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Abstract. Unsupervised domain adaptation (UDA) in 3D segmenta-
tion tasks presents a formidable challenge, primarily stemming from the
sparse and unordered nature of point clouds. Especially for LiDAR point
clouds, the domain discrepancy becomes obvious across varying capture
scenes, fluctuating weather conditions, and the diverse array of LiDAR
devices in use. Inspired by the remarkable generalization capabilities ex-
hibited by the vision foundation model, SAM, in the realm of image
segmentation, our approach leverages the wealth of general knowledge
embedded within SAM to unify feature representations across diverse 3D
domains and further solves the 3D domain adaptation problem. Specifi-
cally, we harness the corresponding images associated with point clouds
to facilitate knowledge transfer and propose an innovative hybrid feature
augmentation methodology, which enhances the alignment between the
3D feature space and SAM’s feature space, operating at both the scene
and instance levels. Our method is evaluated on many widely-recognized
datasets and achieves state-of-the-art performance.

Keywords: Unsupervised Domain Adaptation · 3D Segmentation · Fea-
ture Alignment · Vision Foundation Model

1 Introduction

3D scene understanding is fundamental for many real-world applications, such
as autonomous driving, robotics, smart cities, etc. Based on the point cloud, 3D
segmentation is a critical task for scene understanding, which requires assign-
ing semantic labels for each point. Current deep learning-based solutions [44,48]
rely heavily on massive annotated data, which are high-cost and lack generaliza-
tion capability for handling domain shifts. Unsupervised domain adaptation is
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Fig. 1: (a) Comparison of 3D UDA paradigms. Different from aligning two point feature
domains directly, our method makes both the source domain and target domain align
with the SAM feature space. (b) Visualization of the feature distance across different
datasets, where smaller values indicate a more similar distribution. It is obvious that
after mapping to SAM feature space, point feature distributions from disparate domains
become much more aligned.

significant for alleviating data dependency. However, unlike images with dense
and regular representation, point clouds, especially LiDAR point clouds of large
scenes, are unstructured and sparse, and have overt differences in patterns for
various capture devices. Although some studies [38, 39, 46] have extended 2D
techniques to solve the 3D UDA problem, the performance is still limited due to
the essential defect of point cloud representation.

Considering that RGB cameras yield dense, color-rich, and structured data,
and more importantly, they represent minor discrepancies across various devices,
certain 3D UDA methods [4,5,19] utilize the synergy of LiDAR and camera ca-
pabilities to achieve more comprehensive and precise perception, and further en-
hance adaptation capabilities for 3D segmentation tasks. However, these methods
usually train 2D and 3D networks simultaneously, demanding substantial online
computing resources. Vision foundation models (VFMs), such as the Segment
Anything Model (SAM) [23], have garnered significant attention due to their
remarkable performance in addressing open-world vision tasks. Such models are
trained on massive image data with tremendous parameters. Compared with a
common model trained on limited data, VFMs have more general knowledge and
much stronger generalization capability. Many works such as [7,8] have emerged
recently to transfer the general 2D vision knowledge of VFMs to 3D and have
achieved promising performance.

Based on SAM, focusing on image segmentation, we propose a novel paradigm
for 3D UDA segmentation. As shown in Fig. 1(a), different from previous UDA
approaches that strive to align the target domain to the source domain so that
the model trained on labeled source data can also work on target data with-
out annotation, our method makes both the source domain and target domain
align with the SAM feature space. SAM feature space contains more general
knowledge, which provides a friendly space to unify the feature representation
from different domains. We utilize RGB images to assist point clouds in our
framework. However, unlike the methods mentioned above only using images to
provide auxiliary information, we take images as a bridge to align diverse 3D
feature spaces to the SAM feature space, so we do not need to train extra 2D
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networks and we can process the image offline for less computing resources. More-
over, considering that the 3D feature space created by the source-domain data
and the target-domain data is still much smaller than the SAM feature space,
we propose a hybrid feature augmentation method at both scene and instance
levels to generate more 3D data with diverse feature patterns in a broader data
domain, which can further benefit the 3D-to-SAM feature alignment. In partic-
ular, we make full use of the masks generated by SAM to mix instance-level
point clouds with the other domains. This technique can maintain the geometric
completeness of instances, which is beneficial for semantic recognition.

To verify that our idea of SAM-guided UDA is reliable, we randomly choose
data from the source and target datasets and calculate the differences of feature
distributions from source and target domain by KL divergence. The qualitative
results are shown in Fig. 1(b), where the feature distribution differences after
mapping to SAM feature space truly become much smaller. Moreover, to verify
the effectiveness of our method, we compare it with current SOTA works on ex-
tensive 3D UDA segmentation settings and our method outperforms others by a
large margin, improving about 14% mIoU for VirtualKITTI-to-SematicKITTI,
about 15% mIoU for Waymo-to-nuScenes, and about 20% mIoU for nuScenes-
to-SemanticKITTI domain adaptation. Surprisingly, our unsupervised method
achieves comparable performance with the supervised method for city-changing
and light-changing settings on the nuScenes dataset. We also test our method on
more challenging tasks, such as panoptic segmentation and domain generaliza-
tion, showing that our method is robust and has good generalization capability.

In summary, our contributions are as follows:

– We propose a novel unsupervised domain adaptation approach for 3D seg-
mentation, leveraging the foundational model SAM to guide the alignment
of features from diverse 3D data domains into a unified domain.

– We introduce a hybrid feature augmentation strategy at both scene and in-
stance levels, generating more distinct feature patterns across a broader data
domain for better feature alignment.

– We conduct extensive experiments on large-scale datasets and achieve SOTA
performance.

2 Related Work

2.1 Point Cloud Semantic Segmentation

Point cloud semantic segmentation [17,48] is a rapidly evolving field, and numer-
ous research works have contributed to advancements in this area. The pioneer-
ing approach PointNet [34] directly processes point clouds without voxelization
and revolutionizes 3D segmentation by providing a novel perspective on point
cloud analysis. Further, PointNet++ [35] extends PointNet with hierarchical
feature learning through partitioning point clouds into local regions. To handle
sparse point cloud data efficiently within large-scale scenes, a framework called
SparseConvNet [16] has been specifically crafted. It excels in processing sparse
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3D data and has been effectively utilized in various applications, including 3D
semantic segmentation. MinkUNet [9] represents a significant advancement in
point cloud semantic segmentation. Employing multi-scale interaction networks,
MinkUNet enhances the segmentation of point clouds, effectively addressing the
challenges posed by 3D spatial data. Our 3D segmentation networks are the pop-
ular SparseConvNet and MinkUNet. Due to the sparse characteristics of point
cloud data, many current methods [18, 25, 45] add corresponding dense image
information to facilitate point cloud segmentation tasks. Our method also uses
image features to assist point cloud segmentation, and additionally, we utilize
the 2D segmentation foundation model to achieve effective knowledge transfer.

2.2 Domain Adaptation for 3D Segmentation

Unsupervised Domain Adaptation (UDA) aims at transferring knowledge learned
from a source annotated domain to a target unlabelled domain, and there are
already several UDA methods proposed for 2D segmentation [6, 22, 47, 50]. In
recent years, domain adaptation techniques have gained increasing traction in
the context of 3D segmentation tasks. [46] leverage a "Complete and Label"
strategy to enhance semantic segmentation of LiDAR point clouds by recovering
underlying surfaces and facilitating the transfer of semantic labels across varying
LiDAR sensor domains. CosMix [38] introduces a sample mixing approach for
UDA in 3D segmentation, which stands as the pioneering UDA approach utiliz-
ing sample mixing to alleviate domain shift. It generates two new intermediate
domains of composite point clouds through a novel mixing strategy applied at
the input level, mitigating domain discrepancies. However, due to the sparsity
and irregularity of the point cloud, the disparity across different point cloud data
domains is larger compared to that across 2D image domains, which makes it
difficult to mitigate the variation across domains.

With the development of multi-modal perception [1,10] in autonomous driv-
ing, prevalent 3D datasets [2, 13, 15, 29] include both 3D point clouds and cor-
responding 2D images, making leveraging multi-modality for addressing domain
shift challenges in point clouds convenient. xMUDA [19, 20] shows the power of
combining 2D and 3D networks within a single framework, which achieves out-
standing performance by aggregating the scores from these two branches. This
achievement is attributed to the complementary nature resulting from the diverse
modalities processed by each branch. [32] introduce Dynamic Sparse-to-Dense
Cross-Modal Learning (DsCML) to enhance the interaction of multi-modality in-
formation, ultimately boosting domain adaptation sufficiency, while [5] elucidate
this complementarity of image and point cloud through an intuitive explanation
centered on the effective receptive field, and proposes to feed both modalities
to both branches. However, in practice, training two networks with distinct ar-
chitectures is difficult to converge and demands substantial computing resources
due to increased memory. Our method uses the pre-trained foundation model
to process the image data, guaranteeing the quality of the image features and
enabling the training process to focus on the 3D model.
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2.3 Vision Foundation Models

The rise of foundation models [12, 21, 40] has garnered significant attention
which are trained on extensive datasets, consequently demonstrating excep-
tional performance. Foundation models [42, 49] have seen significant advance-
ments in the realm of 2D vision, and several research studies extend these foun-
dation models to comprehend 3D information. Representative works CLIP [36]
leverage contrastive learning techniques to train both text and image encoders.
CLIP2Scene [8] extends the capabilities of CLIP by incorporating a 2D-3D cal-
ibration matrix to facilitate a deeper comprehension of 3D scenes and Open-
Scene [33] focuses on zero-shot learning for 3D scenes through aligning point
features in CLIP feature space to enable open vocabulary queries for 3D points.
The Meta Research team recently launched the ‘Segment Anything Model’ [23],
trained on an extensive dataset of over 1 billion masks from 11 million images.
Utilizing efficient prompting, SAM can generate high-quality masks for image in-
stance segmentation. The integration of flexible prompting and ambiguity aware-
ness enables SAM with robust generalization capabilities for various downstream
segmentation challenges. Many methods [7, 8, 28] take it as an off-the-shelf tool
and distillate the knowledge to solve 3D problems by 2D-3D feature alignment.
In our work of tackling the UDA of 3D segmentation, we utilize SAM to provide
2D prior knowledge for 3D feature alignment in a wider data domain.

3 Method

3.1 Problem Statement

We explore UDA for 3D segmentation, in which we have the source domain, de-
noted as DS = {PS , IS , YS} with paired input, namely point cloud PS and image
IS , as well as annotated labels YS for each point, and the target domain denoted
as DT = {PT , IT } without any annotation. Using these data, we train a 3D
segmentation model that can generalize well to the target domain. 3D data from
various domains have obvious differences in distribution and patterns, leading
to over-fitting problems when models trained in one domain try to analyze data
from another. The main solution is to align different features despite domain
differences to achieve the generalization capability of the model. Different from
previous works, our novel paradigm is to map data from distinct domains into a
unified feature space, ensuring the model performs consistently across domains.

3.2 Framework Overview

The vision foundation model, SAM, is trained by massive image data, which
contains general vision knowledge and provides a friendly feature space to unify
diverse feature representations. Taking 2D images as the bridge, the 3D feature
space of different domains can be indirectly unified by bringing them closer to the
SAM feature space based on 2D-to-3D knowledge distillation. Based on this, we
design a novel SAM-guided UDA method for 3D segmentation, as Fig. 2 shows.
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Fig. 2: Pipeline of our method. The point cloud is fed into the point encoder for point
embeddings at the top, and the corresponding images are passed through the SAM
encoder for image embeddings at the bottom, from which we obtain SAM-guided point
embedding with the 2D-3D projection. Alignment loss Lalign is calculated based on the
SAM-guided features and original features. Furthermore, augmented inputs provide
diverse feature patterns boosting the 3D-to-SAM feature alignment.

Specifically, given a point cloud input P , the point encoder M generates a point
embedding Fpoint ∈ Rn×d in the d-dimensional latent feature space. Concur-
rently, the corresponding image input I is passed through the SAM encoder for
a c-channels image embedding Fimage ∈ Rh×w×c. Utilizing the correspondence
between the point cloud and image, we acquire SAM-guided point embedding
F̂point ∈ Rn×d to compute the alignment loss Lalign with the original point em-
bedding Fpoint, serving the purpose of using SAM as a bridge to integrate the
features of diverse data domains into a unified feature space. Notably, during
training, the input for feature alignment consists of data from both source and
target domains. We named this process as SAM-guided Feature Alignment.
At the same time, as for labeled data Y , segmentation loss Lseg is also cal-
culated as semantic supervision. During model training, only the point cloud
branch of the whole pipeline is trained, and the gradient is not calculated in
the image branch, which makes our method more lightweight. Furthermore, a
Scene-Instance Hybrid Feature Augmentation is designed, which consists
of scene-level and instance-level mix-up strategy. These mix-up strategies boost
the variance of training data and generalize the network capability under the
convex combination of the source domain and target domain data. Notably, the
instance-level feature augmentation could maintain the local geometric relation-
ship between two domains and make the subsequent alignment efficient.

3.3 SAM-guided 3D Feature Alignment

Previous UDA methods usually align the feature space of the target domain to
that of the source domain so that the model trained on the source domain with
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labeled data can also recognize the data from the novel domain. However, the
distributions and patterns of 3D point clouds in various datasets have substan-
tial differences, making the alignment very difficult. SAM [23], a 2D foundation
model, is trained with a huge dataset of 11M images, granting it robust gener-
alization capabilities to address downstream segmentation challenges effectively.
If we can align features extracted from various data domains into the unified
feature space represented by SAM, the model trained on the source domain
can effectively handle the target data with the assistance of the universal vision
knowledge existing in the SAM feature space.

We focus on training a point-based 3D segmentation model, while SAM is
a foundation model trained on 2D images, which presents a fundamental chal-
lenge: how to bridge the semantic information captured in 2D images with the
features extracted from 3D points. Most outdoor large-scale datasets with point
clouds and images provide calibration information to project the 3D points into
the corresponding images. With this information, we can easily translate the co-
ordination of points P from the 3D LiDAR coordinate system Plidar to the 2D
image coordinate system Pimage. This transformation can be formally expressed
as Eq. 1, where rotation Rext and translation Text represent the extrinsic pa-
rameters of the camera, and matrix K represents the intrinsic parameters of the
camera.

zPimage = K(RextPlidar + Text) (1)

Once we calculate the projected 2D positions of points in the image coordi-
nate system, we can determine their corresponding positions in the SAM-guided
image embedding Fimage, which is generated from the image by the SAM fea-
ture extractor. As the positions of points in the image embedding typically are
not integer values, we perform bilinear interpolation based on the surrounding
semantic features in the image embedding corresponding to the point, which to
some extent alleviates the effect of calibration errors and allows us to derive the
SAM-guided feature of each point, denoted as Eq. 2.

F̂point = Bilinear(Fimage, Pimage) (2)

Then, the original point embedding Fpoint from both source and target do-
mains are all required to align with their corresponding SAM-guided features
F̂point. Specifically, we utilize the cosine function to measure the similarity of
Fpoint and F̂point, employing it as the alignment loss Lalign during training.
With the supervision of Lalign, features obtained by the point encoder M will
gradually converge towards the feature space represented by SAM, achieving the
purpose of extracting features within a unified feature space from the input of
different domains. The formulation of the loss function for feature alignment is
shown as Eq. 3.

Lalign = 1− cos(F̂point, Fpoint) (3)
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Fig. 3: Hybrid feature augmentation by data mixing for better 3D-to-SAM feature
alignment. Part(a) illustrate all the scene-level approaches including polar-based,
range-based, and laser-based point mix-up, where different color represents points from
distinct domain. Part(b) shows the data flow of mixing the point data with instance-
level data from another domain with an instance mask, where we take source data as
an example for instance-level point generation and vice versa.

3.4 Scene-Instance Hybrid Feature Augmentation

3D point features of the source-domain data and the target-domain data only
cover subsets of the 3D feature space, which are limited to align with the whole
SAM feature space with more universal knowledge. Therefore, more 3D data
with diverse feature patterns in a broader data domain is needed to achieve
more effective 3D-to-SAM feature alignment.

Previous works [24,43] usually focus on synthesizing data by combining data
in the source domain and target domain at the scene level, including polar-
based, range-based, and laser-based, as shown in Fig.3(a). Polar-based point
mix-up selects semi-circular point cloud data from two different domains based
on the polar coordinates of the point cloud. Range-based point mix-up divides
the point cloud by its distance from the center, synthesizing circular point data
close to the center and ring point data farther away from the center. Laser-
based point mix-up determines the part of point clouds based on the number of
laser beams, combining points with positive and negative laser pitch angles from
different domains for synthesis. These ways of scene-level feature augmentation
can maintain the general pattern of LiDAR point clouds as much as possible and
improve the data diversity. Moreover, they are simple to process without any
requirement for additional annotations such as real or pseudo-semantic labels.
We adopt these three kinds of scene-level data augmentation in our method.

However, scene-level data augmentation will, to some extent, destroy the
completeness of the point cloud of instances in the stitching areas and affect
the exploitation of local geometric characteristics of point clouds. To further
increase the data diversity and meanwhile keep the instance feature patterns of
LiDAR point clouds for better semantic recognition, we propose an instance-level
augmentation method. Benefiting from the instance mask output from SAM, we
can thoroughly exploit the instance-level geometric features. Compared with
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pre-trained 3D segmentation models, SAM provides more accurate and robust
instance masks and enables us to avoid extra warm-up for a pre-train model,
simplifying the whole training process. Therefore, we perform instance-level data
synthesis as Fig.3(b) shows. Specifically, we begin by employing SAM to generate
instance masks for input images from either the source or target domain (We take
target data as the example in the figure). Next, we use the calibration matrix to
project the corresponding point cloud into the image. The instance information
of each point is determined according to whether the projection position of the
point cloud falls within a specific instance mask, and then we randomly select
some points with 20 ∼ 30 specific instances, mixed with the point cloud from
the other domain by direct concatenation to achieve point augmentation at the
instance level.

In practice, we combine all the ways of feature augmentation at both scene
level and instance level with a random-selection strategy for a more comprehen-
sive feature augmentation, which generates a more diverse set of point cloud data
with varied feature patterns. Then, the augmented points are fed into the point
encoder M to obtain the point embedding Fpoint with distinct feature patterns
in a broader data domain beyond the source domain and target domain for more
effective SAM-guided feature alignment. Notably, to maintain the consistency of
the point cloud and the image, we extract SAM-guided point embedding based
on the corresponding original image embedding.

4 Experiment

We first introduce datasets and implementation details. After that, we explore
several domain shift scenarios and conduct comparisons for 3D segmentation.
Then, we conduct extensive ablation studies to assess submodules of our method.
Finally, we extend our method to more challenging tasks to show its generaliza-
tion capability.

4.1 Dataset Setup

We first follow the benchmark introduced in xMUDA [20] to evaluate our method,
comprehending four domain shift scenarios, including (1) USA-to-Singapore, (2)
Day-to-Night, (3) VirtualKITTI-to-SemanticKITTI and (4) A2D2-to-Semantic-
KITTI. The first two leverage nuScenes [3] as their dataset, consisting of 1000
driving scenes in total with 40k annotated point-wise frames. Specifically, the
former differs in the layout and infrastructure while the latter exhibits severe
illumination changes between the source and the target domain. The third is
more challenging since it is the adaptation from synthetic to real data, imple-
mented by adapting from VirtualKITTI [14] to SemanticKITTI [2] while the
fourth involves A2D2 [15] and SemanticKITTI as different data domains, where
the domain discrepancy lies in the distinct density and arrangement of 3D point
clouds captured by different devices since the A2D2 is captured by 16-beam
LiDAR and the SemanticKITTI uses 64-beam LiDAR. For the above settings,
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noted that only 3D points visible from the camera are used for training and
testing, specifically, only one image and corresponding points for each sample
are used for training.

Since we only use the image combined with SAM as offline assistance for the
training of a 3D segmentation network instead of training a new 2D segmenta-
tion network, we focus on comparing the performance of the 3D segmentation
network and enable model training with the whole point cloud sample because
of less computational cost, even if some part of it is not visible in the images. For
the part of the point cloud that cannot be covered by the image, alignment loss
is not calculated, only segmentation loss is calculated. Thus, we also compare
our method with others trained with the whole 360◦ view of the point cloud,
in which three datasets are involved including nuScenes, SemanticKITTI, and
Waymo [29]. In these settings, we use 6 images in nuScenes covering 360◦ view,
1 image in SemanticKITTI covering 120◦ view, and 5 images in Waymo covering
252◦ view. More information is introduced in the Appendix. For metric, We com-
pute the Intersection over the Union per class and report the mean Intersection
over the Union (mIoU).

4.2 Implementation Details

We make source and target labels compatible across these experiments. For all
benchmarks in prior multi-modal UDA methods, we strictly follow class mapping
like xMUDA for a fair comparison, while we map the labels of the dataset in
other experiments into 10 segmentation classes in common. Our method is imple-
mented by using the public PyTorch [31] repository MMDetection3D [11] and all
the models are trained on a single 24GB GeForce RTX 3090 GPU. To compare
fairly, we use SparseConvNet [16] with U-Net architecture as the 3D backbone
network when following the benchmark introduced in xMUDA to evaluate our
method and use MinkUNet32 [9] as the 3D backbone network when following
the setup of taking the whole 360◦ point cloud as input, which is also the back-
bone of the state-of-the-art uni-modal method CosMix. For the image branch,
the ViT-h variant SAM model is utilized to generate image embedding for SAM-
guided feature alignment and instance masks for hybrid feature augmentation
in an offline manner. We keep the proportion of mixed data and normal data
from the source and target domain the same during model training. Before the
data is fed into the 3D network, data augmentation such as vertical axis flipping,
random scaling, and random 3D rotations are widely used like all the compared
methods. For the model training strategies, we choose a batch size of 8 for both
source data and target data, then mix the data batch for training at each iter-
ation. Besides, we adopt AdamW as the model optimizer and One Cycle Policy
as the learning-rate scheduler.

4.3 Experimental Results and Comparison

Tab. 1 and Tab. 2 show the experimental results and performance compari-
son with previous UDA methods for 3D segmentation under the setup intro-
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Table 1: Results under four domain shift scenarios introduced by xMUDA. We report
all the 3D network performance of compared multi-modal UDA methods in terms of
mIoU. Note that the 3D backbone in these experiments is SparseConvNet [16].

Method USA → Singapore Day → Night v.KITTI → Sem.KITTI A2D2 → Sem.KITTI

Source only 62.8 +0.0 68.8 +0.0 42.0 +0.0 35.9 +0.0

xMUDA [20] 63.2 +0.4 69.2 +0.4 46.7 +4.7 46.0 +10.1
DsCML [32] 52.3 −10.5 61.4 −7.4 32.8 −9.2 32.6 −3.3
MM2D3D [5] 66.8 +4.0 70.2 +1.4 50.3 +8.3 46.1 +10.2
Ours 73.6 +10.8 70.5 +1.7 64.9 +22.9 52.1 +16.2

Oracle 76.0 − 69.2 − 78.4 − 71.9 −

Table 2: Results under four domain shift scenarios with 360◦ point cloud, where not
all the points are visible in the images. We report the 3D network performance in terms
of mIoU. Note that the 3D backbone in these experiments is MinkUNet32 [9].

Method nuScenes → Sem.KITTI Sem.KITTI → nuScenes nuScenes → Waymo Waymo → nuScenes

Source only 27.7 +0.0 28.1 +0.0 29.4 +0.0 21.8 +0.0

PL [30] 30.0 +2.3 29.0 +0.9 31.9 +2.5 22.3 +0.5
CosMix [37] 30.6 +2.9 29.7 +1.6 31.5 +2.1 30.0 +8.2
MM2D3D [5] 30.4 +2.7 31.9 +3.8 31.3 +1.9 33.5 +11.7
MM2D3D∗ 32.9 +5.2 33.7 +5.6 34.1 +4.7 37.5 +15.7
Ours 48.5 +20.8 42.9 +14.8 44.9 +15.5 48.2 +26.4

Oracle 70.3 − 78.3 − 79.9 − 78.3 −

duced in Sec. 4.1. Each experiment contains two reference methods in common,
a baseline model named Source only trained only on the source domain and an
upper-bound model named Oracle trained only on the target data with annota-
tions. Tab. 1 focuses on four domain shift scenarios introduced by xMUDA [20]
and comparison with these multi-modal methods based on xMUDA such as
DsCML [32] and MM2D3D [5]. Among them, MM2D3D fully exploits the com-
plementarity of image and point cloud and proposes to feed two modalities
to both branches, achieving better performance. Our method outperforms it
by +6.8% (USA → Singapore), +0.3% (Day → Night), +14.6% (v.KITTI →
Sem.KITTI), +6.0% (A2D2 → Sem.KITTI) respectively, because our method
aligns all the features into a unified feature space with the guidance of SAM
instead of simply aligning features from image and point cloud in 2D and 3D
network. Tab. 2 focuses on the scenarios where not all the point clouds are vis-
ible in the images and we re-implement three methods by their official codes.
PL [30] uses the prediction from the pre-trained model as pseudo labels for un-
labelled data to retrain this model, which is widely used in UDA methods. Cos-
Mix [37] trains a 3D network with only the utilization of a point cloud, which
generates new intermediate domains through a mixing scene-level strategy to
mitigate domain discrepancies. MM2D3d is the SOTA multi-modal method as
described above, but it needs all the points visible in the image for the best
performance. Our method surpasses them by at least +17.9% (nuScenes →
Sem.KITTI), +11.0% (Sem.KITTI → nuScenes), +13.0% (nuScenes → Waymo),
+14.7% (Waymo → nuScenes) respectively by a large margin, since hybrid fea-
ture augmentation can provide more intermediate domains and SAM-guided
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Fig. 4: Visualization of the domain adaptation from nuScenes to SemanticKITTI.

feature alignment can help map the whole point cloud into the unified feature
space.

According to the results above, our method outperforms others by a large
margin, attributed to the full utilization of the general knowledge provided by
SAM. To further prove that the achievement is due to not only SAM but also
our novel paradigm, we also use SAM for current SOTA multi-modal UDA work
and get results in the row of "MM2D3D*". Because it trains both 2D and 3D
networks simultaneously, under its original framework, we can only refine the
supervision signals of 2D network using the instance mask output of SAM. As
seen from the results, SAM can improve its performance but very limited. Our
method not only uses instance masks but also makes full use of the general fea-
tures extracted by SAM, ensuring the superiority of our method. Qualitative
results are shown in Fig. 4, where predictions in the ellipses demonstrate that
source-only and MM2D3D models often infer wrong and mingling results, espe-
cially for the person category, while our method can provide correct and more
fine-grained segmentation. More qualitative results are in the Appendix.

Table 3: Ablation study. Baseline means the result of the source-only model indicating
the lower-bound and Pseudo Label means re-training the model with pseudo labels.

Setting Baseline SAM-guided
Feature Alignment

Hybrid Feature Augmentation
Pseudo Label mIoU

Scene-level Instance-level

(1) ✓ 27.7
(2) ✓ ✓ 34.0
(3) ✓ ✓ ✓ 28.6

(4) ✓ ✓ ✓ 40.1
(5) ✓ ✓ ✓ 39.0
(6) ✓ ✓ ✓ ✓ 44.0

(7) ✓ ✓ ✓ ✓ ✓ 48.5

4.4 Ablation Study

To show the effectiveness of each module of our method, we conduct ablation
studies on nuScenes-to-SemanticKITTI UDA. We also analyze and show the
effect of other vision foundation models on our method.
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Effectiveness of Model Components We first analyze the effects of all the
submodules in our method in Tab. 3, containing SAM-guided Feature Align-
ment, Hybrid Feature Augmentation, and Pseudo Label. SAM-guided Feature
Alignment aligns all the point features with the corresponding feature embed-
dings output by SAM, guiding the 3D network map point cloud into the unified
feature space represented by SAM while Hybrid Feature Augmentation generates
additional point cloud data of the intermediate domain for feature extraction to
maximize the effect of feature alignment. Setting (1), (2), (3), and (6) in the ta-
ble shows that combining the two submodules improves performance by a large
margin. Besides, re-training the model with pseudo labels is a strategy widely
used in UDA tasks and it also improves the performance.
Effectiveness of Hybrid Feature Augmentation For the detailed ablation
of feature alignment, we adopt hybrid strategies for diverse data with distinct
feature patterns, which not only mix up points at the scene level in polar-based,
range-based, and laser-based ways but also at the instance level with the help
of instance mask output by SAM. Random selection in all these point mix-up
ways forms this feature augmentation. Setting (4), (5), (6) in Tab. 3 shows that
both mix-up methods can help feature alignment with more distinct features
but the hybrid strategy raises the best performance. More ablations are in the
Appendix. Moreover, since masks generated by SAM do not contain semantic
labels, we conduct an additional experiment to prove the validity of instance-
level augmentation by replacing the generated SAM instance masks with the
ground truth semantic masks under the setting (6). Compared with the original
result (mIoU=44.0), the performance of using ground truth semantic masks is
mIoU=42.7, demonstrating that although masks generated by SAM cannot be
identical to the ground truth, the contained semantic information is consistent,
and the randomness of our augmentation further improve the performance.

Table 4: The effect of image-point cover-
age. Different numbers represent the num-
ber of used pictures of nuScenes.
Covered Images for Alignment baseline 2 4 6

nuScenes → Sem.KITTI 27.7 43.9 45.6 48.5

Sem.KITTI → nuScenes 28.1 38.4 40.6 42.9

Effect of Different Point-to-Pixel
Coverage for Alignment. For point
clouds not covered by images, we do
not calculate feature alignment loss
and solely calculate segmentation loss
with ground truth or pseudo label.
When conducting the experiments, we
used all available images to ensure
that as many point cloud data as pos-
sible could find corresponding features
on the pictures for SAM-guided feature alignment. We also conduct additional
experiments to demonstrate the impact of the number of available images for fea-
ture alignment, as shown in Tab.4. The results indicate that a greater number of
available images correlates with improved experimental outcomes. Importantly,
as long as SAM-guided feature alignment is achievable, the performance does
not significantly degrade even with limited coverage.
Effect of Vision Foundation Model We also extend our method to other
vision foundation models, such as InternImage [41], serving for image-based
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tasks. Specifically, we replace the SAM-based image encoder with InternImage
to guide the feature alignment in a similar manner. Compared with the baseline
(mIoU=27.7), the performance of using InternImage is mIoU=36.9. A consistent
performance gain can be obtained, which also verifies and validates our insight,
i.e., the generic feature space of the VFM can ease the feature alignment.

4.5 More Challenging Tasks

Since we achieve the purpose of mapping data from different domains into a uni-
fied feature space, the extracted feature can be used for some more challenging
tasks. We show some extension results of our method in Tab. 5. The left subtable
shows the results of UDA for panoptic segmentation, a more challenging task
requiring instance-level predictions. With more accurate and fine-grained seman-
tic prediction, our method achieves promising results. The right subtable shows
the results of domain generalization, in which target data only can be used for
testing. In this subtable, models are trained with nuScenes and SemanticKITTI
and then evaluated with A2D2 dataset. With the ability of stronger data-to-
feature mapping, our method outperforms the current SOTA method [26]. In
the future, we seek to explore the potential of our method on more tasks, such
as 3D detection.

Table 5: Extension on more challenging tasks, such as UDA for Panoptic Segmen-
tation(left) and Domain Generalization(right), where N, S, A represent nuScenes, Se-
manticKITTI and A2D2 dataset.

Task Method PQ PQ† RQ SQ mIoU

nuScenes → Sem.KITTI

Source only 14.0 21.6 19.9 55.8 27.7
PL 15.9 22.7 22.2 58.1 29.7
Ours 34.3 38.4 42.6 55.9 48.5

Oracle 50.5 52.2 57.8 77.2 70.3

Sem.KITTI → nuScenes

Source only 15.6 22.1 20.7 52.7 28.2
PL 16.8 23.0 21.7 48.3 29.0
Ours 24.6 30.7 30.8 60.0 42.9

Oracle 40.7 44.9 47.2 83.8 78.3

Method N,S → A

Baseline 45.0

xMUDA
[20] 44.9

Dual-Cross
[27] 41.3

BEV-DG
[26] 55.1

Ours 57.2

5 Conclusion

In this paper, we acknowledge the limitations of existing UDA methods in han-
dling the domain discrepancy present in 3D point cloud data and propose a novel
paradigm to unify feature representations across diverse 3D domains by leverag-
ing the powerful generalization capabilities of the vision foundation model, sig-
nificantly enhancing the adaptability of 3D segmentation models. Hybrid feature
augmentation strategy is also proposed for better 3D-SAM feature alignment.
Extensive experiments show that our method surpasses all compared SOTA
methods by a large margin.
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