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Abstract. Action quality assessment (AQA) is a challenging vision task
that requires discerning and quantifying subtle differences in actions
from the same class. While recent research has made strides in creat-
ing fine-grained annotations for more precise analysis, existing methods
primarily focus on coarse action segmentation, leading to limited iden-
tification of discriminative action frames. To address this issue, we pro-
pose a Vision-Language Action Knowledge Learning approach for action
quality assessment, along with a multi-grained alignment framework to
understand different levels of action knowledge. In our framework, prior
knowledge, such as specialized terminology, is embedded into video-level,
stage-level, and frame-level representations via CLIP. We further pro-
pose a new semantic-aware collaborative attention module to prevent
confusing interactions and preserve textual knowledge in cross-modal
and cross-semantic spaces. Specifically, we leverage the powerful cross-
modal knowledge of CLIP to embed textual semantics into image fea-
tures, which then guide action spatial-temporal representations. Our ap-
proach can be plug-and-played with existing AQA methods, frame-wise
annotations or not. Extensive experiments and ablation studies show that
our approach achieves state-of-the-art on four public short and long-term
AQA benchmarks: FineDiving, MTL-AQA, JIGSAWS, and Fis-V.

Keywords: Action quality assessment · Vision-language pre-training ·
Semantic-aware learning

1 Introduction

Action quality assessment (AQA) is an emerging video analysis technique that
aims to quantitatively assess how well actions are performed from the same class.
AQA has gained growing attention in the computer vision community due to its
rich real-world applications, such as sports video analysis [4,12,33,35,36,39,46,
47, 49], healthcare [11, 31, 48, 54, 55], artistic performances, and others [10, 34].
However, since the action differences between the same class are always subtle,
it is difficult to capture and understand the subtle differences and corresponding
large score variations. Therefore, AQA is regarded as a challenging task.
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Fig. 1: (a) Existing methods solely employ precious frame-wise annotations for stage
boundary prediction, often struggling to effectively discern action semantics, relying on
rare distinctive frames for boundary selection. (b) Our multi-grained vision-language
alignment framework introduces cheaper textual semantics of professional action knowl-
edge to facilitate the understanding of action meanings, bringing satisfactory results.

Existing AQA methods primarily model the mapping of relationships be-
tween deep features and scores. However, most of them [21,39,41,47,52] directly
analyze coarse-grained video-level and clip-level representations, which is insuf-
ficient for AQA that needs to discern subtle action differences. Recently, some
works [15,24,46,49] have constructed fine-grained datasets that introduce multi-
stage and even frame-wise semantic information for AQA. These are valuable
gifts for more accurate, robust and interpretable AQA research. Yet, these fine-
grained annotations are still used in a rough manner that only assist in the seg-
mentation of stage actions. This manner may only learn to recognize differences
between sub-stage actions to determine the boundaries of segmentation, without
further understanding of the action semantics of different stages. As shown in
Fig. 1(a), this may not identify the exact stage boundary. Furthermore, fine-
grained datasets are extremely expensive to acquire. Particularly for the AQA
task that explores inter-class differences in an occupational field, the fine-grained
annotation process requires personnel with prior knowledge of the field (e.g., the
FineDiving [46] dataset is constructed by six professionals in about 120 hours).
Therefore, we raise a pressing question: Is there available prior knowledge with
low annotation overhead, to help understand fine-grained semantic information?

While actively seeking answers, we realize an indispensable element: Lan-
guage! Looking to AQA, which assesses the actions of one professional field. Ob-
viously, a key point of AQA is to understand the specific semantics of the field.
Expert judges are capable of providing convincing scores due to their abundant
prior knowledge in the field, such as the action’s meaning and challenges. Similar
to the crucial role of acquiring prior knowledge for human judges, language also
holds equal significance for AQA in comprehending the action semantics and
knowledge. In practice, professional domains often employ specialized language
to convey domain-specific knowledge. For instance, diving events are typically
divided into “take-off”, “flight”, and “entry”. Furthermore, terms like “forward”,
“back”, and “reverse” can be used to further express the meanings of the athlete’s
“take-off” actions. These languages are highly valuable for AQA. To incorporate
language knowledge, we naturally turn to the prevalent Vision-Language Pre-
training (VLP) [16, 37], which has achieved great success. VLP has acquired a
vast amount of cross-modal knowledge and enriched latent semantic information
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from millions of image-text pairs, demonstrating strong generalization and trans-
fer capabilities. Hence, VLP like CLIP [37], which can bridge language semantics
with visual features across modalities, is highly suitable for AQA.

To fill the research gap of learning action priors using language in AQA,
we first propose a novel multi-grained vision-language alignment framework
(MVLA). The key idea lies on leveraging textual features to guide visual features
at various levels, thus mining potential commonalities in the feature space. As
shown in Fig. 1(b), introducing our textual semantics allows for better discrim-
ination of action variations, and identifying accurate stage boundaries. Specifi-
cally, we retain the Classification-Based Pre-training (CBP) [5, 40] model com-
monly used by AQA methods to extract discriminative action information. Then,
we employ the VLP model to extract rich textual semantics and foreground in-
formation [18]. These textual semantics are encoded from both stage-level and
video-level action texts that we constructed based on specialized terminology.
Textual semantics are used to guide the understanding of action semantics at
these levels: global video type, sub-stage type, and frame-wise type.

We further propose a semantic-aware collaborative attention (referred to as
SCA) to bridge the gap in semantic space between CBP and VLP, ensuring
that textual semantics rightly guide action comprehension. Specifically, in the
VLP model, we first perform cross-modal alignment between its textual features
(serving as “key” and “value”) and visual features (serving as “query”), embedding
textual semantics into visual action information. Subsequently, we utilize these
aligned features enriched with action knowledge (serving as “key” and “value”)
to guide CBP’s visual features (serving as “query”). By doing so, it prevents
the confusing cross-modal, cross-semantic space interaction between CBP and
textual features. It is worth mentioning that SCA can flexibly incorporate var-
ious levels of textual semantics. We only need to construct text annotations
for representative fine-grained action types based on professional knowledge,
which is much cheaper than frame-wise annotations. This allows our approach
to plug-and-play the textual semantics into existing methods. On four public
AQA benchmarks: FineDiving [46] (with frame-wise annotations), and MTL-
AQA [33], JIGSAWS [11], and Fis-V [45] (without frame-wise annotations), our
approach significantly improves the performance of existing methods for action
segmentation and assessment, reaching new state-of-the-art results.

The main contributions of this work are summarized as:

– We propose a novel multi-grained vision-language alignment framework for
action quality assessment, aiming to leverage textual semantics to extract
specialized knowledge for facilitating action understanding.

– We build cheaper multi-grain text annotations and design a flexible semantic-
aware collaborative attention. This allows our approach to be plug-and-play
with existing methods, frame-wise annotations or not.

– Extensive experimental results and ablation studies reveal the significance
of learning language knowledge and the state-of-the-art performance of our
semantic-aware approach in both short and long-term AQA.
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2 Related Work

2.1 Action Quality Assessment

Frame-Wise Unannotated Methods. Early on, Gordon [12] pioneered the
idea of using machines to automatically assess action quality, and Pirsiavash et
al . [36] first formulated the AQA task and explored several viable approaches.
Subsequently, due to its wide applicability, AQA has attracted extensive research
in the community. Many works [29, 32, 33, 35, 39, 41, 44, 45, 52] formulated AQA
as a regression task, relying on human pose and visual features to predict the
quality scores of a single video by fitting expert judges’ score labels. Some meth-
ods [4, 9, 10, 48] formulated AQA as a pair-wise ranking task, comparing the
goodness of videos. Recently, a novel perspective [14,19,21,47] emerged, redefin-
ing AQA as a contrastive task by learning to discern subtle action differences
through contrasting input and exemplar videos. For example, Yu et al . [47] pro-
posed a contrastive regression framework to predict relative scores between two
videos. The framework introduces additional reference action information and
reduces the range and difficulty of score regression. This idea has shown signifi-
cant performance improvements, which has spurred researchers to contemplate
the crucial role of mining fine-grained semantic information for AQA. Thus,
some works [2, 7] had begun to explore finer-grained representations instead of
video-level or clip-level representations.
Frame-Wise Annotated Methods. Furthermore, some works [15, 24, 46, 49]
constructed valuable fine-grained datasets for AQA, aiming to introduce multi-
stage and even frame-wise semantic information. Note that prior work TSA [46]
has demonstrated that action segmentation helps AQA. However, TSA relies on
precious frame-wise annotations and only employs real stage boundaries to guide
action segmentation, which may not effectively capture the action semantics of
sub-stages. In this work, we construct lower-cost textual annotations and explore
methods that fully exploit textual semantics, which significantly improves action
segmentation and facilitates more accurate quality assessment.

2.2 Vision-Language Pre-training

Vision-language pre-training using large-scale image-text pairs has achieved great
success, e.g ., ALIGN [16] and CLIP [37]. These models learn rich cross-modal
knowledge and latent semantic information of open-vocabulary scenes from mil-
lions of image-text pairs, demonstrating strong generalization and transfer capa-
bilities. Although VLP can be effectively transferred to downstream applications
such as object detection [3, 13, 53], image segmentation [6, 22, 26], and few-shot
and zero-shot recognition [1,50,51]. Adapting VLP models to the video domain
is still challenging due to the lack of temporal prior in image-level pre-training.
Therefore, some recent works [17, 18, 23, 27, 28, 30, 38, 42] began to explore the
extension of CLIP into video applications such as action recognition and tem-
poral localization. For example, [17,23,28,30] equipped the video domain with
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Fig. 2: The pipeline of our multi-grained vision-language alignment framework.

additional transformers or attention mechanisms to encode temporal informa-
tion. [27, 42] incorporated specifically designed prompt learning to efficiently
retrieve and detect video information. Rasheed et al . [38] explored to only sim-
ply fine-tune CLIP to fit the video domain. While Ju et al . [18] first explored the
application of CLIP to weakly-supervised temporal action localization for down-
stream video tasks. In this work, we are the first to explore how to leverage VLP
to achieve more accurate, reliable, and interpretable action quality assessment.

3 Approach

The simplified pipeline of our approach is illustrated in Fig. 2. In this section,
we introduce our approach in detail. The primary concept is to incorporate rep-
resentative professional knowledge into AQA using textual semantics, enhancing
the comprehension of action meanings for accurate assessments.

3.1 Overview

The inputs of our framework are an action video and the knowledge texts in-
volved in the current action domain. For an input video VT with T frames,
we first perform visual feature extraction using the CLIP image encoder Evis
to extract the frame-level visual features Fvis ∈ RT×D, where D refers to fea-
ture dimension. We then divide the T frames into N clips (VN ) with 16 frames
and extract the spatial-temporal representations Fi3d ∈ RN×D using I3D [5] as
the backbone Ei3d. Meanwhile, for the textual feature extraction, we construct
multi-level textual annotations representing action knowledge based on profes-
sional terminology and use the CLIP text encoder Etext to extract the multi-level
textual semantics Ftext ∈ RC×D, where C means the number of action types.
Formally, with the introduction of the action type name text Cname:

Fi3d = Ei3d (VT ) , Fvis = Evis (VN ) , Ftext = Etext (Cname) . (1)

To obtain fine-grained features, we perform stage feature decomposition to
segment Fi3d and Fvis into sub-action stages. Depending on the characteristics
of datasets (frame-wise annotations or not), we perform different segmentation
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Fig. 3: The architecture of our multi-grained vision-language alignment framework.
Given an input video, visual features are extracted using the I3D backbone and CLIP
image encoder. We design two schemes: frame-wise annotated (a) and frame-wise unan-
notated (b), based on the availability of frame-wise annotations. These schemes extract
multi-grained visual features. Next, we construct multi-level textual annotations based
on professional terminology, maximizing similarity with visual features. The semantic-
aware collaborative attention mechanism integrates textual semantics into visual repre-
sentations. Finally, these representations are sent to an assessment network to predict
scores. Our approach can be plug-and-played with existing methods to achieve more
accurate and interpretive assessments.

operations, namely, frame-level segmentation and clip-level segmentation. With
this operation, we obtain rich multi-grain visual features such as frame-level,
stage-level and video-level features. These visual features are then aligned with
the corresponding multi-level textual semantics for vision-language action knowl-
edge learning. Afterwards, we propose a semantic-aware collaborative attention
S to embed the textual semantics into the visual feature space, which allows to
obtain discriminative features with action knowledge. What action the athlete
performs is precisely the key factor considered in the assessment. Finally, an
assessment network R is used to regress the predicted score ŝ. Formally,

ŝ = R (S ((Fi3d, Fvis, Ftext) |Φ) |Θ) , (2)

where Φ and Θ are the learnable parameters of S and R. Below we describe the
detailed structure of our approach.

3.2 Visual Feature Extraction

As discussed in Sec. 2.1, we categorize existing methods into two groups based on
whether frame-wise annotations are used: frame-wise annotated methods (FAM)
and frame-wise unannotated methods (FUM). To ensure the broad applicabil-
ity of our approach to existing methods, we accordingly develop two sets of
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implementation strategies. The specific details are illustrated in Fig. 3. Since
our framework uses both CBP and VLP branches, this may cause significant
computational overhead. To address this issue, we freeze the largest CLIP image
encoder. In addition, the image-text pre-training lacks the temporal prior, which
is important for video understanding. Therefore, we use simple temporal trans-
former layers T to construct action temporal relationships. The frozen encoder
preserves the action prior knowledge and rich foreground information [18] from
pre-training. When combined with straightforward temporal modeling, it can
adapt to the current motion context, providing abundant action semantics while
saving memory footprint. Acquiring visual features Fvis can be rewritten as:

Fvis = T (Evis (VN ) |Ψ) , (3)

where Ψ is the learnable parameter of T .
As shown in Fig. 3(a), for FAM, we follow previous work [46] by utilizing a

segmentation module consisting of several convolutional blocks to convert the
features Fi3d from clip-level to frame-level F fra

i3d . F fra
i3d is further converted by an

MLP block into a probability distribution P = {p̂t}Tt=1 ∈ RT×L, where L denotes
the number of stage boundaries, and p̂t is the confidence of whether the t-th frame
is one of the L stage boundaries. We utilize the frames with the highest confidence
as stage boundaries and divide F fra

i3d into L+ 1 stage features, i.e., F sta
i3d . Based on

the ground-truth {pt}Tt=1 obtained from the frame-wise annotations, we predict
the stage boundaries by minimizing LBCE, which can be expressed as:

LBCE = −
∑

t
[pt log p̂t + (1− pt) log (1− p̂t)]. (4)

Additionally, we obtain video-level features F vid
i3d from Fi3d using average

pooling. Similarly, we perform the above operation for Fvis of the VLP branch.
Thus, we obtain visual information at three granularities, namely F fra

x , F sta
x ,

and F vid
x , where x ∈ {i3d, vis}.

For FUM, without frame-level labels as support, effective implementation of
action stage segmentation is not feasible. We therefore adopt a different setting,
as shown in Fig. 3(b). Specifically, we input video clips composed of continuous
frames into the VLP branch, similar to the input of the CBP branch, and employ
temporal pooling on the frame-level features to obtain clip-level features. Then,
we manually set fixed stage boundaries specific to the sports scene to partition
the features from clip-level to stage-level. Thus, we similarly obtain multi-grained
visual representations, namely F cli

x , F sta
x , and F vid

x , where x ∈ {i3d, vis}.

3.3 Vision-Language Action Knowledge Learning

Multi-Level Textual Annotation. To incorporate action knowledge, we con-
struct representative textual annotations based on professional terminology. Specif-
ically, the types of actions performed by athletes in sports competitions are
represented using professional terms. For example, in diving events, a complete
action instance is denoted by a number such as “207B” or “5152B”. These dive
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numbers are known to the judges in advance, and they specify which sub-action
types will constitute the athlete’s performance. For instance, for an action type
“407B”, the athlete will sequentially perform sub-action types “inward take-off”,
“3.5 somersaults pike flight”, and “entry into the water”. We directly utilize these
action terms for sub-action types to construct stage-level textual labels. These
sub-action texts can further be combined into text descriptions of complete in-
stances to obtain video-level textual labels, such as “inward take-off, 3.5 somer-
saults tuck flight, and entry into the water”. This allows us to obtain cost-effective
prior knowledge incorporating professional semantics at a significantly lower cost
than frame-wise annotations. Moreover, this cheap annotation approach can be
easily applied to existing datasets such as FineDiving [46] and MTL-AQA [33],
as well as to other action assessment scenes [11,45]. Please refer to the Appendix
for the complete multi-level textual annotation.
Multi-Grained Maximize Similarity. To encode text into the semantic space
in a way that aligns with sports scenes, we construct a set of manually crafted
prompt templates like ‘a diving video of a [category]’. We encode these
prompt vectors using the CLIP text encoder to obtain stage-level text embed-
dings F sta

text and video-level text embeddings F vid
text. Then, the cosine similarity

sim (·) between visual embeddings at different levels and their corresponding text
embeddings is computed, and multi-grained maximized through cross-entropy
(CE) loss with a temperature parameter τ . This aims to understand the mean-
ings of actions under different temporal structures in a holistic manner, mining
subtle intra-class differences. For one grain of visual embedding fvis and text
embedding ftext, the learning process can be represented as:

LCE (fvis, ftext) = −
∑
i

log
exp

(
sim

(
f i
vis, f

i
text

)
/τ

)∑
j exp

(
sim

(
f i
vis, f

j
text

)
/τ

) . (5)

For FAM, our multi-grained maximize similarity includes stage-level and
video-level visual embeddings with their corresponding text embeddings. In ad-
dition, we also minimize the distance between stage-level text embeddings and
each frame-level visual embedding in that stage. Different from the two-grain
loss of [8], we explore novel interactions between three-grain semantics for chal-
lenging AQA. The objective function is:

J = LCE
(
F fra
x , F sta

text
)

+ LCE
(
F sta
x , F sta

text
)
+ LCE

(
F vid
x , F vid

text
)
.

(6)

For FUM, since there is no frame-wise annotations, multi-grained maximize
similarity only performed on stage-level and video-level embeddings. We further
perform semantic alignment of the clip-level representations of the two branches
to compensate for the lack of frame-level semantics. Specifically, we compute the
similarity curves between the clip-level embeddings and the stage-level textual
semantics corresponding to that sample, minimizing the Kullback-Leibler (KL)
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divergence between the curves of the two branches. The objective function is:

J = KL
(
sim

(
F cli

i3d, F
sta
text

)
||sim

(
F cli

vis , F
sta
text

))
+ LCE

(
F sta
x , F sta

text
)
+ LCE

(
F vid
x , F vid

text
)
.

(7)

3.4 Semantic-Aware Collaborative Attention

Although VLP brings rich action knowledge, there is still a challenge to effec-
tively incorporate it into the CBP branch with different modality and semantic
space. To tackle this issue, we design a semantic-aware collaborative attention
(SCA), which leverages the powerful sequence modeling capabilities of trans-
former to bridge the gap between CBP and VLP. For the VLP branch, visual
embeddings Fvis serve as “query”, and text embeddings Ftext serve as “key” and
“value”. SCA first leverages the strong cross-modal prior knowledge from CLIP
to integrate textual semantics into the visual semantic space, generating new
spatial-temporal representations X enriched with action knowledge. Then, SCA
employs X as an intermediary to embed action knowledge into the visual fea-
tures Fi3d of the CBP branch, with X serving as the “key” and “value”, and Fi3d
as the “query”. The module prevents the confusing cross-modal, cross-semantic
space interaction between CBP and textual semantics. Formally,

X ′ = Softmax
(
Fviswq(Ftextwk)

T
/
√
d
)
Ftextwv + Fvis,

X = MLP (X ′) + X ′,

Z ′ = Softmax
(
Fi3dWq(XWk)

T
/
√
d′
)
XWv + Fi3d,

Z = MLP (Z ′) + Z ′,

(8)

where wq, wk, wv, Wq, Wk, and Wv are the learnable weights,
√
d and

√
d′

are the normalization factors. The MLP module consists of two fully connected
layers with a GELU non-linearity. SAC is used for stage-level and video-level
semantic collaboration. Finally, an assessment network R regresses Z to obtain
the predicted score ŝ of the input video. R is optimized by minimizing the mean
squared error between ŝ and the ground-truth score label s, as follows:

LMSE = ∥ŝ− s∥2. (9)

4 Experiments

4.1 Datasets and Experiment Settings

Datasets. We perform experiments on four public AQA benchmarks: FineDiv-
ing [46] (with frame-wise annotations), and MTL-AQA [33], JIGSAWS [11], and
Fis-V [45] (without frame-wise annotations). We adhere to the criteria estab-
lished by the datasets and previous studies. See more details in the Appendix.
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Evaluation Metrics. To compare prior works [2,46,47,52], we adopt two met-
rics to evaluate the AQA performance of our method, the Spearman’s rank cor-
relation (ρ) and relative L2-distance (R-ℓ2). In addition, we evaluate the mean
square error (MSE) in Fis-V, following [47]. ρ is used to measure the rank cor-
relation between the predicted series q̂ and the ground-truth series q, which is
defined as follows:

ρ =

∑
i (qi − q̄)

(
q̂i − ¯̂q

)√∑
i (qi − q̄)

2 ∑
i

(
q̂i − ¯̂q

)2 . (10)

R-ℓ2 is used to measure the numerical difference between the predicted scores
ŝ and the ground-truth scores s, which is defined as:

R-ℓ2 =
1

N

N∑
n

(
|sn − ŝn|

smax − smin

)2

. (11)

Following prior work [46], we adopt the average Intersection over Union
(AIoU) metric to evaluate the action segmentation performance of our method.
The metric converts the predicted boundaries into a set of 1D bounding boxes
B̂ and computes the Intersection over Union with the ground-truth bounding
boxes B, i.e., IoU =

∣∣∣B̂ ∩ B
∣∣∣ / ∣∣∣B̂ ∪ B

∣∣∣. For a threshold d, AIoU@d is defined as:

AIoU@d =
1

N

N∑
n

I (IoUn ≥ d), (12)

where I (·) is an indicator that yields 1 when IoUn ≥ d, and 0 otherwise.
Implementation Details. For fair comparisons, we adopt the I3D backbone
pre-trained on the Kinetics [5] and use VST [25] on Fis-V only. The CLIP image
encoder and text encoder are both adopted from ViT-B/16. The Adam optimizer
is used with a learning rate 1e-4 for visual feature extraction, and 1e-3 for SCA
and assessment network. We set the weight decay to 0. For the data preprocessing
of datasets, we follow the original settings of the existing methods when our
method is plugged into them. In most cases, for FineDiving, we sample 96 frames
and divide them into 9 clips of 16 frames each. While for MTL-AQA, videos
are sampled as 103 frames and divided into 10 overlapping 16-frame clips. For
JIGSAWS, 160 frames are uniformly sampled into 10 non-overlapping 16-frame
clips. And for Fis-V, each non-overlapping clip contains 32 consecutive frames.
The dimension D of visual features is 512. When the feature dimensions of the
existing methods do not match the CLIP features, we only use a simple linear
layer to project the features, which can achieve effective results.

4.2 Comparison to State-of-the-art

To ensure fair comparisons, we implement all methods and integrate our plug-in
approach in the same experimental environment (Two GeForce RTX 3090 GPUs
with Pytorch 1.12.0). We first validate our method on two large-scale diving
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Table 1: Comparisons of performance with existing AQA methods on FineDiving.
(w/o DN) indicates random selection, while (w/ DN) indicates using the dive numbers
to select exemplars. / denotes without action segmentation. Best results are in bold.

Method
w/o DN w/ DN

Segmentation Assessment Segmentation Assessment

AIoU@0.5↑ AIoU@0.75↑ ρ↑ R-ℓ2 (×100)↓ AIoU@0.5↑ AIoU@0.75↑ ρ↑ R-ℓ2 (×100)↓

USDL [39] / / 0.8302 0.5927 / / 0.8913 0.3822
MUSDL [39] / / 0.8427 0.5733 / / 0.8978 0.3704
CoRe [47] / / 0.8631 0.5565 / / 0.9061 0.3615
TSA [46] 80.71 30.17 0.8925 0.4782 82.51 34.31 0.9203 0.3420

TSA-MVLA (Ours) 95.46 58.34 0.9089 0.4242 98.66 67.16 0.9419 0.2840

Table 2: Comparisons of performance with existing AQA methods on MTL-AQA.
(w/o DD) indicates random selection, while (w/ DD) indicates using the degree of
difficulty to select exemplars. The bold indicates the better, and red indicates the best.

Method w/o DD w/ DD

ρ↑ R-ℓ2 (×100)↓ ρ↑ R-ℓ2 (×100)↓

TSA-Net [41] (ACM MM’21) 0.9393 – – –
PCLN [21] (ECCV’22) 0.9230 – – –

USDL [39] (CVPR’20) 0.8861 0.774 0.9225 0.424
USDL-MVLA (Ours) 0.9142 0.545 0.9267 0.401

MUSDL [39] (CVPR’20) 0.9031 0.516 0.9244 0.440
MUSDL-MVLA (Ours) 0.9233 0.449 0.9362 0.356

CoRe [47] (ICCV’21) 0.9347 0.373 0.9519 0.266
CoRe-MVLA (Ours) 0.9410 0.316 0.9577 0.243

TSA [46] (CVPR’22) 0.9266 0.543 0.9470 0.307
TSA-MVLA (Ours) 0.9387 0.344 0.9615 0.257

TPT [2] (ECCV’22) 0.9431 0.348 0.9576 0.265
TPT-MVLA (Ours) 0.9529 0.281 0.9655 0.224

HGCN [52] (TCSVT’23) 0.9317 0.379 0.9555 0.260
HGCN-MVLA (Ours) 0.9375 0.343 0.9597 0.229

datasets: FineDiving (with frame-wise annotations) and MTL-AQA (without
frame-wise annotations). Then, we validate the feasibility of our method without
the aid of frame-wise annotations and sub-action terminology on the surgical
dataset JIGSAWS and long-term figure skating dataset Fis-V. Specifically, in
the FUM scheme, we use action names with quality descriptions as semantic
knowledge at different grades to replace sub-action terminologies, e.g ., “a video
of a poor/fair/good/excellent knot tying”. Here, the VLKL operation remains
consistent, while in the SCA module, visual features are coherently fused with
the highest-similarity textual semantics.
Results on FineDiving dataset. As shown in Tab. 1, we follow previous
work [46] to conduct experiments on FineDiving with both settings. Some meth-
ods based on contrastive regression require selecting exemplar videos to compare
with the query video, ‘w/o DN’ and ‘w/ DN’ denote random and use the dive
numbers to select exemplars, respectively. We can see that our method achieves
a significant improvement over the SOTA method TSA [46]. Specifically, under
‘w/ DN’, our method achieves 16.15%, 32.85%, 2.16%, and 0.0580 improvements
in the AIoU@0.5, AIoU@0.75, Spearman’s rank correlation, and R-ℓ2 metrics,
respectively. Similarly, our method achieves 14.75%, 28.17%, 1.64%, and 0.0540
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Table 3: Performance comparison on JIGSAWS and Fis-V. The bold indicates the
better, and red indicates the best.

JIGSAWS
Method Spearman Correlation (↑) R-ℓ2 (×100)↓

S NP KT Avg. S NP KT Avg.

I3D+MLP [47] 0.61 0.68 0.66 0.65 4.795 11.225 6.120 7.373

USDL [39] 0.63 0.69 0.68 0.67 8.827 13.232 6.865 9.641
+MVLA (Ours) 0.65 0.73 0.77 0.72 6.806 9.081 5.806 7.231

MUSDL [39] 0.71 0.75 0.73 0.73 6.595 8.603 6.169 7.122
+MVLA (Ours) 0.74 0.78 0.76 0.76 5.249 5.304 4.991 5.181

CoRe [47] 0.83 0.86 0.84 0.84 5.749 5.557 3.314 4.873
+MVLA (Ours) 0.86 0.87 0.87 0.87 5.108 4.943 2.571 4.207

TPT [2] 0.87 0.86 0.89 0.87 2.832 5.243 3.519 3.865
+MVLA (Ours) 0.90 0.90 0.91 0.90 2.307 3.503 3.082 2.964

HGCN [52] 0.87 0.87 0.86 0.87 4.685 4.887 3.804 4.459
+MVLA (Ours) 0.90 0.91 0.88 0.90 3.817 3.265 3.332 3.471

Fis-V
Method Sp. Corr. (↑) MSE (↓)

TES PCS Avg. TES PCS Avg.

M-BERT (Late) [20] 0.530 0.720 0.634 27.73 12.38 20.06

MS-LSTM [45] 0.651 0.786 0.725 19.86 8.75 14.31
+MVLA (Ours) 0.693 0.802 0.753 19.02 8.02 13.52

GDLT [44] 0.658 0.838 0.762 21.14 8.51 14.88
+MVLA (Ours) 0.681 0.849 0.779 19.16 8.54 13.85

CoRe [47] 0.667 0.813 0.749 23.23 9.38 16.31
+MVLA (Ours) 0.686 0.833 0.770 20.58 8.58 14.58

TPT [2] 0.588 0.762 0.685 26.71 13.05 19.88
+MVLA (Ours) 0.643 0.781 0.719 25.20 11.14 18.17

MLP-Mixer [43] 0.674 0.823 0.758 19.96 8.06 14.01
+MVLA (Ours) 0.705 0.842 0.783 18.91 7.20 13.06

improvements on these metrics without using dive numbers labels. These over-
whelming improvements, especially the significant effect on action segmentation,
demonstrate that our semantic-aware approach greatly facilitates the model’s
understanding of action meanings and discernment of action differences.
Results on MTL-AQA dataset. In Tab. 2, our MVLA is integrated into
six existing methods (USDL, MUSDL, CoRe, TSA, TPT, and HGCN) encom-
passing direct regression and contrastive regression frameworks. ‘DD’ indicates
the difficulty degree labels. Our method improves 2.81%, 2.02%, 0.63%, 1.21%,
0.98%, and 0.58% in Sp. Corr. compared to these methods without using DD
labels. Meanwhile, we achieve 0.229, 0.067, 0.057, 0.198, 0.067, and 0.036 im-
provements on R-ℓ2. Under ‘w/ DD’, our approach remains effective, with an
average improvement of 0.81% and 0.042 on the two metrics. Note that TSA’s
performance is suboptimal due to the absence of frame-wise annotations for ac-
tion segmentation on MTL-AQA. However, our method significantly improves
performance by introducing textual semantics enriched with action knowledge.
This indicates the feasibility of incorporating textual annotations, which are
much more cost-effective compared to frame-wise annotations.
Results on JIGSAWS dataset. Following previous works [39, 47], we per-
form four-fold cross-validation on JIGSAWS. We plug our approach into five
state-of-the-art methods. The experimental results are shown in Tab. 3. MVLA
significantly improves the performance of existing methods on two metrics. In
particular, MVLA respectively improves the Avg. Corr. and Avg. R-ℓ2 by 3.40%
and 1.381, showing the strong generalization of our method to other actions.
Results on Fis-V dataset. We finally validate the performance of our method
in long-term action assessment on the figure skating dataset Fis-V, as shown in
Tab. 3. It can be seen that our method improves the performance of existing
methods in various classes and metrics by a large margin, achieving new state-
of-the-art Avg. Corr. (0.783) and Avg. MSE (13.06). This indicates that learning
fine-grained semantics is equally important for long-term action understanding.
The extensive experimental results from Tab. 1 to Tab. 3 demonstrate the robust
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Table 4: Different granularities on
maximizing similarity. ✓ means using
this granularity. Gfra, Gstd, and Gvid

are frame-level, stage-level, and video-
level maximize similarity.

Gfra Gstd Gvid
AIoU@↑

ρ↑ R-ℓ2↓
0.5 0.75 (×100)

× × × 90.79 42.99 0.9340 0.3178
✓ × × 98.00 66.22 0.9377 0.3222
× ✓ × 95.19 58.48 0.9330 0.3109
× × ✓ 93.72 51.54 0.9243 0.3804
✓ ✓ × 96.66 62.48 0.9383 0.2913
✓ × ✓ 95.33 55.94 0.9332 0.3145
× ✓ ✓ 97.60 62.08 0.9381 0.2982
✓ ✓ ✓ 98.66 67.16 0.9419 0.2840

Table 5: Different components and back-
bones on FineDiving. ✓ means using the
ground-truth stage boundaries. † can be re-
garded as an oracle for methods.

Method (w/ DN) CBP VLP AIoU@↑
ρ↑ R-ℓ2↓

0.5 0.75 (×100)

Baseline (TSA) I3D - 82.51 34.31 0.9203 0.3420
- CLIP-Image 87.35 45.53 0.9259 0.3266

I3D CLIP-Image 88.22 47.06 0.9266 0.3248
+VLKL I3D CLIP 92.52 50.60 0.9295 0.3196
+SCA I3D CLIP 90.79 42.99 0.9340 0.3178

MVLA (Ours) I3D CLIP 98.66 67.16 0.9419 0.2840
+ Quality Text I3D CLIP 98.80 67.88 0.9438 0.2816

Freeze CLIP-Text I3D CLIP 97.75 64.83 0.9390 0.2978
MVLA (Ours) I3D ViFi-CLIP 98.93 68.19 0.9443 0.2819
MVLA (Ours) VST CLIP 99.01 69.24 0.9457 0.2804

TSA† I3D - ✓ ✓ 0.9310 0.3260
MVLA† (Ours) I3D CLIP ✓ ✓ 0.9470 0.2726

effectiveness of our method, which can be flexibly plugged into existing methods
for both short and long-term AQA, frame-wise annotations or not.

4.3 Ablation Study

Our MVLA comprises vision-language action knowledge learning (VLKL) and
semantic-aware collaborative attention (SCA). All the ablation studies are per-
formed on FineDiving under ‘w/ DN’ setting. We use TSA [46] as the Baseline.
Effects of granularity to maximize similarity. To enhance comprehensive
action semantic understanding, we use multi-grained maximize similarity in our
proposed VLKL, which aligns visual embeddings and textual semantics at frame-
level (Gfra), stage-level (Gstd), and video-level (Gvid). The results are reported
in Tab. 4. It can be observed that the different granularities almost all bring
a positive impact on the performance, the best results are obtained with using
all three granularities. It is worth mentioning that AQA performance is reduced
when only using the video-level maximize similarity. This may be because our
video-level textual annotations are relatively long, and there is a lot of shared
textual semantics. For example, the video-level text between action types “403B”
and “405B” differs by only a numerical distinction in tens of characters, such as a
single-digit difference between “1.5 somersaults” and “2.5 somersaults”. However,
our VLKL guides the alignment of visual semantics with textual semantics from
coarse- to fine-grained, addressing this issue to a certain extent.
Effects of our proposed components. As shown in Tab. 5, when using only
VLKL, the model focuses more on understanding semantics to segment actions,
significantly improving AIoU@{0.5, 0.75} from {88.22, 47.06} to {92.52, 50.60}.
While when using only SCA, the model integrates professional semantics into vi-
sual features for more reliable quality assessment, improving by 1.37% and 0.0242
on Sp. Corr. and R-ℓ2. Combining the two components achieves the best result,
demonstrating the effectiveness of our components. Moreover, we follow [46] to
explore the impact of using ground-truth stage boundaries as an oracle for our
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GT #2Pred. #1 GT #1 Pred. #2GT Score: 62.7 Pred. Score: 62.6

GT Score: 52.5 Pred. Score: 52.9

···

···
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···

Pred. #1 GT #1 GT #2Pred. #2

GT Score: 83.6 Pred. Score: 83.5

···

Pred. #1 GT #1 GT #2Pred. #2 GT #2Pred. #2Pred. #1 GT #1

Fig. 4: Qualitative results of our method in several video instances. The left half shows
the input videos, the ground-truth and predicted scores. The right half shows the frame-
level action boundary probabilities, the ground-truth and our predicted boundary.

approach. MVLA achieves better performance than TSA† without using ground-
truth labels, and further improves performance with labels, demonstrating that
our method can understand action knowledge more efficiently. Adding quality
descriptions to multi-level texts only slightly improves performance, possibly due
to the fact that the highest-similarity semantics are not necessarily correct.
Effects of backbones. The performance increases only slightly after intro-
ducing the visual features of CLIP-Image, while the performance improves sig-
nificantly from 0.9266/0.3248 to 0.9419/0.2840 using our MVLA, as shown in
Tab. 5. This shows that learning action semantics is important for AQA. When
freezing CLIP-Text, the overhead can be further saved, with only slight perfor-
mance decreased. Now, with VLP backbone fully frozen, the additional cost is
11.25M and 2.96 GFLOPs. Furthermore, performance can be further enhanced
with superior backbones, e.g ., VST [25] and ViFi-CLIP [38].

4.4 Qualitative Results

To intuitively demonstrate the performance of our approach, we visualize the
action segmentation and quality assessment results for several video samples in
Fig. 4. These results are obtained on FineDiving with ‘w/ DN’ setting. Our
method predicts accurate stage boundaries and quality scores, demonstrating
that the proposed semantic-aware approach can effectively discriminate action
differences and understand the relationship between actions and scores.

5 Conclusion

This work proposes a novel multi-grained vision-language alignment framework
for action quality assessment. To introduce prior knowledge, we construct multi-
level textual annotations enriched with action knowledge, like specialized termi-
nology, and pull in the distance between visual representations and corresponding
textual semantics at multiple granularities. To bridge the modal and semantic
spatial differences between CBP and VLP branches, we propose a new semantic-
aware collaborative attention. We use the VLP with cross-modal prior knowledge
as a bridge to encode textual semantics into visual representations. Our methods
can be flexibly plugged into existing methods and achieve state-of-the-art results
in both short and long-term AQA, frame-wise annotations or not.
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