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Abstract. Visual Programming (VP) has emerged as a powerful frame-
work for Visual Question Answering (VQA). By generating and execut-
ing bespoke code for each question, these methods show advancement in
leveraging Large Language Models (LLMs) for complex problem-solving.
Despite their potential, existing VP methods generate all code in a single
function, which does not fully utilize LLM’s reasoning capacity and the
modular adaptability of code. This results in code that is suboptimal
in terms of both accuracy and interpretability. Inspired by human cod-
ing practices, we propose Recursive Visual Programming (RVP), which
better harnesses the reasoning capacity of LLMs, provides modular code
structure between code pieces, and assigns different return types for the
sub-problems elegantly. RVP approaches VQA tasks with an top-down
recursive code generation approach, allowing decomposition of compli-
cated problems into smaller parts. We show RVP’s efficacy through ex-
tensive experiments on benchmarks including VSR, COVR, GQA, and
NextQA, underscoring the value of adopting human-like recursive and
modular programming techniques for solving VQA tasks. Our code is
available at https://github.com/para-lost/RVP.
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1 Introduction

Visual Question Answering (VQA) lies at the intersection of computer vision and
natural language processing, posing the challenge of interpreting visual data to
answer questions [3,16,26]. Following the recent progress on code generation us-
ing Large Language Models (LLMs) [6,27,33], Visual Programming (VP) meth-
ods have notably advanced in this area, successfully using LLMs to generate and
execute code in few-shot and zero-shot scenarios [14,30,31]. In these techniques,
various vision models are provided to LLM as APIs, and the LLM is used as a
planner to utilize these vision models to perform reasoning over images.

Despite these advancements, such planning remains very challenging for Vi-
sual Programming. These methods require the model to generate a single code
block using the predefined APIs at once. As a result, the model must handle
logic, be aware of all details, and utilize the vision APIs appropriately. This has
two main drawbacks. First, such approaches do not fully utilize LLM’s reasoning
capability, which would benefit from breaking down the problem into step-by-
step sub-problems, as demonstrated in recent NLP research [4]. Secondly, they
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When you look at the third instance of 
the repeating scene, can you tell which 
individual is wearing a hat?

What is the largest 
mirror in the scene?

When you look at the second instance 
of the repeating scene, can you tell 
which individual is wearing a hat?

What is the 
largest mirror 
in the scene?

When you look at the front of 
the scene, can you tell which 
individual is wearing a hat?

recursive_query recursive_query

recursive_queryrecursive_query
find(“mirror”) sort

find(“mirror”) sort find(“person”) verify_property(“pers
on”, “wearing hat”)

simple_query(“Descri
be this person”)

The person with pink 
shirt and jeans is 
wearing a hat

Input Image and Query

Generated Code

The person with pink shirt and jeans is wearing a hat
Output

Original Question

Fig. 1: A breakdown of Recursive Visual Programming for a visual question is
illustrated with an image where scenes within it contain smaller versions of themselves.
To locate a man wearing a hat at the third level of an image, the model first generates
code that has two recursive_query API calls. The initial call identifies the largest
mirror (representing the next image level), and the subsequent call seeks “the man with
a hat” at the second level. The model iteratively generates and executes code through
these calls until the final answer is produced without additional recursive calls.

fail to utilize the full potential of code because they lack modularity between
the code pieces, particularly when the code is one long piece.

We consider how humans tackle these issues. Humans tend to code in a
top-down manner: first they break down complex tasks into manageable sub-
problems, and then they tackle each through focused code segments. This ap-
proach allows the programmer to concentrate on the main logic flow rather than
figuring out all the details at once, resulting in a more clear and elegant structure.

Inspired by this, we hypothesize that incorporating a similar recursive coding
strategy would also help solve complex visual question-answering problems. To
investigate whether LLMs could indeed benefit from recursive coding, we conduct
preliminary experiment of the recursive coding approach on standard symbolic
reasoning benchmarks, such as Dyck Language [32] and Games of 24 [38]. This
is done by simply prompting the LLM to code recursively. We find that utilizing
LLMs to code recursively leads to a notable improvement in accuracy, as shown
in Figure 2. Motivated by this result, we explore in this paper how a recursive
coding methodology can be applied to VQA tasks.

Specifically, we propose a novel VP method for VQA tasks, named Recursive
Visual Programming (RVP). Instead of querying LLM only once to generate a
single piece of code, we ask LLM to decompose the question into sub-questions
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Fig. 2: Motivating Examples. Adding the prompt “solve the problem recursively” to
the input significantly improves the model’s performance on traditional coding tasks,
Dyck language [32] and Games of 24 [38]. “NR” refers to non-recursive approach and
“R” refers to recursive approach. This shows that LLMs can potentially benefit from
human’s recursive programming approach.

and recursively query itself for each sub-question to generate modular code
pieces. For each sub-question, the same process repeats, until reaching an atom
level where the current question can be solved by only calling external APIs. See
example in Figure 1. In contrast to querying LLM only once, we find that using
recursive queries to generate code for each sub-question can improve the read-
ability and accuracy of the code, as shown in Figure 3. Moreover, RVP allows
assigning dynamic types to each sub-question, enabling new code pieces to return
a variety of types based on the current need. Remarkably, RVP assigns return
types unseen in in-context examples, such as List[str], List[ImagePatch].

Our contribution can be summarized as follows: (i) We introduce a novel
recursive approach based on human programming. This approach is a top-down
programming method that better harnesses LLM’s reasoning capacity and en-
hances modularity between multiple code pieces. It is easily applicable to any
existing VP model for visual question answering task. (ii) We allow dynamic
return types for the sub-problems, which enhances flexibility and adaptability.
(iii) We demonstrate improved performance on several standard benchmarks,
such as GQA, VSR, NextQA and COVR, demonstrating the effectiveness of our
approach. We also show better interpretability than non-recursive VP methods.

2 Related Work

Modular Visual Reasoning. There is a long line of work that seeks to com-
bine modularity with the expressivity of deep neural networks. Early work on
this topic converts the output of a parser [1] to a program or trains a program
generator either separately from or jointly with the execution modules [2, 15].
Later work finds that such models are often challenging to train on real-world
datasets, particularly when interpretability of individual module outputs is ex-
pected [29]. Other work improves performance on multi-hop visual reasoning
without explicitly defining a set of modules, e.g., by predicting and operating
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Question	:	
Is	the	surfboard	in	the	water	and	the	surfboard	in	the	
sand	the	same	color?

Non-recursive	Generation:Recursive	Generation:

def execute_command(image_list) 
-> str:

surfboard_in_water_color = 
recursive_query(image_list, 
"Return a str, the color of the 
surfboard that is in water.")

surfboard_in_sand_color = 
recursive_query(image_list, 
"Return a str, the color of the 
surfboard that is in sand.")

if surfboard_in_water_color
== surfboard_in_sand_color:

return "yes”
else:

return "no"

def execute_command(image_list) -> str:
surfboard_in_water_color = "" 
surfboard_in_sand_color = "”
for image in image_list: 

image_patch = ImagePatch(image)
surfboard_patches = image_patch.find("surfboard") 
for surfboard_patch in surfboard_patches:

if surfboard_patch.simple_query(“Is this surfboard in 
water?") == "yes":

surfboard_in_water_color = 
surfboard_patch.simple_query("What is the color of this surfboard?")

elif surfboard_patch.simple_query("Is this surfboard in 
sand?") == "yes":

surfboard_in_sand_color = 
surfboard_patch.simple_query("What is the color of this surfboard?")

if surfboard_in_water_color == surfboard_in_sand_color:
return surfboard_in_water_color

else:
return "no"

Type Incorrect: Returns a color instead of a yes/no answer!

def 
execute_comma
nd(image_list) 
-> str:

…

def 
execute_comma
nd(image_list) 
-> str:

…

Question	:	
Do	you	see	canisters	near	the	
appliance	below	the	chalkboard?

Recursive	Generation:

def execute_command(image) -> str:
image_patch = ImagePatch(image)
appliance_patches = image_patch.find("appliance")
chalkboard_patches = image_patch.find("chalkboard")
if len(appliance_patches) == 0 or

len(chalkboard_patches) == 0:
return image_patch.simple_query("Do you see 

canisters near the appliance below the chalkboard?")
appliance_patch = appliance_patches[0]
chalkboard_patch = chalkboard_patches[0]
canister_patches = image_patch.find("canister")
for canister_patch in canister_patches:

if canister_patch.vertical_center < 
chalkboard_patch.vertical_center and
canister_patch.vertical_center > 
appliance_patch.vertical_center:

return "yes"
return "no"

def execute_command(image) -> str:
image_patch = ImagePatch(image)
appliance_patch = 

image_patch.recursive_query("Return an 
ImagePatch, what is the appliance below 
the cabinets?")

canister_patches = 
image_patch.find("canister")

if len(canister_patches) == 0:
return "no"

for canister_patch in 
canister_patches:

if canister_patch.vertical_center
< appliance_patch.vertical_center:

return "yes"
return "no"

Non-recursive	Generation:

def execute_command(image) -> ImagePatch:
image_patch = ImagePatch(image)
chalkboard_patches = 

image_patch.find("chalkboard")
chalkboard_patch = 

chalkboard_patches[0]
appliance_patches = 

image_patch.find("appliance")
if len(appliance_patches) == 0:

return image_patch
for appliance_patch in

appliance_patches:
if appliance_patch.vertical_center

< chalkboard _patch.vertical_center:
return appliance_patch

return appliance_patches[0]

Logic Incorrect: first take one appliance from 
the appliance list, then check ‘below’

Type correct: Always returns yes or no

Logic Correct: first iterate through all the appliance list, then 
check ‘below’ for each one to find the one below the chalkboard

Question	:	
Is	the	train	to	the	left	or	to	the	right	of	the	
person	that	is	walking	on	the	sidewalk?

def execute_command(image) -> str:
image_patch = ImagePatch(image)
person_patches = 

image_patch.find("person")
person_patch = person_patches[0]
train_patches = 

image_patch.find("train")
train_patch = train_patches[0]
if train_patch.horizontal_center > 

person_patch.horizontal_center:
return "right"

else:
return "left"

Non-recursive	Generation:

def execute_command(image) -> str:
image_patch = ImagePatch(image)
# First, find the horizontal center 

of the train and the horizontal center 
of the person that is walking on the 
sidewalk.

train_position = 
image_patch.recursive_query("Return a 
float number, what is the horizontal 
center of the train?")

person_position = 
image_patch.recursive_query("Return a 
float number, what is the horizontal 
center of the person that is walking on 
the sidewalk?")

# Then, compare the 
horizontal_center to determine which one 
is left and which one is right.

if train_position > person_position:
return 'right'

else:
return 'left'

def execute_command(image) -> float:
image_patch = ImagePatch(image)
train_patches = 

image_patch.find("train")
train_patch = train_patches[0]
return 

train_patch.horizontal_center

def execute_command(image) -> float:
image_patch = ImagePatch(image)
person_patches = 

image_patch.find("person")
sidewalk_patches = 

image_patch.find("sidewalk")
sidewalk_patch = sidewalk_patches[0]
sidewalk_center = 

sidewalk_patch.horizontal_center
person_centers = 

[person.horizontal_center for person in
person_patches]

closest_person_center = 
min(person_centers, key=lambda x: abs(x 
- sidewalk_center))

return closest_person_center

Recursive	Generation:

Detail Correct: sorts the distance 
from each person to the sidewalk.

Detail Incorrect: does not handle 
the detail “person that is walking 
on the sidewalk”

Fig. 3: Example from COVR (Upper). Current VP methods fail to provide binary
’yes’ or ’no’ answers, while Recursive Visual Programming method outputs the correct
answer. Example from GQA (Middle and Bottom). Recursive outperforms cur-
rent non-recursive methods by correctly addressing all details and their associated logic.

over a scene graph [18].
Visual Programming. Recent language models can accurately generate code
from text descriptions when prompted with a small number of examples [8].
This advance has enabled a few-shot modular visual reasoning approach, com-
monly called visual programming [14], which consists of prompting a language
model for a program and executing the program with pre-trained vision models.
This paradigm has led to impressive results in visual question answering, video
question answering, visual and tabular question answering, referring expression
comprehension, and text-based image editing [11, 12, 23, 30, 31]. Programming
with LLMs has also been applied to produce plans and reward functions for
robots [21,24,40]. Our work builds on these techniques by enabling the LLM to
generate code in multiple steps–first planning the overall process and then filling
in the details–rather than all at once.
Language Models for Reasoning Tasks. In the text domain, there is a large
body of work on using language models for reasoning tasks. In particular, sev-
eral papers have shown the efficacy of code generation as a scaffold for such
tasks [9, 13, 25, 34]. Aside from code generation, prior work has also shown that
decomposing complex queries into simpler ones improves the performance of
language models [28,42]. Our RVP approach applies this insight to improve the
code generation component of visual programming.
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When	you	look	at	the	third	instance	of	the	repeating	scene,	can	you	tell	
which	individual	is	wearing	a	hat?

Visual Input

Query Input

Code LLM

def	execute(image)	->	str:
				image_patch	=	ImagePatch(image)
				target_mirror_patch	=	image_patch.recursive_query(“Return	an	ImagePatch,	what	
is	the	next-level	repeating	scene?“)
					…
					return	execution_result

O
ut

pu
t

return to calling point 
target_mirror_patch

If called from main 
function

Output	Final	Answer

Co
de

 E
xe

cu
tio

n

image code

recursive_query

If called from recursive_query

Fig. 4: An overview of our approach. When a recursive_query API call is oc-
cured, the model generates and executes new code based on the query, returning the
output back to the original call.

3 Recursive Visual Programming

In this section, we introduce our method, Recursive Visual Programming (RVP).
We first review the problem setup and ingredients of visual programming as es-
tablished by prior work (see Section 3.1). We then introduce our recursive coding
framework (see Section 3.2), which involves a multi-step prompting scheme, as
well as a system for dynamic type assignment (see Section 3.3).

3.1 Preliminaries

In Visual Question Answering (VQA), the system f is given a visual input I
(i.e. an image, a set of images, or a video), as well as a question Q relating to
the visual content. The expected output is a textual answer A to the question:

A← f(I,Q) (1)

Visual Programming methods [14, 30, 31] represent f as the composition of two
functions: a code generator g and a visual executor h. In the first part, the code
generator generates a program P conditioned on the question, and in the second
part, the executor executes the program on the visual input:

P ← g(Q), A← h(P, I) (2)

We focus on the few-shot setting in which we have only a few (at most 50)
training examples–each consisting of a question, program, and answer–for a given
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task. Therefore, the code generator g is composed of a language model and a
prompt that includes a description of the API available to the executor and in-
context examples of questions along with the corresponding correct programs.
We use Python as the programming language, similar to [30,31].

We evaluate our approach using the ViperGPT [31] API. For questions over
images or sets of images, these functions can be called on an ImagePatch object,
which can be any crop of the image:

1. find(object: str): Returns a list of ImagePatch objects matching the
description.

2. exists(object: str): Returns a bool representing whether the described
object exists.

3. verify_property(object: str, property: str): Returns a bool repre-
senting whether the described object has the specified property.

4. simple_query(question: str): Returns an answer to the provided ques-
tion based on the given ImagePatch.

5. compute_depth(): Returns the median depth of the region in the given
ImagePatch.

6. crop(left: int, lower: int, right: int, upper: int): Crops a part
of the given ImagePatch and returns a new ImagePatch representing that
crop.

For questions about a video, the API includes three other functions: trim(),
frame_from_index(), and frame_iterator(), which return an abbreviated ver-
sion of the video, a specific frame, and an iterator over the frames respectively.

3.2 Recursive Visual Programming

We introduce a new method for code generation in visual programming: Recur-
sive Visual Programming (RVP). RVP enables the language model to break the
code generation process into multiple sub-questions and recursively call itself
to generate a program for each sub-question. As shown in Figure 4, we opera-
tionalize RVP by adding a new function to the API: recursive_query(image,
sub-question). During execution, when recursive_query is called, it prompts
the language model to generate a new code given the sub-question. This code is
then executed, and its return value is returned by recursive_query. An exam-
ple break down of the usage of recursive_query call is shown in Figure 1. We
set the recursive termination condition by (1) setting max depth of 10 and (2)
switching to direct simple query when generated code contains a recursive call
to the same input question.

To enable this process, we add examples of calling recursive_query in the
prompt to show the model how to decompose the problem and utilize the answers
returned by recursive_query. We provide examples of the in-context prompt
of recursive_query we used in the supplementary material.



Recursive Visual Programming 7

def execute_command(image_list) -> str: 
    benches_on_platform = recursive_query(image_list, 
"Return a list of ImagePatch, objects containing crops of 
the image centered around any benches found on a 
platform.") 
    if len(benches_on_platform) == 0: 
        return "no" 
    else: 
        first_bench = benches_on_platform[0] 
        material = first_bench.simple_query("What is the 
material of this bench?") 
        for bench in benches_on_platform: 
            if bench.simple_query("What is the material of 
this bench?") != material: 
                 return "no" 
    return "yes

def execute_command(image_list) -> list[ImagePatch]: 
    benches_patches = [] 
    for image in image_list: 
        image_patch = ImagePatch(image) 
        benches_exist = image_patch.exists("bench") 
        if benches_exist: 
            benches_patches += image_patch.find("bench") 
    return benches_patches

Question	:	
Do	all	benches	that	are	on	a	
platform	have	the	same	material?

Fig. 5: Examples of dynamic type assignment in recursive_query calls. The
model autonomously determines the appropriate return type in its code generation and
generalize to new types unseen in in-context examples such as List[ImagePatch].

3.3 Dynamic Type Assignment

In previous visual programming frameworks, code generation mechanisms are
constrained by static type assignments, i.e., the return type of a given function
is fixed. For instance, simple_query always returns a string. However, this rigid
structure limits the model’s flexibility to adapt the code to different contexts
within the VQA task. RVP introduces dynamic type assignment to address this
limitation. When the code generator writes a recursive_query function, it can
include the expected return type as a part of the question that is passed to
the recursive_query. To facilitate this, in the in-context examples that include
recursive_query, we let the input ‘question’ specify a type. As shown in Fig-
ure 5, we give examples of type ImagePatch, bool, float, and str being specified
within the queries. When receiving this question, the model discerns the required
type and generates code that declares and returns the correct type. For instance,
a query like “Return a bool, is there a black cat in the picture?" will prompt the
generation of code with the signature.

execute(image)→ bool (3)

This signature indicates that the generated code P ′, when executed, will return a
boolean value Abool which answers the sub-question Q′, illustrating the dynamic
and context-sensitive nature of RVP’s code generation capabilities that help to
produce syntactically and semantically appropriate code for complex reasoning.
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4 Experiments

In this section, we introduce the basic settings including the task formulation and
parameter details. Then, we provide experiment results and in-depth analysis.

4.1 Experiment Setup

Datasets. We evaluate on four datasets spanning a wide range of visual rea-
soning skills and types of visual input: Visual Spatial Reasoning (VSR) [22],
GQA [17], COVR [5], and NextQA [36]. For NextQA, we present results on the
“Hard Temporal” subset which was curated to consist of questions that truly
require temporal reasoning [7]. VSR and GQA include queries about single im-
ages, while COVR includes queries about multiple images, and NextQA includes
queries about video. On each dataset, we evaluate methods by their accuracy in
producing an answer that exactly matches the ground-truth answer. For Nex-
tQA, we adopt a multiple-choice setup in which we provide methods with the
set of possible answer choices for each question. For VSR, a spatial statement of
an image is made, and the question is framed as : “Is it true or false, ” followed
by the statement. In this way, a VSR statement is framed as a VQA question
and the model will answer either true or false.
Implementation Details. We implement RVP using the ViperGPT API and
the accompanying prompt template. For each dataset, we curate a set of in-
context examples which are added to the prompt. The set of question-answer
pairs is shared between the recursive and non-recursive methods. We use seven
in-context examples for GQA, six for NextQA, six for VSR, and eight for COVR.
For code generation, use GPT-3.5-turbo via the OpenAI API 1.

4.2 Quantitative Results

Table 1 presents our results across four datasets. In all settings, we outperform
ViperGPT, which is identical to RVP except that RVP includes recursive_query
function in the API and in-context examples. This indicates that recursive pro-
gramming indeed improves accuracy in visual reasoning tasks. Moreover, our
method outperforms previous zero/few-shot methods in all but one of the set-
tings. While our primary aim was not to push the state-of-the-art results, we
show that integrating the clarity and elegance of recursive coding into standard
VP methods not only doesn’t impair performance, but can enhance it.

4.3 Qualitative Results

We provide qualitative examples in Figure 3,6,7. In the example from COVR in
Figure 3, the non-recursive approach answers with neither “yes” nor “no,” while
the recursive approach does confirm to these choices. One possible explanation
for this issue is that LLMs struggle to maintain coherence across long contexts
[37]. RVP circumvents this issue by pushing the LLM to commit to the answer
1 www.platform.openai.com
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Table 1: Results. We report exact-match accuracy on each dataset. Best zero/few-
shot result for each dataset is bolded. †Fully supervised results are from different
models: ViLT [19] for VSR, HiTeA [39] for NextQA, VinVL-Base [41] for GQA, and
VisualBERT [20] for COVR. ‡We report the results of our reproduction of ViperGPT
using the officially released code and the same in-context examples used for our method
(since the original in-context examples from ViperGPT were not released). We use
GPT3.5-turbo while CodeVQA uses Codex, which is not available anymore.

Method
VSR NextQA GQA COVR

Random Split Zero-shot Split Hard Split-T Test-dev Test

Fully supervised† 69.3 63.0 48.6 65.1 57.9

Zero/few-shot methods
CLIP 56.0 54.5 – – –
BLIPv2 – – – 42.31 –
CodeVQA – – – 49.0 50.7
ViperGPT‡ 61.25 61.59 47.21 44.63 51.69
RVP (ours) 63.53 66.09 48.82 45.62 52.67

types earlier in its generation (the length from the beginning of the code to the
point “return xxx” is shorter). In Figure 6, the non-recursive approach fails to
handle the logic correctly while the recursive approach correctly does. This is
likely due to that RVP breaks down the code logic and each code piece only needs
to focus on a single logic, while the non-recursive method attempts to handle
all the logic at once. In the GQA example, a common pattern involves handling
complex logical problems and multiple properties. Non-recursive methods often
fell short in these cases, either overlooking critical details or processing them in
a logically flawed manner. RVP manages these intricate questions by addressing
each detail accurately. This difference may stem from the inherent difficulty
LLMs face in processing complicated logic over extended contexts. Recursive
methods simplify this by focusing on the overall logic and gradually breaking
the problems down into smaller, more manageable segments. This facilitates
easier and more accurate resolution.

We provide a dynamic type assignment example in Figure 5. In this exam-
ple, RVP assigns the return type List[ImagePatch] in the recursive_query
call. It’s worth noting that the return type List[ImagePatch] is unseen in the
in-context examples. This suggests that RVP has the potential to utilize com-
plicated and diverse data structures, highlight the effectiveness of our approach.

4.4 Ablation Study

Dynamic Type This section studies integrating dynamic type assignment within
the recursive_query API. For the GQA dataset, we examined all instances
with recursive patterns in the test_dev split. In COVR, where the test set is
unavailable, we used the val_1000 samples from the validation set, following [30].

We compare four approaches: Non-recursive Baseline: Standard approach
without recursive features. Fixed-Type Recursive: The recursive_query
API is constrained to return a string. Dynamic-Implicit Recursive: The API
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def execute_command(image_list) -> str: 
black_keyboard_on_desk_num = 

recursive_query(image_list,"Return an int, how many 
images in the image_list contains a black keyboard that 
is on a desk?") 

white_keyboard_on_desk_num = 
recursive_query(image_list,"Return an int, how many 
images in the image_list contains a white keyboard that 
is on a desk?") 

if black_keyboard_on_desk_num < 
white_keyboard_on_desk_num: 

return "yes" 
else: 

return "no" 

def execute_command(image_list) -> int: 
count = 0 
for image in image_list: 

image_patch = ImagePatch(image) 
keyboard_patches = image_patch.find("keyboard") 
for keyboard_patch in keyboard_patches: 

if keyboard_patch.verify_property("keyboard", 
"black"):
 desk_exists = keyboard_patch.simple_query(“Is 
there a desk?") 

if desk_exists == "yes": 
 count += 1 
 break 

return count

def execute_command(image_list) -> int: 
count = 0 
…
return count

def execute_command(image_list) -> str: 
black_keyboard_on_desk_num = 0 
for image in image_list: 

image_patch = ImagePatch(image) 
keyboard_patches = image_patch.find("keyboard") 
for keyboard_patch in keyboard_patches: 

if keyboard_patch.verify_property(“keyboard”, “black”) and
keyboard_patch.verify_property("keyboard", "on desk"): 

black_keyboard_on_desk_num += 1 
white_keyboard_on_desk_num = 0 
for image in image_list: 

image_patch = ImagePatch(image) 
keyboard_patches = image_patch.find("keyboard") 
for keyboard_patch in keyboard_patches: 

if keyboard_patch.verify_property(“keyboard”, “white”) and
keyboard_patch.verify_property("keyboard", "on desk"): 

white_keyboard_on_desk_num += 1 
if black_keyboard_on_desk_num < white_keyboard_on_desk_num: 

return "yes" 
else: 

return "no"

Recursive	Generation	

Non-Recursive	Generation	

Logic Correct: Counts the number of images Logic Incorrect: Does not break! Counts all the objects in all images

Question	:	
There are less images with a black keyboard that is on 
a desk than images with white keyboard that is on desk.

def execute_command(image_list) -> str: 
    table_near_man_material = recursive_query(image_list, 
"Return a str, the material of the table near a man.") 
    table_near_window_material = recursive_query(image_list, 
"Return a str, the material of the table near a window.") 
    if table_near_man_material == table_near_window_material: 
        return "yes" 
    else: 
        return "no" 

def execute_command(image_list) -> str: 
    for image in image_list: 
        image_patch = ImagePatch(image) 
        man_exists = image_patch.exists("man") 
        if man_exists: 
            table_patches = image_patch.find("table") 
            for table_patch in table_patches: 
                if table_patch.simple_query("Is the 
table near a man?") == "yes": 
                    table_material = 
table_patch.simple_query("What is the material of the 
table?") 
                    return table_material 
    # If not found, directly query the first image 
    image_patch = ImagePatch(image_list[0]) 
    return image_patch.simple_query("What is the 
material of the table near a man?")

def execute_command(image_list) -> str:
    … 

def execute_command(image_list) -> str: 
    man_near_table = False 
    window_near_table = False 
    for image in image_list: 
        image_patch = ImagePatch(image) 
        man_exists = image_patch.simple_query("Is there a man?") 
        if man_exists == "yes": 
            table_near_man = image_patch.simple_query("Is there a table near the man?") 
            if table_near_man == "yes": 
                man_near_table = True 
        window_exists = image_patch.simple_query("Is there a window?") 
        if window_exists == "yes": 
            table_near_window = image_patch.simple_query("Is there a table near the 
window?") 
            if table_near_window == "yes": 
                window_near_table = True 
    if man_near_table and window_near_table: 

table_patch_man = image_patch.find("table")[0] 
        table_patch_window = image_patch.find("table")[0] 
        material_man = table_patch_man.simple_query("What is the material of the table?") 
        material_window = table_patch_window.simple_query("What is the material of the 
table?") 
        if material_man == material_window: 
            return "yes" 
        else: 
            return "no" 
    else: 
        return image_patch.simple_query("Does the table that is near a man and the table 
that is near a window have the same material?")

Recursive	Generation	

Non-Recursive	Generation	

Logic Correct: Finds the target table “table near man” Logic Incorrect: Directly takes tha last image and takes the first table in it

Question	:	
Does the table that is near a man and the table that is near a window have the same material?

Fig. 6: Examples from COVR. RVP allows correct logic flow while traditional non-
recursive VP fails to handle the logic correctly.

can return various types, but the specific type is not predefined in the query.
For example, “Is there a black cat?" could yield either a boolean or a string.
Dynamic-Explicit Recursive: Our primary approach, where the API’s input
query specifies the return type, like “Return a bool, is there a black cat?".

Table 2 shows our findings. The dynamic-explicit type assignment outper-
formed other methods, underscoring the need for clear type specification. The
dynamic-implicit method showed lower performance than non-recursive due to
type ambiguities, as exemplified in Figure 8, where the first code piece assumes
the return type is a bool, while the second code piece returns a str. Fixed-type
assignment proves to be beneficial over non-recursive methods, indicating that
recursion itself adds value, but its rigidity in type handling limits performance.
This study highlights the benefits of flexible, dynamic type assignment and the
crucial role of explicit type declaration for accurate and consistent responses.
These insights mark a step towards more adaptable visual reasoning frameworks,
emphasizing the need for precision in dynamic environments.
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Recursive Generation:

def execute_command(image) -> str:
image_patch = ImagePatch(image)
appliance_patch = image_patch.recursive_query("Return an ImagePatch, What is the 
appliance to the right of the utensils?")
if appliance_patch.verify_property("appliance", "white") and

appliance_patch.verify_property("appliance", "clean"):
return "yes"

else:
return "no"

Non-recursive Generation:

def execute_command(image) -> ImagePatch:
image_patch = ImagePatch(image)
utensils_patches = image_patch.find("utensils")
if len(utensils_patches) == 0:

return image_patch
utensils_patch = utensils_patches[0]
appliance_patches = image_patch.find("appliance")
if len(appliance_patches) == 0:

return image_patch
for appliance_patch in appliance_patches:

if appliance_patch.horizontal_center > utensils_patch.horizontal_center:
return appliance_patch

return appliance_patches[0]

def execute_command(image) -> str:
image_patch = ImagePatch(image)
appliance_patches = image_patch.find("appliance")
utensils_patches = image_patch.find("utensils")

if len(appliance_patches) == 0 or len(utensils_patches) == 0:
return image_patch.simple_query("Is the appliance to the right of the utensils both 
white and clean?")

appliance_patch = appliance_patches[0]
utensils_patch = utensils_patches[0]

if appliance_patch.horizontal_center > utensils_patch.horizontal_center:
return bool_to_yesno(appliance_patch.verify_property("appliance", "white") and

appliance_patch.verify_property("appliance", "clean"))
else:

return image_patch.simple_query("Is the appliance to the right of the utensils both 
white and clean?")

Question:
Is	the	appliance	to	the	right	of	the	utensils	both	white	and	clean?

Recursive Generation:

def execute_command(image) -> str:
image_patch = ImagePatch(image)
# First, find the horizontal center of the large monitor and the horizontal

center of the white thing on top of the desk.
large_monitor_position = image_patch.recursive_query("Return a float number,

what is the horizontal center of the large monitor?")
white_thing_position = image_patch.recursive_query("Return a float number,

what is the horizontal center of the white thing on top of the desk?")
# Then, compare the horizontal centers to determine which one is left and

which one is right.
if large_monitor_position > white_thing_position:

return 'right’

center of the white thing on top of the desk?")
for white_thing_patch in white_thing_patches:

if white_thing_patch.vertical_center > desk_patch.vertical_center:
return white_thing_patch.horizontal_center

return white_thing_patches[0].horizontal_center
def execute_command(image) -> str:

image_patch = ImagePatch(image)
large_monitor_patches = image_patch.find("large monitor")
white_thing_patches = image_patch.find("white thing")

if len(large_monitor_patches) == 0 or len(white_thing_patches) == 0:
return image_patch.simple_query("Is the large monitor to the right or to the left of the

white thing that is on top of the desk?")

large_monitor_patch = large_monitor_patches[0]
white_thing_patch = white_thing_patches[0]

if large_monitor_patch.horizontal_center > white_thing_patch.horizontal_center:
return "right"

else:
return "left"

def execute_command(image) -> float:
image_patch = ImagePatch(image)
monitor_patches = image_patch.find("monitor")
if len(monitor_patches) == 0:

return image_patch.simple_query("Return a float number, what is the horizontal

def execute_command(image) -> float:
image_patch = ImagePatch(image)
desk_patches = image_patch.find("desk")
desk_patch = desk_patches[0]
white_thing_patches = image_patch.find("white thing")
if len(white_thing_patches) == 0:

return image_patch.simple_query("Return a float number, what is the horizontal

center of the large monitor?")
monitor_patches.sort(key=lambda x: x.width, reverse=True)
return monitor_patches[0].horizontal_center

Is	the	large	monitor	to	the	right	or	to	the	left	of	the	white	thing	
that	is	on	top	of	the	desk?

Non-recursive	Generation:

return 'left'

Question:

else:

Logic Correct: First find the target appliance, then check color!

Handles Detail Correctly: “On the Desk”

Neglect Detail: “On the Desk”

Logic Incorrect: Directly Takes the first appliance!

Fig. 7: Examples from GQA. RVP allows handling the details more elegantly and
produces logically correct code.

In-Context Examples We conduct ablation on using retrieval-based in-context
example selection and using different number of in-context examples.
Retrieval-based in-context example selection. We manage to write 9 pro-
grams using the recursive method from the 50 provided by CodeVQA [30], and
add our original 3 recursive programs to them. We keep the non-recursive in-
context example unchanged and choose 3 recursive in-context examples from
these 12 for each question. We follow [35] to use the embedding-based retrieval
technique that calculates a score for each example, and then select the top
3 examples for each question. The results of GQA_val_2000 are in Table 2.
We find that the recursive pattern occurance rate is significantly higher than
using fixed in-context examples. This is likely because by retrieving similar
recursively-decomposed questions, the model can more easily simulate their pat-
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terns, thereby attempting to solve more problems recursively. However. the over-
all accuracy does not improve. This suggests that although the retrieval-based
method encourages more diverse and suitable patterns of recursive decomposi-
tion, there is a need for improved techniques in selecting the example pool—-such
as focusing on those most suitable for recursive decomposition instead of ran-
domly selecting—along with careful tuning of the example programs.
Number of in-context examples. We randomly add one example/delete one
example from the covr_1000_val, the results are shown in Table 2. The results
indicate that adding the number of examples can enhance the performance, but
does not have a significant impact.

Error feedback loop Recent studies have studied the debugging ability of LLMs
on code [10]. We study whether modular visual code structure enables better
bug identification for visual programming. We sample 20 incorrect programs
for 10 questions that have type/logic errors, and use GPT3.5 to (1) identify
the bug, and (2) write the correct code given the bug. For identification, the
model correctly finds 7 bugs correctly for RVP and 2 for non-recursive visual
programming. For correction, the model fixes 7 bugs correctly for RVP and
7 for visual programming. This suggests that clearer and more modular code
structure, as presented RVP, can potentially aids bug identification.

Table 2: Ablation study. (a) We provide ablation study results for dynamic type as-
signment and found that specified dynamic type assignment in RVP achieves the high-
est performance. (b) We provide results on using retrieval-based in-context examples
and fixed examples. Retrieval-based method enables more diverse recursive patterns
but requires careful choosing the prompt pool. (c) We provide results of using different
number of examples and found this doesn’t influence performance significantly.

(a) Dynamic Type Ablation.

Method GQA COVR

Non-Recursive 55.99 60.71
Fixed-Type 65.05 60.12
Dynamic-Implicit 55.34 53.57
Dynamic-Explicit 70.23 67.86

(b) Retrieval-Based and
Fixed Examples

Fixed Retrieval

Accuracy 54.75 53.79
Rec Rate 3.55% 14.85%
Rec Acc 71.83 57.91

(c) In-Context Exam-
ple Num

Method Accuracy

Del 1 50.65
Original 51.05
Add 1 51.35

4.5 Readability Study

This study investigates how recursive coding impacts code readability and com-
prehension for human programmers. Our goal is to move from complex code
structures to more modular, clear, and understandable code. To evaluate this,
we focus on code quality in terms of its understandability.

From the COVR dataset, we randomly select one example from each five
different question types where recursive patterns occur. We present the main
function of both their recursive and non-recursive code versions to 15 partic-
ipants and ask them to grasp the high-level intent of the code as quickly as
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def execute(image) -> str:
image_patch = ImagePatch(image)
is_black_skateboard= 
image_patch.recursive_query("Are there any black 
skateboards?")
is_motorcycle = image_patch.recursive_query("Are 
there any motorcycles?")
return bool_to_yesno(is_black_skateboard or 
is_motorcycle)

def execute(image) -> str:
image_patch = ImagePatch(image)
skateboard_patches = image_patch.find("skateboard")
for skateboard_patch in skateboard_patches:

If 
skateboard_patch.verify_property("skateboard", 
"black"):

return "yes"
return "no"

Return Type Confusion: Expect Bool but Actually Str.

Fig. 8: Failure example of dynamic
type assignment due to unspecified
type, The model confuses the type and
return a str instead of a bool.

Fig. 9: Comparison of average understand-
ing time for recursive and non-recursive
codes. RVP demonstrates better readabil-
ity and is easy to understand.

possible. For the non-recursive case, the main function is just the single code
snippet generated by the LLM. For the recursive case, the main function con-
sists of the code generated by the first LLM call (the high level code) but not
the functions generated by the recursive queries. This helps us measure how
fast users can understand the code’s intention by looking at the main func-
tion, and reflects the self-explanatory nature of the code. Figure 9 shows the
results. Participants consistently understand the recursive code faster than the
non-recursive versions. This quicker comprehension can be attributed to the re-
cursive code’s structured and clear approach. Non-recursive code, while correct,
sometimes lacks immediate clarity in conveying its primary goal.

We also calculate the average line length for all main and sub functions.
For RVP, the average length of all functions is 8.47. For non-recursive VP, the
average length of the functions is 15.4. This suggests that RVP decreases the
average length the code pieces and enhances modularity.

Our findings suggest that recursive coding not only simplifies complex code
but also enhances its accessibility and ease of understanding. Its orderly structure
and clear logic accelerate comprehension, leading to more efficient and user-
friendly programming. We provide more details of this study in the supp.

4.6 Recursive Analysis

Question Type. We study which types of questions tend to use recursive and
found that recursive patterns appeared in five question types within both the
COVR test set and the GQA test-dev set, as shown in Table 3. The ’Verify
Property’ and ’Query’ types in GQA, and ’Compare’ and ’Multi-Reference’ in
COVR, were most common. This suggests recursive methods tend to occur in
tasks that require comparative and referential analysis.
Dynamic Type. We study which types of dynamic return types occurs and
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Table 3: Recursive analysis. Table (a) provides the distribution of recursive patterns
by question type in GQA and COVR. We have found that recursive patterns occur
commonly in question types that require reasoning. Table (b) studies different recursive
query return types and their frequency in GQA and COVR. The model generalizes to
unseen types. Table (c) compares accuracy across question types. Recursive methods
outperform non-recursive particularly in ’Choose’ and ’Query’ questions.

(a) Dist. of Recursive Patterns

COVR/GQA Question Types

COVR GQA

Compare 457 15
Mult. Ref 282 -
Quant. Attr 12 -
Spec Attr 357 -
Choose 1 25
Verify - 68
Query - 167
Logical - 34

(b) Diverse Return Types

Data Type GQA COVR

Str 319 1828
Bool 521 592
List[str] 16 -
ImagePatch 30 -
List[ImgPatch] 1 5
Float 6 -
Int - 914

(c) Type Accuracy

Question Accuracy (%)

Non-Rec Rec

Verify 52.94 64.71
Query 56.89 71.86
Logical 55.88 70.59
Compare 66.67 53.33
Choose 52.00 84.00

their frequently in GQA and COVR. In Table 3, we found that RVP generalizes
to new types like List[str] and List[ImagePatch], which are not included
in the in-context examples. This flexibility and ability to generalize beyond in-
context examples highlight the inherent adaptability of recursive methods.
Type Accuracy. We evaluate the accuracy of recursive methods across differ-
ent question types. An analysis of the GQA test-dev set is presented in Table
3. It reveals that recursive methods significantly improve accuracy in ’Query’,
’Logical’, and ’Choose’ questions. This underscores their suitability for complex
reasoning and decision-making tasks.
Error Source. We sample 50 incorrect recursive examples from GQA2000val
and manually checke the error source: 22% are caused by logic error inside sub-
functions; 18% are caused by logic error between functions; 52% are caused by
API model inaccuracy (i.e. detection model error); and 4% are caused by other
problems like the groundtruth answer unclear.
Cost And Runtime. For the questions which require recursive query, RVP
takes about 2.1 times (runtime) and about 3 times (cost) compared to ViperGPT.

5 Conclusion and Limitation
In this work, we present RVP, a visual programming method that adopts recur-
sive coding to generate concise, elegant and easy-to-understand code, handling
details and intricate logic more accurately compared with traditional visual pro-
gramming methods. We conduct extensive experiments across various bench-
marks and provide a comprehensive analysis of RVP. Our work is the first to
explore recursive programming in the visual domain and dynamic-type code gen-
eration for visual reasoning; we believe the recursive programming concept would
have a potential greater impact on other domains as well. While RVP is effective
for complicated visual questions, most questions in current VQA benchmarks
tend to be short and non-recursive. We believe that the benefit of our method
could be demonstrated better with a new benchmark or a more complex split.
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