically, our
planner comprises 15 Intelligent Driver Model (IDM)-based policies with varied
parameters, in addition to one imitation policy. We utilize the same set of IDM
policies as PDM and adopt the ego vehicle’s prediction within GUMP as the
imitation policy. Then these policies are simulated in parallel, interacting with
GUMP. This interaction is achieved by overriding the ego vehicle’s next states
with the output from the policy. In addition, the predictions of GUMP for other
agents are used as input for the next frame of the policy. After interacting for 4
seconds, we generate a series of rollouts for future states.

By evaluating these simulated rollouts, we can derive the expected return.
Considering GUMP operates stochastically, to make a more accurate estimation,
we simulated and evaluated each policy four times and then averaged these
results to calculate the expected return. Ultimately, we selected the output of
the policy with the highest return as the next action to be taken.

In selecting our evaluation environment, we updated the original IDM-based
environment by substituting IDM-controlled smart agents with those controlled
by GUMP. For a visual comparison of these two testing environments, one can
refer to Appendix F.3. Compared to IDM, GUMP-based smart agents exhibit
more realistic and natural behavior, thus providing a more accurate represen-
tation of the planner’s real-world performance. To ensure the accuracy of our
assessment of the planner’s performance, our experiments are conducted across
both environments, with results presented side by side for reference. This method
enables a comprehensive evaluation of our planning strategies in scenarios closely
mimicking real-world driving conditions.

C.4 Online Training

We implement our experiments using an existing open-source RL framework [80],
which provides implementations of a number of standard RL algorithms. We
use the Soft Actor-Critic (SAC) algorithm [23] to train a simple policy model,
which consists of a ResNet-18 model followed by a 2-layer MLP-based projection
network, outputting a squashed Gaussian distribution representing the state-
conditional action distribution.

Using the same RL algorithm, network structure and hyperparameters, we
train the policy network under the following two different environment setups
respectively and compare the results:

– Setup 1: Log Playback. Log playback environment is used in this setting
which has no reactive capability.

– Setup 2: World Model. A learned world model is used to implement the
environment, in which participating agents react according to ego vehicle’s
action.

30 Y. Hu et al.

For each episode, the world model sees the current observation and unrolls
one step conditioned on the policy model’s output. we run 128 such environments
in parallel. During the policy gradient update, we sample batches of 2048 state
transitions from the replay buffer and optimize via Adam optimizer [40]. Each
policy model is trained for 40k steps. The learning rate is set to 1e-4 and is
reduced to 2e-5 after 70% of the training process. The training rewards can
be found under the metrics section in Appendix. B.2. During training, 20%
of the samples are used in an open-loop fashion, producing imitation losses.
Empirically, we found that mixing open-loop samples during training helps speed
up the training process. We then simulate each trained policy model under these
environments and report metrics.

D Training setup

D.1 Raster Input

The raster layers encode various static elements and high definition map, which
contrains:

– Roadmap Raster Represents the road network layout, including lanes,
intersections, and other road features.

– Baseline Paths Raster Encodes baseline paths within the road network
of the scene.

– Route Raster Represents the ego vehicle’s desired route or path.
– Drivable Area Raster Represents areas considered drivable or navigable

for vehicles within the scene.
– Speed Limit Raster Encodes speed limits at various locations within the

scene.
– Static Agents Raster Represents positions of static agents (e.g., traffic

cones) within the scene.
– Traffic Light Raster Encodes traffic light location and orientation at in-

tersections within the scene.

D.2 Data Augmentation

To enhance the generalization capability of our model, we implemented various
data augmentation techniques. First, we applied an agents and frame dropout
strategy, randomly dropping certain agent tokens or the tokens of an entire frame
with a probability of 0.1. Second, we employed a random crop strategy, randomly
selecting segments from the entire scenario sequence based on a fixed window size
for training. Additionally, we uniformly sampled rotation angles from [−π

2 ,
π
2] to

rotate the entire scene and translated the whole scene in both x and y directions
within a range of [−5, 5] meters. Finally, beyond using the self-driving car as the
central focus of the scene, we also randomly selected several agents of interest
from the dataset to serve as the center of the scene coordinate system.

GUMP 31

D.3 Loss

The loss function of GUMP is composed of three main components: reconstruc-
tion loss, cross-entropy loss, and multipath loss [3].

The reconstruction loss employs the L1 loss to supervise the image recon-
struction part of the image autoencoder, which is defined as follows.

Lrec =
1

NxNy

∑
i,j

|I(i, j)− Î(i, j)| (10)

where Nx, Ny represent the number of 2D pixels, I is the image pixel, and Î
is the reconstructed image.

The cross entropy loss (CE) is responsible for evaluating the accuracy of
categorical predictions made by the model. It is applied to both key tokens, such
as ID, class, and special tokens, as well as value tokens such as position (x, y),
orientation (θ), and dimensions (vx, vy, w, l). This loss is formulated as:

LCE =
1

Nk

∑
k∈{ID,class,special}

H(k̂, k) +
1

Nv

∑
v∈{x,y,θ,vx,vy,w,l}

H(v̂, v) (11)

where H denotes the cross entropy, Nk and Nv are the counts of key and value
tokens, respectively, and k̂ and v̂ are the predicted logits.

To enhance the motion prediction capability of the model, we introduced
trajectory prediction as an auxiliary task. The specific results and metric com-
parisons can be found in Appendix G. We employed the commonly used multi-
path loss [3], which combines a classification loss (Lcls) with a minimum Average
Displacement Error (LminADE). The classification loss supervises the likelihood
of different future paths, while the minADE measures the accuracy of the pre-
dicted trajectory (ŝ) against the ground truth (s). The balance between these
two components is regulated by the coefficients α and β:

Li
traj = αLi

cls + βLminADE(ŝi, s) (12)

In MCT, trajectory predictions are made at intervals of every n layers, re-
sulting in multiple sets of trajectory prediction outcomes. As indicated above, i
represents the results from different layers of trajectory prediction heads.

Finally, the overall loss L is a weighted sum of these components, allowing
for customized emphasis on different aspects of the model’s predictions:

L = ωrec ∗ Lrec + ωCE ∗ LCE +
∑
i

ωi
traj ∗ Li

traj (13)

where ωrec, ωCE , and ωi
traj are the weights applied to the reconstruction,

cross-entropy, and trajectory prediction losses, respectively.

D.4 Hyperparameters

Model configuration As shown in Table 7, we list the detailed hyperparame-
ters of three different model variants.

32 Y. Hu et al.

Hyperparameter GUMP-small GUMP-base GUMP-medium

vocabulary size 2972
block size 2048
meshgrid [x, y, θ, w, l, vx, vy] [0.2m, 0.2m, π

100
, 0.5m, 0.5m, 0.25m/s, 0.25m/s]

range [x, y, θ, w, l] [(−100, 100)m, (−100, 100)m, (−π, π), (0, 7)m, (0, 15)m]
range [vx, vy] [(0, 25)m/s, (0, 25)m/s]
embedding dim 384 768 1024
MCT backbone gpt2-small gpt2-base gpt2-medium
Nheads 6 12 16
Nlayer 12 12 24
GRU decoder layer 2 2 2
chunking size T (sec) 2 2 2
visual encoder ResNet18 ResNet34 ResNet50
total params 55.8M 184M 523M

Table 7: Model configurations of GUMP.

Training configuration We detail all training specifics in Table 8. Our models
undergo an initial training phase of 10 epochs on the nuPlan Dataset, followed
by a fine-tuning stage on the Waymo Open Dataset for an additional 10 epochs.
The GUMP-medium model is trained using 8 A100 GPUs with a period of 3
days.

E Ablation Study

E.1 Effectiveness of NAR conversion

To accelerate the model’s inference process, we employed Non-Autoregressive
(NAR) conversion methods described in Section 2.2, transforming the full au-
toregressive (full-AR) model into a partially autoregressive (partial-AR) model.
The specific experimental results, as outlined in Table 9, reveal that the transi-
tion to a partial-AR model results in a significant acceleration (×132 speed up)
without any noticeable degradation across various simulation realism metrics.
This transformation demonstrates the efficacy of NAR conversion methods in
improving computational efficiency while maintaining the quality of the simula-
tion results.

E.2 Effectiveness of Prediction Chunking and Temperal
Aggregation.

As shown in Table 10, we present the ablation study results on the Waymo Sim
Agents validation set. It is evident that incorporating prediction chunking as
an auxiliary task alone leads to a 1% enhancement in the realism meta-metric,
with particularly notable improvements observed in the interactive and map-
based metrics. In addition, the minimum average displacement error (minADE)
decreases significantly. Further enhancements are attained through temporal ag-
gregation, where the ensemble of multiple predictions from chunked results yields

GUMP 33

Hyperparameter Value

lr 2e-4
weight decay 1e-3
optimizer adamw [47]
lr scheduler multistep lr
batchsize 64
accumulate grad batches 2
training epoch 10
decay milestones [6, 8]
decay rate 0.1
precision fp16
ωrec 1.0
ωCE 1.0
ω0
traj 0.25

ω1
traj 0.25

ω2
traj 0.5

ω3
traj 0.5

temperature 1.1
topk 40
temperature at SceneGen 1.25
topk at SceneGen 400
condition length 3
decay rate γ 1.2
chunking time horizon T 2s

Table 8: Training hyperparameters of GUMP.

an additional 1.2% improvement in the metametric. It is worth mentioning that
the kinematic metrics are the primary contributors to this overall improvement.
These experiments underscore the effectiveness of the Prediction Chunking and
Temporal Aggregation modules in increasing the realism of simulations con-
ducted by GUMP.

E.3 Ablation Study of Decay Rate γ

In this section, we explore the optimal setting for the decay rate γ in our tem-
poral aggregation process, as depicted in Figure 7. Setting γ = 0.0 equates to
omitting the temporal aggregation entirely. As we increase γ, future predictions
within the chunking data are progressively weighted more heavily. Observing the
components of the metametric, it becomes evident that a higher decay rate γ
distinctly improves the kinematic metrics while leading to a decrease in the in-
teractive and map-based metrics. The overall meta-metric peaks at γ = 1.2. This
suggests that by incorporating predictions that extend further into the future,
agents are better able to adhere to their initial goals, thereby achieving higher
kinematic metrics. However, this reliance on more distant predictions in chunked
data tends to overlook interactions between agents, and between agents and the
map at future time points, resulting in reduced interactive and map-compliance
metrics.

34 Y. Hu et al.

Inference Mode Inference Speed (FPS) Meta Metric↑ minADE↓ Kinematic Metrics↑ Interactive Metrics↑ Map-based Metrics↑

full-AR 0.69 0.645 1.548 0.4022 0.7651 0.8334
partial-AR 82(×132) 0.646 1.584 0.4036 0.7662 0.8331

Table 9: Comparison of full-AR and partial-AR inference mode. The inference speed
is measured with a single A100 GPU. The transition from full-AR to partial-AR mode
results in a significant acceleration (×132 speed-up) without any noticeable degradation
across various simulation realism metrics.

Prediction Temporal Meta Metric↑ minADE↓ Kinematic Metrics↑ Interactive Metrics↑ Map-based Metrics↑
Chunking Aggregation

0.624 1.626 0.3903 0.7508 0.7903
✓ 0.634 1.562 0.3700 0.7674 0.8299
✓ ✓ 0.646 1.584 0.4036 0.7662 0.8331

Table 10: Ablation study of prediction chunking in Waymo Sim Agents benchmark.
These experiments demonstrate the efficacy of Prediction Chunking and Temporal
Aggregation modules in enhancing the realism of simulations conducted by GUMP.

E.4 Ablation Study of Temperature

In this section, we conduct a detailed analysis of how varying the temperature
parameter affects the performance and behavior of simulations, as illustrated in
Table 8. The data clearly shows that the meta-metric peaks at a temperature of
1.1. Furthermore, as the temperature increases, kinematic metrics show a mono-
tonically increasing trend, while both interactive and map-based metrics exhibit
a monotonic decrease. This pattern indicates that higher temperatures facilitate
better mode coverage by enabling more frequent sampling of low probabilistic
states. However, such states may lead to an increase in collisions and deteriorate
map compliance. Visual observations reveal that higher temperatures result in
more aggressive behaviors among road participants, such as increased collisions
or jaywalking. In contrast, lower temperatures are associated with more conser-
vative behaviors, including more obedient drivers and more cautious pedestrians.
This parameter thus offers a lever to more precisely control the behavior of traf-
fic participants, enabling effective evaluation of driving policies across diverse
scenarios.

E.5 Ablation Study of the Number of Conditioned Frames

In this section, we explore the effects of varying the length of conditioned history
frames within the autoregressive process. As depicted in Table 9, the performance
is notably poor when there is a lack of historical input (condition length = 1,
i.e only current frame). With the increment in input frame length, the overall
meta-metric reaches its peak at 5 frames, corresponding to a 2-second history,
after which the improvement plateaus. This suggests that for the purpose of sim-
ulation, a 2-second window of information is sufficiently informative. However,

GUMP 35

Fig. 7: Impact of Decay Rate γ on the Realism Metrics in the Waymo Sim Agents
Benchmark. This figure illustrates the variation curves of the overall MetaMetric, Kine-
matic metrics, Interactive metrics, and Map-based metrics as a function of decay rate
γ, from left to right. The experimental results highlight that the overall meta-metric
reaches its peak performance at γ = 1.2, which is highlighted with magenta.

Fig. 8: The graph illustrates the relationship between temperature settings and Real-
ism Metrics in the Waymo Sim Agents Benchmark. It highlights how varying tempera-
ture levels affect overall simulation performance, with a focus on the interplay between
kinematic metrics, interactive behaviors, and map compliance. The chart specifically
showcases the optimal meta-metric peak at a temperature of 1.1, while also detailing
the divergent trends of increasing kinematic metrics and decreasing interactive and
map-based metrics performance at higher temperatures.

considering that increasing the conditioned length significantly adds to compu-
tational demands, thereby affecting the efficiency of downstream tasks, we opt
for a conditioned frames length of 3 (1-second history). This decision balances
the need for sufficient historical context with the imperative of maintaining com-
putational efficiency.

F Qualitative Analysis

In this section, we will analyze the visual analysis of GUMP under different
tasks. The visualization reflects GUMP’s excellent capability in controlled scene
generation, its realistic simulation of diverse complex driving scenarios, and pro-
vides a visual comparison with traditional IDM agents. This fully demonstrates
the superiority of GUMP as a realistic controllable data-driven simulator.

36 Y. Hu et al.

Fig. 9: Impact of the number of conditioned frames on the Realism Metrics in the
Waymo Sim Agents Benchmark.

F.1 Scene Generation

Here we demonstrate visualizations of scene generation based on map and sce-
nario description prompts. By providing a static map, specifying the types and
numbers of agents, and offering scenario description prompts, we can autore-
gressively generate the corresponding initial states and simulate future based on
the initial states. As illustrated in Figure 10, under the same map input, the
creation of distinctly different scenes is facilitated by varying the scenario de-
scriptions and the numbers of objects. The 0th frame in the image is generated
through fully autoregressive scene generation, while subsequent simulations are
generated through partial-autoregressive scene extrapolation. Examples include
low magnitude speed, waiting for pedestrian to cross, or controlling the position
of objects, such as behind bike. Through such controlled methods, we are able
to generate a large number of driving scenarios, thereby mitigating the issue of
data scarcity.

F.2 Diverse Future

GUMP demonstrates exceptional efficacy in generating diverse, interactive, and
rational driving behaviors within identical map settings. Fig. 11 show three pair
of samples.

In Fig. 11 (a), the red car proceeds to make a right turn because there is
sufficient distance from the approaching green vehicle, demonstrating the model’s
effective distance assessment for safe maneuvers. Conversely, the right panel
depicts the red car yielding to a faster-moving green vehicle, illustrating the
model’s prioritization of safety in tighter traffic scenarios.

On the left side of Fig. 11 (b), all vehicles stick to their predetermined routes.
However, the right side illustrates a more complex scenario where a light blue
car accelerates and changes lanes, forcing the dark blue car following it to also
change lanes to avoid the congestion initiated by the leading vehicle.

Lastly, Fig. 11 (c) illustrates the model’s ability to choose highly probable ac-
tions, like making a left turn, as well as to perform less typical maneuvers, such as
U-turns, given similar circumstances. This adaptability underscores the model’s
sophisticated decision-making capabilities across diverse traffic situations.

GUMP 37

(a) scenario prompt: low magnitude speed

(b) scenario prompt: waiting for pedestrian to cross

(c) scenario prompt: behind bike

Fig. 10: We created and simulated three distinct scenarios using the same static map
but with different scenario descriptions, including the scenario prompts and the classes
and numbers of agents involved. It is worth noting that the 0th frame in the image is
generated through fully autoregressive scene generation, while subsequent simulations
are generated through partial-autoregressive scene extrapolation.

F.3 Reactive Simulation

Fig. 12 illustrates the superior realism of GUMP compared to Rule-based reac-
tive environments (IDM). The first row shows agents’ movement generated by
GUMP and the second row is for IDM. These visualizations reveal that the sim-
plistic IDM environment does not provide an adequate reactive simulation for
planning policies. Conversely, GUMP presents an efficient and more human-like
alternative.

In Figure (a), we observe collisions between agents in the IDM environment,
where a vehicle disregards traffic lights and collides with another vehicle making
a left turn. In contrast, in GUMP’s environment, vehicles exhibit more human-
like behavior, avoiding any collisions.

38 Y. Hu et al.

In the second row of Figure (b), a bus fails to stop adequately behind another
vehicle, leading to a rear-end collision. Meanwhile, in the top row showcasing
GUMP’s environment, the bus stops appropriately, avoiding any collision with
the vehicle in front.

Finally, Figure (c) also highlights a scenario in the IDM environment where
a vehicle ignores a traffic light and collides with another vehicle executing a left
turn. However, in the environment simulated by GUMP, vehicles navigate the
intersection smoothly, without any collision.

G WOD Motion Results

To further validate its capabilities as a foundation model for multiple tasks, we
also benchmarked GUMP’s performance in motion prediction tasks. Utilizing
the latent features corresponding to each agent, future 8 seconds trajectories
and their associated probabilities are predicted through a simple multilayer per-
ceptron (MLP) prediction head. Similar to the Waymo motion prediction bench-
mark, we adopted 6 distinct modes and supervised the model using a multipath
loss.

G.1 WODM Validation Set

As shown in Table 11, we compare the performance of GUMP-medium on the
WOD motion validation set against other models. It’s important to note that,
to ensure a fair comparison, all models selected for this analysis are end-to-end
models, meaning they do not incorporate additional post-processing or ensem-
bling in their results. Traditionally, agent-centric models have led the way in
motion prediction due to their more unified and easier-to-learn representation
forms, outpacing scene-centric models. Despite this, our findings reveal that
GUMP-medium significantly surpasses other scene-centric models, such as the
SceneTransformer [52], and even approaches the performance of agent-centric
models like MTR-e2e [67], without any bells and whistles. This demonstrates
that GUMP can also serve as a pretraining framework, acting as a foundation
model in motion planning to benefit a variety of related tasks.

Methods scene-centric mAP ↑ minADE ↓ minFDE ↓ MR ↓

MTR-e2e [67] ✗ 0.32 0.52 1.10 0.12
CPS [70] ✗ 0.32 0.74 1.49 0.20
SceneTransformer [52] ✓ 0.28 0.61 1.22 0.16
GUMP-m ✓ 0.30 0.60 1.15 0.13

Table 11: Performance comparison of motion prediction on the validation set of the
WOMD. GUMP-medium significantly outperforms scene-centric SceneTransformer,
and even approaches the performance of agent-centric models like MTR-e2e, with-
out any bells and whistles.

GUMP 39

G.2 Per-type Results of WOMD Validation

We also present the per-type results of GUMP on the WOMD Validation set, as
shown in reference Tab. 12.

Object type mAP ↑ minADE ↓ minFDE ↓ MR ↓

Vehicle 0.32 0.75 1.42 0.14
Pedestrian 0.27 0.36 0.70 0.07
Cyclist 0.30 0.68 1.33 0.18
Avg 0.30 0.60 1.16 0.13

Table 12: Per-type performance of motion prediction on the validation set of WOMD.

H Per-component WOD Sim Agent Metric

As shown in Table 13, to provide a more detailed showcase of our model’s per-
formance on the Waymo Sim Agents benchmark, we have listed the breakdown
metrics for reference. Our method significantly leads the competition across a
majority of these metric components, particularly in linear kinematic metrics,
collision-related metrics, and map compliance metrics. It achieves state-of-the-
art performance in both the overall realism metametric and the minADE (min-
imum Average Displacement Error) metric, highlighting its effectiveness and
efficiency in producing realistic and accurate simulations for real-world driving
scenarios.

Agent Policy Meta minADE linear linear ang. ang. dist. collision TTC dist. to offroad
Metric speed accel. speed accel. to obj. road edge

(↑) (↓) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑)
Logged Oracle 0.722 0.000 0.561 0.330 0.563 0.489 0.485 1.000 0.881 0.713 1.000
SBTA-ADIA [48] 0.420 3.611 0.317 0.174 0.478 0.463 0.265 0.337 0.770 0.557 0.483
CAD [11] 0.531 2.308 0.349 0.253 0.432 0.310 0.332 0.568 0.789 0.637 0.834
Joint-Multipath++ [77] 0.533 2.049 0.434 0.230 0.515 0.452 0.345 0.567 0.812 0.639 0.682
Wayformer [51] 0.575 2.498 0.331 0.098 0.413 0.406 0.297 0.870 0.782 0.592 0.866
MTR+++ [59] 0.608 1.679 0.414 0.107 0.484 0.436 0.347 0.861 0.797 0.654 0.895
MVTA [78] 0.636 1.866 0.439 0.220 0.533 0.480 0.374 0.875 0.829 0.654 0.893
MVTE⋆ [78] 0.645 1.674 0.445 0.222 0.535 0.481 0.383 0.893 0.832 0.664 0.908
Trajeglish [56] 0.644 1.615 0.448 0.192 0.538 0.485 0.386 0.918 0.837 0.658 0.887
GUMP-m 0.643 1.590 0.463 0.256 0.467 0.412 0.391 0.920 0.832 0.672 0.908

Table 13: Per-component metric results on the test split of WOMD, representing
likelihoods. Note: ⋆ indicates the use of model ensemble techniques. Our method sig-
nificantly leads the competition across a majority of metric components and achieves
the state-of-the-art on the overall realism meta metric and the minADE metric. The
best score is bolded.

40 Y. Hu et al.

(a) Left: proceed, Right: yield

(b) Left: maintain, Right: change lane

(c) Left: left-turn, Right: u-turn

Fig. 11: The left and right images display the outcomes simulated under the same
initial conditions. We overlap the 5 seconds future trajectories of all agents on a single
image to represent the motion of each agent. The areas of interest in the image are
highlighted with red dashed lines, which shows that simulated scenarios with identical
initial conditions can lead to significantly different behaviors of the agents.

GUMP 41

(a) In the IDM environment, one vehicle is running through a red light and collides with another
vehicle which is making a left turn.

(b) In the IDM environment, the bus collides with the vehicle in front of it.

(c) In the IDM environment, one vehicle is running a red light and collides with another left-turning
vehicle.

Fig. 12: Agents’ behaviours comparison under GUMP’s environment (first row) and
IDM environment (second row). Interesting areas are highlighted with a yellow square.

